{-# LANGUAGE FlexibleInstances, GeneralizedNewtypeDeriving, StandaloneDeriving, PatternSynonyms, TypeOperators, TypeFamilies, UndecidableInstances, NoImplicitPrelude #-}
module Data.Category.Fix where
import Data.Category
import Data.Category.Functor
import Data.Category.Limit
import Data.Category.CartesianClosed
import Data.Category.Monoidal
import qualified Data.Category.Unit as U
import Data.Category.Coproduct
newtype Fix f a b = Fix (f (Fix f) a b)
deriving instance Category (f (Fix f)) => Category (Fix f)
deriving instance HasInitialObject (f (Fix f)) => HasInitialObject (Fix f)
deriving instance HasTerminalObject (f (Fix f)) => HasTerminalObject (Fix f)
deriving instance HasBinaryProducts (f (Fix f)) => HasBinaryProducts (Fix f)
deriving instance HasBinaryCoproducts (f (Fix f)) => HasBinaryCoproducts (Fix f)
deriving instance CartesianClosed (f (Fix f)) => CartesianClosed (Fix f)
data Wrap (f :: * -> * -> *) = Wrap
instance Category (f (Fix f)) => Functor (Wrap (Fix f)) where
type Dom (Wrap (Fix f)) = f (Fix f)
type Cod (Wrap (Fix f)) = Fix f
type Wrap (Fix f) :% a = a
Wrap % f = Fix f
data Unwrap (f :: * -> * -> *) = Unwrap
instance Category (f (Fix f)) => Functor (Unwrap (Fix f)) where
type Dom (Unwrap (Fix f)) = Fix f
type Cod (Unwrap (Fix f)) = f (Fix f)
type Unwrap (Fix f) :% a = a
Unwrap % Fix f = f
type WrapTensor f t = Wrap f :.: t :.: (Unwrap f :***: Unwrap f)
instance (TensorProduct t, Cod t ~ f (Fix f)) => TensorProduct (WrapTensor (Fix f) t) where
type Unit (WrapTensor (Fix f) t) = Unit t
unitObject (_ :.: t :.: _) = Fix (unitObject t)
leftUnitor (_ :.: t :.: _) (Fix a) = Fix (leftUnitor t a)
leftUnitorInv (_ :.: t :.: _) (Fix a) = Fix (leftUnitorInv t a)
rightUnitor (_ :.: t :.: _) (Fix a) = Fix (rightUnitor t a)
rightUnitorInv (_ :.: t :.: _) (Fix a) = Fix (rightUnitorInv t a)
associator (_ :.: t :.: _) (Fix a) (Fix b) (Fix c) = Fix (associator t a b c)
associatorInv (_ :.: t :.: _) (Fix a) (Fix b) (Fix c) = Fix (associatorInv t a b c)
type Omega = Fix ((:>>:) U.Unit)
type Z = I1 ()
type S n = I2 n
pattern Z :: Obj Omega Z
pattern Z = Fix (DC (I1A U.Unit))
pattern S :: Omega a b -> Omega (S a) (S b)
pattern S n = Fix (DC (I2A n))
z2s :: Obj Omega n -> Omega Z (S n)
z2s n = Fix (DC (I12 U.Unit n (Const (\() -> ())) ()))