{-# LANGUAGE TypeFamilies, TypeOperators, GADTs, FlexibleInstances, FlexibleContexts, RankNTypes, ScopedTypeVariables, UndecidableInstances, NoImplicitPrelude #-}
module Data.Category.Kleisli where
import Data.Category
import Data.Category.Functor
import Data.Category.NaturalTransformation
import Data.Category.Monoidal
import qualified Data.Category.Adjunction as A
data Kleisli m a b where
Kleisli :: (Functor m, Dom m ~ k, Cod m ~ k) => Monad m -> Obj k b -> k a (m :% b) -> Kleisli m a b
kleisliId :: (Functor m, Dom m ~ k, Cod m ~ k) => Monad m -> Obj k a -> Kleisli m a a
kleisliId m a = Kleisli m a (unit m ! a)
instance Category (Kleisli m) where
src (Kleisli m _ f) = kleisliId m (src f)
tgt (Kleisli m b _) = kleisliId m b
(Kleisli m c f) . (Kleisli _ _ g) = Kleisli m c ((multiply m ! c) . (monadFunctor m % f) . g)
data KleisliAdjF m = KleisliAdjF (Monad m)
instance (Functor m, Dom m ~ k, Cod m ~ k) => Functor (KleisliAdjF m) where
type Dom (KleisliAdjF m) = Dom m
type Cod (KleisliAdjF m) = Kleisli m
type KleisliAdjF m :% a = a
KleisliAdjF m % f = Kleisli m (tgt f) ((unit m ! tgt f) . f)
data KleisliAdjG m = KleisliAdjG (Monad m)
instance (Functor m, Dom m ~ k, Cod m ~ k) => Functor (KleisliAdjG m) where
type Dom (KleisliAdjG m) = Kleisli m
type Cod (KleisliAdjG m) = Dom m
type KleisliAdjG m :% a = m :% a
KleisliAdjG m % Kleisli _ b f = (multiply m ! b) . (monadFunctor m % f)
kleisliAdj :: (Functor m, Dom m ~ k, Cod m ~ k)
=> Monad m -> A.Adjunction (Kleisli m) k (KleisliAdjF m) (KleisliAdjG m)
kleisliAdj m = A.mkAdjunctionUnits (KleisliAdjF m) (KleisliAdjG m)
(\x -> unit m ! x)
(\(Kleisli _ x _) -> Kleisli m x (monadFunctor m % x))