data-interval-0.6.0: Interval arithmetic for both open and closed intervals

Portabilitynon-portable (ScopedTypeVariables, DeriveDataTypeable)
Stabilityprovisional
Maintainermasahiro.sakai@gmail.com
Safe HaskellSafe-Inferred

Data.Interval

Contents

Description

Interval datatype and interval arithmetic.

Unlike the intervals package (http://hackage.haskell.org/package/intervals), this module provides both open and closed intervals and is intended to be used with Rational.

For the purpose of abstract interpretation, it might be convenient to use Lattice instance. See also lattices package (http://hackage.haskell.org/package/lattices).

Synopsis

Interval type

data Interval r Source

Interval

Instances

Typeable1 Interval 
Eq r => Eq (Interval r) 
(Real r, Fractional r) => Fractional (Interval r) 
(Num r, Ord r, Data r) => Data (Interval r) 
(Num r, Ord r) => Num (Interval r) 
(Num r, Ord r, Read r) => Read (Interval r) 
(Num r, Ord r, Show r) => Show (Interval r) 
NFData r => NFData (Interval r) 
Hashable r => Hashable (Interval r) 
(Num r, Ord r) => JoinSemiLattice (Interval r) 
(Num r, Ord r) => MeetSemiLattice (Interval r) 
(Num r, Ord r) => Lattice (Interval r) 
(Num r, Ord r) => BoundedJoinSemiLattice (Interval r) 
(Num r, Ord r) => BoundedMeetSemiLattice (Interval r) 
(Num r, Ord r) => BoundedLattice (Interval r) 

data EndPoint r Source

Endpoints of intervals

Constructors

NegInf

negative infinity (-∞)

Finite !r

finite value

PosInf

positive infinity (+∞)

Instances

Construction

intervalSource

Arguments

:: (Ord r, Num r) 
=> (EndPoint r, Bool)

lower bound and whether it is included

-> (EndPoint r, Bool)

upper bound and whether it is included

-> Interval r 

smart constructor for Interval

(<=..<=)Source

Arguments

:: (Ord r, Num r) 
=> EndPoint r

lower bound l

-> EndPoint r

upper bound u

-> Interval r 

closed interval [l,u]

(<..<=)Source

Arguments

:: (Ord r, Num r) 
=> EndPoint r

lower bound l

-> EndPoint r

upper bound u

-> Interval r 

left-open right-closed interval (l,u]

(<=..<)Source

Arguments

:: (Ord r, Num r) 
=> EndPoint r

lower bound l

-> EndPoint r

upper bound u

-> Interval r 

left-closed right-open interval [l, u)

(<..<)Source

Arguments

:: (Ord r, Num r) 
=> EndPoint r

lower bound l

-> EndPoint r

upper bound u

-> Interval r 

open interval (l, u)

whole :: (Num r, Ord r) => Interval rSource

whole real number line (-∞, ∞)

empty :: Num r => Interval rSource

empty (contradicting) interval

singleton :: (Num r, Ord r) => r -> Interval rSource

singleton set [x,x]

Query

null :: Ord r => Interval r -> BoolSource

Is the interval empty?

member :: Ord r => r -> Interval r -> BoolSource

Is the element in the interval?

notMember :: Ord r => r -> Interval r -> BoolSource

Is the element not in the interval?

isSubsetOf :: Ord r => Interval r -> Interval r -> BoolSource

Is this a subset? (i1 isSubsetOf i2) tells whether i1 is a subset of i2.

isProperSubsetOf :: Ord r => Interval r -> Interval r -> BoolSource

Is this a proper subset? (ie. a subset but not equal).

lowerBound :: Num r => Interval r -> EndPoint rSource

Lower bound of the interval

upperBound :: Num r => Interval r -> EndPoint rSource

Upper bound of the interval

lowerBound' :: Num r => Interval r -> (EndPoint r, Bool)Source

Lower bound of the interval and whether it is included in the interval. The result is convenient to use as an argument for interval.

upperBound' :: Num r => Interval r -> (EndPoint r, Bool)Source

Upper bound of the interval and whether it is included in the interval. The result is convenient to use as an argument for interval.

width :: (Num r, Ord r) => Interval r -> rSource

Width of a interval. Width of an unbounded interval is undefined.

Comparison

(<!) :: Real r => Interval r -> Interval r -> BoolSource

For all x in X, y in Y. x < y

(<=!) :: Real r => Interval r -> Interval r -> BoolSource

For all x in X, y in Y. x <= y

(==!) :: Real r => Interval r -> Interval r -> BoolSource

For all x in X, y in Y. x == y

(>=!) :: Real r => Interval r -> Interval r -> BoolSource

For all x in X, y in Y. x >= y

(>!) :: Real r => Interval r -> Interval r -> BoolSource

For all x in X, y in Y. x > y

(<?) :: Real r => Interval r -> Interval r -> BoolSource

Does there exist an x in X, y in Y such that x < y?

(<=?) :: Real r => Interval r -> Interval r -> BoolSource

Does there exist an x in X, y in Y such that x <= y?

(==?) :: Real r => Interval r -> Interval r -> BoolSource

Does there exist an x in X, y in Y such that x == y?

(>=?) :: Real r => Interval r -> Interval r -> BoolSource

Does there exist an x in X, y in Y such that x >= y?

(>?) :: Real r => Interval r -> Interval r -> BoolSource

Does there exist an x in X, y in Y such that x > y?

Combine

intersection :: forall r. (Ord r, Num r) => Interval r -> Interval r -> Interval rSource

intersection of two intervals

intersections :: (Ord r, Num r) => [Interval r] -> Interval rSource

intersection of a list of intervals.

hull :: forall r. (Ord r, Num r) => Interval r -> Interval r -> Interval rSource

convex hull of two intervals

hulls :: (Ord r, Num r) => [Interval r] -> Interval rSource

convex hull of a list of intervals.

Operations

pickup :: (Real r, Fractional r) => Interval r -> Maybe rSource

pick up an element from the interval if the interval is not empty.

simplestRationalWithin :: RealFrac r => Interval r -> Maybe RationalSource

simplestRationalWithin returns the simplest rational number within the interval. A rational number y is said to be simpler than another y' if

(see also approxRational)