{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Type.Predicate.Param (
ParamPred
, IsTC, EqBy
, FlipPP, ConstPP, PPMap, PPMapV, InP, AnyMatch, TyPP
, Found, NotFound
, Selectable, select
, Searchable, search
, inPNotNull, notNullInP
, SelectableTC, selectTC
, SearchableTC, searchTC
, OrP, AndP
) where
import Data.Kind
import Data.Singletons
import Data.Singletons.Decide
import Data.Singletons.Sigma
import Data.Tuple.Singletons
import Data.Type.Functor.Product
import Data.Type.Predicate
import Data.Type.Predicate.Logic
import Data.Type.Universe
type ParamPred k v = k -> Predicate v
data Found :: ParamPred k v -> Predicate k
type instance Apply (Found (p :: ParamPred k v)) a = Σ v (p a)
type NotFound (p :: ParamPred k v) = (Not (Found p) :: Predicate k)
data FlipPP :: ParamPred v k -> ParamPred k v
type instance Apply (FlipPP p x) y = p y @@ x
data ConstPP :: Predicate v -> ParamPred k v
type instance Apply (ConstPP p k) v = p @@ v
data EqBy :: (v ~> k) -> ParamPred k v
type instance Apply (EqBy f x) y = x :~: (f @@ y)
type IsTC t = EqBy (TyCon1 t)
data TyPP :: (k -> v -> Type) -> ParamPred k v
type instance Apply (TyPP t k) v = t k v
data PPMap :: (k ~> j) -> ParamPred j v -> ParamPred k v
type instance Apply (PPMap f p x) y = p (f @@ x) @@ y
data PPMapV :: (u ~> v) -> ParamPred k u -> ParamPred k v
type instance Apply (PPMapV f p x) y = p x @@ (f @@ y)
instance (Decidable (Found (p :: ParamPred j v)), SingI (f :: k ~> j)) => Decidable (Found (PPMap f p)) where
decide :: Decide (Found (PPMap f p))
decide = forall a b. (a -> b) -> (b -> a) -> Decision a -> Decision b
mapDecision (\case Sing fst
i :&: p (Apply f a) @@ fst
p -> Sing fst
i forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: p (Apply f a) @@ fst
p)
(\case Sing fst
i :&: PPMap f p a @@ fst
p -> Sing fst
i forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: PPMap f p a @@ fst
p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k1} (p :: k1 ~> *). Decidable p => Decide p
decide @(Found p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k1 k2 (f :: k1 ~> k2).
SLambda f -> forall (t :: k1). Sing t -> Sing (f @@ t)
applySing (forall {k} (a :: k). SingI a => Sing a
sing :: Sing f)
instance (Provable (Found (p :: ParamPred j v)), SingI (f :: k ~> j)) => Provable (Found (PPMap f p)) where
prove :: Prove (Found (PPMap f p))
prove (Sing a
x :: Sing a) = case forall {k1} (p :: k1 ~> *). Provable p => Prove p
prove @(Found p) ((forall {k} (a :: k). SingI a => Sing a
sing :: Sing f) forall k1 k2 (f :: k1 ~> k2) (t :: k1).
Sing f -> Sing t -> Sing (f @@ t)
@@ Sing a
x) of
Sing fst
i :&: p (f @@ a) @@ fst
p -> Sing fst
i forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: p (f @@ a) @@ fst
p
type Searchable p = Decidable (Found p)
type Selectable p = Provable (Found p)
search
:: forall p. Searchable p
=> Decide (Found p)
search :: forall {k1} {v} (p :: ParamPred k1 v).
Searchable p =>
Decide (Found p)
search = forall {k1} (p :: k1 ~> *). Decidable p => Decide p
decide @(Found p)
select
:: forall p. Selectable p
=> Prove (Found p)
select :: forall {k1} {v} (p :: ParamPred k1 v).
Selectable p =>
Prove (Found p)
select = forall {k1} (p :: k1 ~> *). Provable p => Prove p
prove @(Found p)
type SearchableTC t = Decidable (Found (TyPP t))
type SelectableTC t = Provable (Found (TyPP t))
searchTC
:: forall t. SearchableTC t
=> Decide (Found (TyPP t))
searchTC :: forall {k1} {v} (t :: k1 -> v -> *).
SearchableTC t =>
Decide (Found (TyPP t))
searchTC = forall {k1} {v} (p :: ParamPred k1 v).
Searchable p =>
Decide (Found p)
search @(TyPP t)
selectTC
:: forall t. SelectableTC t
=> Prove (Found (TyPP t))
selectTC :: forall {k1} {v} (t :: k1 -> v -> *).
SelectableTC t =>
Prove (Found (TyPP t))
selectTC = forall {k1} {v} (p :: ParamPred k1 v).
Selectable p =>
Prove (Found p)
select @(TyPP t)
type InP f = (ElemSym1 f :: ParamPred (f k) k)
notNullInP :: NotNull f --> Found (InP f)
notNullInP :: forall {k} (f :: * -> *). NotNull f --> Found (InP f)
notNullInP Sing a
_ (WitAny Elem f a a1
i Evident @@ a1
s) = Evident @@ a1
s forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: Elem f a a1
i
inPNotNull :: Found (InP f) --> NotNull f
inPNotNull :: forall {v} (f :: * -> *). Found (InP f) --> NotNull f
inPNotNull Sing a
_ (Sing fst
s :&: ElemSym1 f a @@ fst
i) = forall {k} (f :: * -> *) (b :: f k) (a1 :: k) (a :: k ~> *).
Elem f b a1 -> (a @@ a1) -> WitAny f a b
WitAny ElemSym1 f a @@ fst
i Sing fst
s
instance Universe f => Decidable (Found (InP f)) where
decide :: Decide (Found (InP f))
decide = forall a b. (a -> b) -> (b -> a) -> Decision a -> Decision b
mapDecision (\case WitAny Elem f a a1
i Evident @@ a1
s -> Evident @@ a1
s forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: Elem f a a1
i )
(\case Sing fst
s :&: ElemSym1 f a @@ fst
i -> forall {k} (f :: * -> *) (b :: f k) (a1 :: k) (a :: k ~> *).
Elem f b a1 -> (a @@ a1) -> WitAny f a b
WitAny ElemSym1 f a @@ fst
i Sing fst
s)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k1} (p :: k1 ~> *). Decidable p => Decide p
decide @(NotNull f)
instance Decidable (NotNull f ==> Found (InP f))
instance Provable (NotNull f ==> Found (InP f)) where
prove :: Prove (NotNull f ==> Found (InP f))
prove = forall {k} (f :: * -> *). NotNull f --> Found (InP f)
notNullInP
instance Decidable (Found (InP f) ==> NotNull f)
instance Provable (Found (InP f) ==> NotNull f) where
prove :: Prove (Found (InP f) ==> NotNull f)
prove = forall {v} (f :: * -> *). Found (InP f) --> NotNull f
inPNotNull
data AnyMatch f :: ParamPred k v -> ParamPred (f k) v
type instance Apply (AnyMatch f p as) a = Any f (FlipPP p a) @@ as
instance (Universe f, Decidable (Found p)) => Decidable (Found (AnyMatch f p)) where
decide :: Decide (Found (AnyMatch f p))
decide = forall a b. (a -> b) -> (b -> a) -> Decision a -> Decision b
mapDecision (\case WitAny Elem f a a1
i (Sing fst
x :&: p a1 @@ fst
p) -> Sing fst
x forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: forall {k} (f :: * -> *) (b :: f k) (a1 :: k) (a :: k ~> *).
Elem f b a1 -> (a @@ a1) -> WitAny f a b
WitAny Elem f a a1
i p a1 @@ fst
p )
(\case Sing fst
x :&: WitAny Elem f a a1
i FlipPP p fst @@ a1
p -> forall {k} (f :: * -> *) (b :: f k) (a1 :: k) (a :: k ~> *).
Elem f b a1 -> (a @@ a1) -> WitAny f a b
WitAny Elem f a a1
i (Sing fst
x forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: FlipPP p fst @@ a1
p))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k1} (p :: k1 ~> *). Decidable p => Decide p
decide @(Any f (Found p))
data OrP :: ParamPred k v -> ParamPred k v -> ParamPred k v
type instance Apply (OrP p q x) y = (p x ||| q x) @@ y
data AndP :: ParamPred k v -> ParamPred k u -> ParamPred k (v, u)
type instance Apply (AndP p q x) '(y, z) = (p x @@ y, q x @@ z)
instance (Searchable p, Searchable q) => Decidable (Found (OrP p q)) where
decide :: Decide (Found (OrP p q))
decide Sing a
x = case forall {k1} {v} (p :: ParamPred k1 v).
Searchable p =>
Decide (Found p)
search @p Sing a
x of
Proved (Sing fst
s :&: p a @@ fst
p) -> forall a. a -> Decision a
Proved forall a b. (a -> b) -> a -> b
$ Sing fst
s forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: forall a b. a -> Either a b
Left p a @@ fst
p
Disproved Refuted (Found p @@ a)
vp -> case forall {k1} {v} (p :: ParamPred k1 v).
Searchable p =>
Decide (Found p)
search @q Sing a
x of
Proved (Sing fst
s :&: q a @@ fst
q) -> forall a. a -> Decision a
Proved forall a b. (a -> b) -> a -> b
$ Sing fst
s forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: forall a b. b -> Either a b
Right q a @@ fst
q
Disproved Refuted (Found q @@ a)
vq -> forall a. Refuted a -> Decision a
Disproved forall a b. (a -> b) -> a -> b
$ \case
Sing fst
s :&: Left Apply (p a) fst
p -> Refuted (Found p @@ a)
vp (Sing fst
s forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: Apply (p a) fst
p)
Sing fst
s :&: Right Apply (q a) fst
q -> Refuted (Found q @@ a)
vq (Sing fst
s forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: Apply (q a) fst
q)
instance (Searchable p, Searchable q) => Decidable (Found (AndP p q)) where
decide :: Decide (Found (AndP p q))
decide Sing a
x = case forall {k1} {v} (p :: ParamPred k1 v).
Searchable p =>
Decide (Found p)
search @p Sing a
x of
Proved (Sing fst
s :&: p a @@ fst
p) -> case forall {k1} {v} (p :: ParamPred k1 v).
Searchable p =>
Decide (Found p)
search @q Sing a
x of
Proved (Sing fst
t :&: q a @@ fst
q) -> forall a. a -> Decision a
Proved forall a b. (a -> b) -> a -> b
$ forall a b (n1 :: a) (n2 :: b).
Sing n1 -> Sing n2 -> STuple2 '(n1, n2)
STuple2 Sing fst
s Sing fst
t forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: (p a @@ fst
p, q a @@ fst
q)
Disproved Refuted (Found q @@ a)
vq -> forall a. Refuted a -> Decision a
Disproved forall a b. (a -> b) -> a -> b
$ \case
STuple2 Sing n1
_ Sing n2
t :&: (Apply (p a) n1
_, Apply (q a) n2
q) -> Refuted (Found q @@ a)
vq forall a b. (a -> b) -> a -> b
$ Sing n2
t forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: Apply (q a) n2
q
Disproved Refuted (Found p @@ a)
vp -> forall a. Refuted a -> Decision a
Disproved forall a b. (a -> b) -> a -> b
$ \case
STuple2 Sing n1
s Sing n2
_ :&: (Apply (p a) n1
p, Apply (q a) n2
_) -> Refuted (Found p @@ a)
vp forall a b. (a -> b) -> a -> b
$ Sing n1
s forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: Apply (p a) n1
p
instance (Selectable p, Selectable q) => Provable (Found (AndP p q)) where
prove :: Prove (Found (AndP p q))
prove Sing a
x = case forall {k1} {v} (p :: ParamPred k1 v).
Selectable p =>
Prove (Found p)
select @p Sing a
x of
Sing fst
s :&: p a @@ fst
p -> case forall {k1} {v} (p :: ParamPred k1 v).
Selectable p =>
Prove (Found p)
select @q Sing a
x of
Sing fst
t :&: q a @@ fst
q -> forall a b (n1 :: a) (n2 :: b).
Sing n1 -> Sing n2 -> STuple2 '(n1, n2)
STuple2 Sing fst
s Sing fst
t forall s (a :: s ~> *) (fst :: s).
Sing fst -> (a @@ fst) -> Sigma s a
:&: (p a @@ fst
p, q a @@ fst
q)