{-# LANGUAGE ConstraintKinds #-} {-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE GeneralizedNewtypeDeriving #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -fno-warn-unused-imports #-} -- for Data.Semigroup import, which becomes redundant under GHC 8.4 ----------------------------------------------------------------------------- -- | -- Module : Diagrams.Core.Trace -- Copyright : (c) 2012-2015 diagrams-core team (see LICENSE) -- License : BSD-style (see LICENSE) -- Maintainer : diagrams-discuss@googlegroups.com -- -- @diagrams-core@ defines the core library of primitives -- forming the basis of an embedded domain-specific language for -- describing and rendering diagrams. -- -- The @Trace@ module defines a data type and type class for -- \"traces\", aka functional boundaries, essentially corresponding to -- embedding a raytracer with each diagram. -- ----------------------------------------------------------------------------- module Diagrams.Core.Trace ( -- * SortedList SortedList , mkSortedList, getSortedList, onSortedList, unsafeOnSortedList -- * Traces , Trace(Trace) , appTrace , mkTrace -- * Traced class , Traced(..) -- * Computing with traces , traceV, traceP , maxTraceV, maxTraceP , getRayTrace , rayTraceV, rayTraceP , maxRayTraceV, maxRayTraceP ) where #if __GLASGOW_HASKELL__ < 710 import Control.Applicative #endif import Control.Lens import Data.List (sort) import qualified Data.Map as M import Data.Semigroup import qualified Data.Set as S import Diagrams.Core.HasOrigin import Diagrams.Core.Transform import Diagrams.Core.V import Linear.Affine import Linear.Vector ------------------------------------------------------------ -- SortedList -------------------------------------------- ------------------------------------------------------------ -- Traces return sorted lists of intersections, so we define a newtype -- wrapper to represent sorted lists. -- | A newtype wrapper around a list which maintains the invariant -- that the list is sorted. The constructor is not exported; use -- the smart constructor 'mkSortedList' (which sorts the given list) -- instead. newtype SortedList a = SortedList [a] -- | A smart constructor for the 'SortedList' type, which sorts the -- input to ensure the 'SortedList' invariant. mkSortedList :: Ord a => [a] -> SortedList a mkSortedList = SortedList . sort -- | Project the (guaranteed sorted) list out of a 'SortedList' -- wrapper. getSortedList :: SortedList a -> [a] getSortedList (SortedList as) = as -- | Apply a list function to a 'SortedList'. The function need not -- result in a sorted list; the result will be sorted before being -- rewrapped as a 'SortedList'. onSortedList :: Ord b => ([a] -> [b]) -> SortedList a -> SortedList b onSortedList f = unsafeOnSortedList (sort . f) -- | Apply an /order-preserving/ list function to a 'SortedList'. No -- sorts or checks are done. unsafeOnSortedList :: ([a] -> [b]) -> SortedList a -> SortedList b unsafeOnSortedList f (SortedList as) = SortedList (f as) -- | Merge two sorted lists. The result is the sorted list containing -- all the elements of both input lists (with duplicates). merge :: Ord a => SortedList a -> SortedList a -> SortedList a merge (SortedList as) (SortedList bs) = SortedList (merge' as bs) where merge' xs [] = xs merge' [] ys = ys merge' (x:xs) (y:ys) = if x <= y then x : merge' xs (y:ys) else y : merge' (x:xs) ys -- | 'SortedList' forms a semigroup with 'merge' as composition. instance Ord a => Semigroup (SortedList a) where (<>) = merge -- | 'SortedList' forms a monoid with 'merge' and the empty list. instance Ord a => Monoid (SortedList a) where mappend = (<>) mempty = SortedList [] ------------------------------------------------------------ -- Trace ------------------------------------------------- ------------------------------------------------------------ -- > traceEx = mkTraceDia def -- | Every diagram comes equipped with a /trace/. Intuitively, the -- trace for a diagram is like a raytracer: given a line -- (represented as a base point and a direction vector), the trace -- computes a sorted list of signed distances from the base point to -- all intersections of the line with the boundary of the -- diagram. -- -- Note that the outputs are not absolute distances, but multipliers -- relative to the input vector. That is, if the base point is @p@ -- and direction vector is @v@, and one of the output scalars is -- @s@, then there is an intersection at the point @p .+^ (s *^ v)@. -- -- <<diagrams/src_Diagrams_Core_Trace_traceEx.svg#diagram=traceEx&width=200>> newtype Trace v n = Trace { appTrace :: Point v n -> v n -> SortedList n } instance Wrapped (Trace v n) where type Unwrapped (Trace v n) = Point v n -> v n -> SortedList n _Wrapped' = iso appTrace Trace instance Rewrapped (Trace v n) (Trace v' n') mkTrace :: (Point v n -> v n -> SortedList n) -> Trace v n mkTrace = Trace -- | Traces form a semigroup with pointwise minimum as composition. -- Hence, if @t1@ is the trace for diagram @d1@, and -- @e2@ is the trace for @d2@, then @e1 \`mappend\` e2@ -- is the trace for @d1 \`atop\` d2@. deriving instance (Ord n) => Semigroup (Trace v n) deriving instance (Ord n) => Monoid (Trace v n) type instance V (Trace v n) = v type instance N (Trace v n) = n instance (Additive v, Num n) => HasOrigin (Trace v n) where moveOriginTo (P u) = _Wrapping' Trace %~ \f p -> f (p .+^ u) instance Show (Trace v n) where show _ = "<trace>" ------------------------------------------------------------ -- Transforming traces ----------------------------------- ------------------------------------------------------------ instance (Additive v, Num n) => Transformable (Trace v n) where transform t = _Wrapped %~ \f p v -> f (papply (inv t) p) (apply (inv t) v) ------------------------------------------------------------ -- Traced class ------------------------------------------ ------------------------------------------------------------ -- | @Traced@ abstracts over things which have a trace. class (Additive (V a), Ord (N a)) => Traced a where -- | Compute the trace of an object. getTrace :: a -> Trace (V a) (N a) instance (Additive v, Ord n) => Traced (Trace v n) where getTrace = id -- | The trace of a single point is the empty trace, /i.e./ the one -- which returns no intersection points for every query. Arguably -- it should return a single finite distance for vectors aimed -- directly at the given point, but due to floating-point inaccuracy -- this is problematic. Note that the envelope for a single point -- is /not/ the empty envelope (see "Diagrams.Core.Envelope"). instance (Additive v, Ord n) => Traced (Point v n) where getTrace = const mempty instance Traced t => Traced (TransInv t) where getTrace = getTrace . op TransInv instance (Traced a, Traced b, SameSpace a b) => Traced (a,b) where getTrace (x,y) = getTrace x <> getTrace y instance (Traced b) => Traced [b] where getTrace = mconcat . map getTrace instance (Traced b) => Traced (M.Map k b) where getTrace = mconcat . map getTrace . M.elems instance (Traced b) => Traced (S.Set b) where getTrace = mconcat . map getTrace . S.elems ------------------------------------------------------------ -- Computing with traces --------------------------------- ------------------------------------------------------------ -- | Compute the vector from the given point @p@ to the \"smallest\" -- boundary intersection along the given vector @v@. The -- \"smallest\" boundary intersection is defined as the one given by -- @p .+^ (s *^ v)@ for the smallest (most negative) value of -- @s@. Return @Nothing@ if there is no intersection. See also -- 'traceP'. -- -- See also 'rayTraceV' which uses the smallest /positive/ -- intersection, which is often more intuitive behavior. -- -- <<diagrams/src_Diagrams_Core_Trace_traceVEx.svg#diagram=traceVEx&width=600>> traceV :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (V a n) traceV p v a = case getSortedList $ op Trace (getTrace a) p v of (s:_) -> Just (s *^ v) [] -> Nothing -- > traceVEx = mkTraceDiasABC def { drawV = True, sFilter = take 1 } -- | Compute the \"smallest\" boundary point along the line determined -- by the given point @p@ and vector @v@. The \"smallest\" boundary -- point is defined as the one given by @p .+^ (s *^ v)@ for -- the smallest (most negative) value of @s@. Return @Nothing@ if -- there is no such boundary point. See also 'traceV'. -- -- See also 'rayTraceP' which uses the smallest /positive/ -- intersection, which is often more intuitive behavior. -- -- <<diagrams/src_Diagrams_Core_Trace_tracePEx.svg#diagram=tracePEx&width=600>> traceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) traceP p v a = (p .+^) <$> traceV p v a -- > tracePEx = mkTraceDiasABC def { sFilter = take 1 } -- | Like 'traceV', but computes a vector to the \"largest\" boundary -- point instead of the smallest. (Note, however, the \"largest\" -- boundary point may still be in the opposite direction from the -- given vector, if all the boundary points are, as in the third -- example shown below.) -- -- <<diagrams/src_Diagrams_Core_Trace_maxTraceVEx.svg#diagram=maxTraceVEx&width=600>> maxTraceV :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (V a n) maxTraceV p = traceV p . negated -- > maxTraceVEx = mkTraceDiasABC def { drawV = True, sFilter = dropAllBut1 } -- | Like 'traceP', but computes the \"largest\" boundary point -- instead of the smallest. (Note, however, the \"largest\" boundary -- point may still be in the opposite direction from the given -- vector, if all the boundary points are.) -- -- <<diagrams/src_Diagrams_Core_Trace_maxTracePEx.svg#diagram=maxTracePEx&width=600>> maxTraceP :: (n ~ N a, Num n, Traced a) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) maxTraceP p v a = (p .+^) <$> maxTraceV p v a -- > maxTracePEx = mkTraceDiasABC def { sFilter = dropAllBut1 } -- | Get a modified 'Trace' for an object which only returns positive -- boundary points, /i.e./ those boundary points given by a positive -- scalar multiple of the direction vector. Note, this property -- will be destroyed if the resulting 'Trace' is translated at all. getRayTrace :: (n ~ N a, Traced a, Num n) => a -> Trace (V a) n getRayTrace a = Trace $ \p v -> unsafeOnSortedList (dropWhile (<0)) $ appTrace (getTrace a) p v -- | Compute the vector from the given point to the closest boundary -- point of the given object in the given direction, or @Nothing@ if -- there is no such boundary point (as in the third example -- below). Note that unlike 'traceV', only /positive/ boundary -- points are considered, /i.e./ boundary points corresponding to a -- positive scalar multiple of the direction vector. This is -- intuitively the \"usual\" behavior of a raytracer, which only -- considers intersections \"in front of\" the camera. Compare the -- second example diagram below with the second example shown for -- 'traceV'. -- -- <<diagrams/src_Diagrams_Core_Trace_rayTraceVEx.svg#diagram=rayTraceVEx&width=600>> rayTraceV :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (V a n) rayTraceV p v a = case getSortedList $ op Trace (getRayTrace a) p v of (s:_) -> Just (s *^ v) [] -> Nothing -- > rayTraceVEx = mkTraceDiasABC def { drawV = True, sFilter = take 1 . filter (>0) } -- | Compute the boundary point on an object which is closest to the -- given base point in the given direction, or @Nothing@ if there is -- no such boundary point. Note that unlike 'traceP', only /positive/ -- boundary points are considered, /i.e./ boundary points -- corresponding to a positive scalar multiple of the direction -- vector. This is intuitively the \"usual\" behavior of a raytracer, -- which only considers intersection points \"in front of\" the -- camera. -- -- <<diagrams/src_Diagrams_Core_Trace_rayTracePEx.svg#diagram=rayTracePEx&width=600>> rayTraceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) rayTraceP p v a = (p .+^) <$> rayTraceV p v a -- > rayTracePEx = mkTraceDiasABC def { sFilter = take 1 . filter (>0) } -- | Like 'rayTraceV', but computes a vector to the \"largest\" -- boundary point instead of the smallest. Considers only -- /positive/ boundary points. -- -- <<diagrams/src_Diagrams_Core_Trace_maxRayTraceVEx.svg#diagram=maxRayTraceVEx&width=600>> maxRayTraceV :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (V a n) maxRayTraceV p v a = case getSortedList $ op Trace (getRayTrace a) p v of [] -> Nothing xs -> Just (last xs *^ v) -- > maxRayTraceVEx = mkTraceDiasABC def { drawV = True, sFilter = dropAllBut1 . filter (>0) } -- | Like 'rayTraceP', but computes the \"largest\" boundary point -- instead of the smallest. Considers only /positive/ boundary -- points. -- -- <<diagrams/src_Diagrams_Core_Trace_maxRayTracePEx.svg#diagram=maxRayTracePEx&width=600>> maxRayTraceP :: (n ~ N a, Traced a, Num n) => Point (V a) n -> V a n -> a -> Maybe (Point (V a) n) maxRayTraceP p v a = (p .+^) <$> maxRayTraceV p v a -- > maxRayTracePEx = mkTraceDiasABC def { sFilter = dropAllBut1 . filter (>0) } ------------------------------------------------------------ -- Drawing trace diagrams ------------------------------------------------------------ -- > import Data.Default.Class -- > import Control.Lens ((^.)) -- > import Data.Maybe (fromMaybe) -- > -- > thingyT :: Trail V2 Double -- > thingyT = -- > fromOffsets -- > [ 3 *^ unitX, 3 *^ unitY, 2 *^ unit_X, 1 *^ unit_Y -- > , 1 *^ unitX, 1 *^ unit_Y, 2 *^ unit_X, 1 *^ unit_Y ] -- > -- > thingy = strokeTrail thingyT -- > -- > data TraceDiaOpts -- > = TDO { traceShape :: Diagram B -- > , basePt :: P2 Double -- > , dirV :: V2 Double -- > , sFilter :: [Double] -> [Double] -- > , drawV :: Bool -- > } -- > -- > instance Default TraceDiaOpts where -- > def = TDO { traceShape = thingy -- > , basePt = pointB -- > , dirV = 0.3 ^& 0.5 -- > , sFilter = id -- > , drawV = False -- > } -- > -- > pointA = 1 ^& (-1.5) -- > pointB = 1 ^& 1.2 -- > pointC = 2.5 ^& 3.5 -- > -- > dot' = circle 0.05 # lw none -- > -- > mkTraceDia :: TraceDiaOpts -> Diagram B -- > mkTraceDia tdo = mconcat -- > [ mconcat $ map (place (dot' # fc red)) pts -- > , if drawV tdo then resultArrow else mempty -- > , arrowAt (basePt tdo) (dirV tdo) # lc blue -- > , dot' # fc blue # moveTo (basePt tdo) -- > , traceLine (basePt tdo) maxPosPt -- > , traceLine (basePt tdo) minNegPt -- > , traceShape tdo -- > ] -- > # centerXY # pad 1.1 -- > where -- > ss = sFilter tdo . getSortedList -- > $ appTrace (traceShape tdo ^. trace) (basePt tdo) (dirV tdo) -- > pts = map mkPt ss -- > mkPt s = basePt tdo .+^ (s *^ dirV tdo) -- > maxPosPt = (mkPt <$>) . safeLast $ filter (>0) ss -- > minNegPt = (mkPt <$>) . safeHead $ filter (<0) ss -- > minPt = (mkPt <$>) . safeHead $ ss -- > resultArrow = fromMaybe mempty (arrowBetween (basePt tdo) <$> minPt) -- > # lc green -- > -- > safeLast [] = Nothing -- > safeLast xs = Just $ last xs -- > safeHead [] = Nothing -- > safeHead (x:_) = Just x -- > dropAllBut1 [] = [] -- > dropAllBut1 xs = [last xs] -- > -- > traceLine _ Nothing = mempty -- > traceLine p (Just q) = (p ~~ q) # dashingG [0.1,0.1] 0 -- > -- > mkTraceDias :: [TraceDiaOpts] -> Diagram B -- > mkTraceDias = hcat' (with & sep .~ 1) . map mkTraceDia -- > -- > mkTraceDiasABC :: TraceDiaOpts -> Diagram B -- > mkTraceDiasABC tdo = mkTraceDias (map (\p -> tdo { basePt = p }) [pointA, pointB, pointC])