{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
module Diagrams.TwoD.Arrowheads
(
tri
, dart
, halfDart
, spike
, thorn
, lineHead
, noHead
, arrowheadTriangle
, arrowheadDart
, arrowheadHalfDart
, arrowheadSpike
, arrowheadThorn
, tri'
, dart'
, halfDart'
, spike'
, thorn'
, lineTail
, noTail
, quill
, block
, arrowtailQuill
, arrowtailBlock
, ArrowHT
) where
import Control.Lens ((&), (.~), (<>~), (^.))
import Data.Default.Class
import Data.Monoid (mempty, (<>))
import Diagrams.Angle
import Diagrams.Core
import Diagrams.Path
import Diagrams.Segment
import Diagrams.Trail
import Diagrams.TrailLike (fromOffsets)
import Diagrams.TwoD.Align
import Diagrams.TwoD.Arc (arc')
import Diagrams.TwoD.Path ()
import Diagrams.TwoD.Polygons
import Diagrams.TwoD.Shapes
import Diagrams.TwoD.Transform
import Diagrams.TwoD.Types
import Diagrams.TwoD.Vector (unitX, unit_X, xDir)
import Diagrams.Util (( # ))
import Linear.Affine
import Linear.Metric
import Linear.Vector
type ArrowHT n = n -> n -> (Path V2 n, Path V2 n)
closedPath :: OrderedField n => Trail V2 n -> Path V2 n
closedPath :: forall n. OrderedField n => Trail V2 n -> Path V2 n
closedPath = Trail V2 n -> Path V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Path v n
pathFromTrail (Trail V2 n -> Path V2 n)
-> (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Trail V2 n
forall (v :: * -> *) n. Trail v n -> Trail v n
closeTrail
arrowheadTriangle :: RealFloat n => Angle n -> ArrowHT n
arrowheadTriangle :: forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadTriangle Angle n
theta = n -> n -> (Path V2 n, Path V2 n)
aHead
where
aHead :: n -> n -> (Path V2 n, Path V2 n)
aHead n
len n
_ = (Path V2 n
p, Path V2 n
forall a. Monoid a => a
mempty)
where
psi :: n
psi = n
forall a. Floating a => a
pi n -> n -> n
forall a. Num a => a -> a -> a
- (Angle n
theta Angle n -> Getting n (Angle n) n -> n
forall s a. s -> Getting a s a -> a
^. Getting n (Angle n) n
forall n (p :: * -> * -> *) (f :: * -> *).
(Profunctor p, Functor f) =>
p n (f n) -> p (Angle n) (f (Angle n))
rad)
r :: n
r = n
len n -> n -> n
forall a. Fractional a => a -> a -> a
/ (n
1 n -> n -> n
forall a. Num a => a -> a -> a
+ n -> n
forall a. Floating a => a -> a
cos n
psi)
p :: Path V2 n
p = PolygonOpts n -> Path V2 n
forall n t. (InSpace V2 n t, TrailLike t) => PolygonOpts n -> t
polygon (PolygonOpts n
forall a. Default a => a
def PolygonOpts n -> (PolygonOpts n -> PolygonOpts n) -> PolygonOpts n
forall a b. a -> (a -> b) -> b
& (PolyType n -> Identity (PolyType n))
-> PolygonOpts n -> Identity (PolygonOpts n)
forall n (f :: * -> *).
Functor f =>
(PolyType n -> f (PolyType n))
-> PolygonOpts n -> f (PolygonOpts n)
polyType ((PolyType n -> Identity (PolyType n))
-> PolygonOpts n -> Identity (PolygonOpts n))
-> PolyType n -> PolygonOpts n -> PolygonOpts n
forall s t a b. ASetter s t a b -> b -> s -> t
.~ [Angle n] -> [n] -> PolyType n
forall n. [Angle n] -> [n] -> PolyType n
PolyPolar [Angle n
theta, (-n
2) n -> Angle n -> Angle n
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ Angle n
theta]
(n -> [n]
forall a. a -> [a]
repeat n
r) PolygonOpts n -> (PolygonOpts n -> PolygonOpts n) -> PolygonOpts n
forall a b. a -> (a -> b) -> b
& (PolyOrientation n -> Identity (PolyOrientation n))
-> PolygonOpts n -> Identity (PolygonOpts n)
forall n (f :: * -> *).
Functor f =>
(PolyOrientation n -> f (PolyOrientation n))
-> PolygonOpts n -> f (PolygonOpts n)
polyOrient ((PolyOrientation n -> Identity (PolyOrientation n))
-> PolygonOpts n -> Identity (PolygonOpts n))
-> PolyOrientation n -> PolygonOpts n -> PolygonOpts n
forall s t a b. ASetter s t a b -> b -> s -> t
.~ PolyOrientation n
forall n. PolyOrientation n
NoOrient) Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) =>
a -> a
alignL
arrowheadDart :: RealFloat n => Angle n -> ArrowHT n
arrowheadDart :: forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadDart Angle n
theta n
len n
shaftWidth = (Path V2 n
hd Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale n
sz, Path V2 n
jt)
where
hd :: Path V2 n
hd = Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, Traced a,
HasOrigin a) =>
a -> a
snugL (Path V2 n -> Path V2 n)
-> (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Path V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Path v n
pathFromTrail (Trail V2 n -> Path V2 n)
-> (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Trail v n
glueTrail (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ [Vn (Trail V2 n)] -> Trail V2 n
forall t. TrailLike t => [Vn t] -> t
fromOffsets [Vn (Trail V2 n)
V2 n
t1, Vn (Trail V2 n)
V2 n
t2, Vn (Trail V2 n)
V2 n
b2, Vn (Trail V2 n)
V2 n
b1]
jt :: Path V2 n
jt = Trail V2 n -> Path V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Path v n
pathFromTrail (Trail V2 n -> Path V2 n)
-> (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Trail v n
glueTrail (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ Trail V2 n
j Trail V2 n -> Trail V2 n -> Trail V2 n
forall a. Semigroup a => a -> a -> a
<> Trail V2 n -> Trail V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY Trail V2 n
j
j :: Trail V2 n
j = Trail V2 n -> Trail V2 n
forall (v :: * -> *) n. Trail v n -> Trail v n
closeTrail (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Trail V2 n
forall a b. (a -> b) -> a -> b
$ [Vn (Trail V2 n)] -> Trail V2 n
forall t. TrailLike t => [Vn t] -> t
fromOffsets [n -> n -> V2 n
forall a. a -> a -> V2 a
V2 (-n
jLength) n
0, n -> n -> V2 n
forall a. a -> a -> V2 a
V2 n
0 (n
shaftWidth n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
2)]
v :: V2 n
v = Angle n -> V2 n -> V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unitX
(V2 n
t1, V2 n
t2) = (V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unit_X V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^+^ V2 n
v, n -> n -> V2 n
forall a. a -> a -> V2 a
V2 (-n
0.5) n
0 V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^-^ V2 n
v)
[V2 n
b1, V2 n
b2] = (V2 n -> V2 n) -> [V2 n] -> [V2 n]
forall a b. (a -> b) -> [a] -> [b]
map (V2 n -> V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY (V2 n -> V2 n) -> (V2 n -> V2 n) -> V2 n -> V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V2 n -> V2 n
forall (f :: * -> *) a. (Functor f, Num a) => f a -> f a
negated) [V2 n
t1, V2 n
t2]
psi :: n
psi = n
forall a. Floating a => a
pi n -> n -> n
forall a. Num a => a -> a -> a
- V2 n -> V2 n
forall (f :: * -> *) a. (Functor f, Num a) => f a -> f a
negated V2 n
t2 V2 n -> Getting n (V2 n) n -> n
forall s a. s -> Getting a s a -> a
^. (Angle n -> Const n (Angle n)) -> V2 n -> Const n (V2 n)
forall n. RealFloat n => Lens' (V2 n) (Angle n)
Lens' (V2 n) (Angle n)
forall (t :: * -> *) n.
(HasTheta t, RealFloat n) =>
Lens' (t n) (Angle n)
_theta ((Angle n -> Const n (Angle n)) -> V2 n -> Const n (V2 n))
-> ((n -> Const n n) -> Angle n -> Const n (Angle n))
-> Getting n (V2 n) n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (n -> Const n n) -> Angle n -> Const n (Angle n)
forall n (p :: * -> * -> *) (f :: * -> *).
(Profunctor p, Functor f) =>
p n (f n) -> p (Angle n) (f (Angle n))
rad
jLength :: n
jLength = n
shaftWidth n -> n -> n
forall a. Fractional a => a -> a -> a
/ (n
2 n -> n -> n
forall a. Num a => a -> a -> a
* n -> n
forall a. Floating a => a -> a
tan n
psi)
sz :: n
sz = n -> n -> n
forall a. Ord a => a -> a -> a
max n
1 ((n
len n -> n -> n
forall a. Num a => a -> a -> a
- n
jLength) n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
1.5)
arrowheadHalfDart :: RealFloat n => Angle n -> ArrowHT n
arrowheadHalfDart :: forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadHalfDart Angle n
theta n
len n
shaftWidth = (Path V2 n
hd, Path V2 n
jt)
where
hd :: Path V2 n
hd = [Vn (Trail V2 n)] -> Trail V2 n
forall t. TrailLike t => [Vn t] -> t
fromOffsets [Vn (Trail V2 n)
V2 n
t1, Vn (Trail V2 n)
V2 n
t2]
# closeTrail # pathFromTrail
# translateX 1.5 # scale sz
# translateY (-shaftWidth/2)
# snugL
jt :: Path V2 n
jt = Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, Traced a,
HasOrigin a) =>
a -> a
snugR (Path V2 n -> Path V2 n)
-> (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
n -> t -> t
translateY (-n
shaftWidthn -> n -> n
forall a. Fractional a => a -> a -> a
/n
2) (Path V2 n -> Path V2 n)
-> (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Path V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Path v n
pathFromTrail (Trail V2 n -> Path V2 n)
-> (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Trail V2 n
forall (v :: * -> *) n. Trail v n -> Trail v n
closeTrail (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ [Vn (Trail V2 n)] -> Trail V2 n
forall t. TrailLike t => [Vn t] -> t
fromOffsets [n -> n -> V2 n
forall a. a -> a -> V2 a
V2 (-n
jLength) n
0, n -> n -> V2 n
forall a. a -> a -> V2 a
V2 n
0 n
shaftWidth]
v :: V2 n
v = Angle n -> V2 n -> V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unitX
(V2 n
t1, V2 n
t2) = (V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unit_X V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^+^ V2 n
v, (n
0.5 n -> V2 n -> V2 n
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unit_X) V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^-^ V2 n
v)
psi :: n
psi = n
forall a. Floating a => a
pi n -> n -> n
forall a. Num a => a -> a -> a
- V2 n -> V2 n
forall (f :: * -> *) a. (Functor f, Num a) => f a -> f a
negated V2 n
t2 V2 n -> Getting n (V2 n) n -> n
forall s a. s -> Getting a s a -> a
^. (Angle n -> Const n (Angle n)) -> V2 n -> Const n (V2 n)
forall n. RealFloat n => Lens' (V2 n) (Angle n)
Lens' (V2 n) (Angle n)
forall (t :: * -> *) n.
(HasTheta t, RealFloat n) =>
Lens' (t n) (Angle n)
_theta ((Angle n -> Const n (Angle n)) -> V2 n -> Const n (V2 n))
-> ((n -> Const n n) -> Angle n -> Const n (Angle n))
-> Getting n (V2 n) n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (n -> Const n n) -> Angle n -> Const n (Angle n)
forall n (p :: * -> * -> *) (f :: * -> *).
(Profunctor p, Functor f) =>
p n (f n) -> p (Angle n) (f (Angle n))
rad
jLength :: n
jLength = n
shaftWidth n -> n -> n
forall a. Fractional a => a -> a -> a
/ n -> n
forall a. Floating a => a -> a
tan n
psi
sz :: n
sz = n -> n -> n
forall a. Ord a => a -> a -> a
max n
1 ((n
len n -> n -> n
forall a. Num a => a -> a -> a
- n
jLength) n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
1.5)
arrowheadSpike :: RealFloat n => Angle n -> ArrowHT n
arrowheadSpike :: forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadSpike Angle n
theta n
len n
shaftWidth = (Path V2 n
hd Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale n
r, Path V2 n
jt Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale n
r)
where
hd :: Path V2 n
hd = Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, Traced a,
HasOrigin a) =>
a -> a
snugL (Path V2 n -> Path V2 n)
-> (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Path V2 n
forall n. OrderedField n => Trail V2 n -> Path V2 n
closedPath (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ Trail V2 n
l1 Trail V2 n -> Trail V2 n -> Trail V2 n
forall a. Semigroup a => a -> a -> a
<> Trail V2 n
c Trail V2 n -> Trail V2 n -> Trail V2 n
forall a. Semigroup a => a -> a -> a
<> Trail V2 n
l2
jt :: Path V2 n
jt = Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) =>
a -> a
alignR (Path V2 n -> Path V2 n)
-> (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Path V2 n -> Path V2 n
forall (v :: * -> *) n a.
(InSpace v n a, R2 v, Fractional n, Alignable a, HasOrigin a) =>
a -> a
centerY (Path V2 n -> Path V2 n)
-> (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Path V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Path v n
pathFromTrail
(Trail V2 n -> Path V2 n)
-> (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Trail V2 n
forall (v :: * -> *) n. Trail v n -> Trail v n
closeTrail (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ n -> Direction V2 n -> Angle n -> Trail V2 n
forall n t.
(InSpace V2 n t, OrderedField n, TrailLike t) =>
n -> Direction V2 n -> Angle n -> t
arc' n
1 (Direction V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => Direction v n
xDir Direction V2 n
-> (Direction V2 n -> Direction V2 n) -> Direction V2 n
forall a b. a -> (a -> b) -> b
& (Angle n -> Identity (Angle n))
-> Direction V2 n -> Identity (Direction V2 n)
forall n. RealFloat n => Lens' (Direction V2 n) (Angle n)
Lens' (Direction V2 n) (Angle n)
forall (t :: * -> *) n.
(HasTheta t, RealFloat n) =>
Lens' (t n) (Angle n)
_theta ((Angle n -> Identity (Angle n))
-> Direction V2 n -> Identity (Direction V2 n))
-> Angle n -> Direction V2 n -> Direction V2 n
forall a s t. Semigroup a => ASetter s t a a -> a -> s -> t
<>~ Angle n -> Angle n
forall (f :: * -> *) a. (Functor f, Num a) => f a -> f a
negated Angle n
phi) (n
2 n -> Angle n -> Angle n
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ Angle n
phi)
l1 :: Trail V2 n
l1 = [Segment Closed V2 n] -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
[Segment Closed v n] -> Trail v n
trailFromSegments [V2 n -> Segment Closed V2 n
forall (v :: * -> *) n. v n -> Segment Closed v n
straight (V2 n -> Segment Closed V2 n) -> V2 n -> Segment Closed V2 n
forall a b. (a -> b) -> a -> b
$ V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unit_X V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^+^ V2 n
v]
l2 :: Trail V2 n
l2 = [Segment Closed V2 n] -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
[Segment Closed v n] -> Trail v n
trailFromSegments [Segment Closed V2 n -> Segment Closed V2 n
forall n (v :: * -> *).
(Num n, Additive v) =>
Segment Closed v n -> Segment Closed v n
reverseSegment (Segment Closed V2 n -> Segment Closed V2 n)
-> (V2 n -> Segment Closed V2 n) -> V2 n -> Segment Closed V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V2 n -> Segment Closed V2 n
forall (v :: * -> *) n. v n -> Segment Closed v n
straight (V2 n -> Segment Closed V2 n) -> V2 n -> Segment Closed V2 n
forall a b. (a -> b) -> a -> b
$ (V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unit_X V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^+^ V2 n -> V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY V2 n
v)]
c :: Trail V2 n
c = n -> Direction V2 n -> Angle n -> Trail V2 n
forall n t.
(InSpace V2 n t, OrderedField n, TrailLike t) =>
n -> Direction V2 n -> Angle n -> t
arc' n
1 (Angle n -> Direction V2 n -> Direction V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
α Direction V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => Direction v n
xDir) ((-n
2) n -> Angle n -> Angle n
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
*^ Angle n
α)
α :: Angle n
α = (n
1n -> n -> n
forall a. Fractional a => a -> a -> a
/n
2 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn) Angle n -> Angle n -> Angle n
forall a. Num a => Angle a -> Angle a -> Angle a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^-^ Angle n
theta
v :: V2 n
v = Angle n -> V2 n -> V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unitX
a :: n
a = n
1 n -> n -> n
forall a. Num a => a -> a -> a
- n
2 n -> n -> n
forall a. Num a => a -> a -> a
* n -> n
forall a. Floating a => a -> a
cos (Angle n
theta Angle n -> Getting n (Angle n) n -> n
forall s a. s -> Getting a s a -> a
^. Getting n (Angle n) n
forall n (p :: * -> * -> *) (f :: * -> *).
(Profunctor p, Functor f) =>
p n (f n) -> p (Angle n) (f (Angle n))
rad)
y :: n
y = n
shaftWidth n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
2
d :: n
d = n -> n -> n
forall a. Ord a => a -> a -> a
max n
1 (n
lenn -> n -> n
forall a. Floating a => a -> a -> a
**n
2 n -> n -> n
forall a. Num a => a -> a -> a
+ (n
1 n -> n -> n
forall a. Num a => a -> a -> a
- n
an -> n -> n
forall a. Floating a => a -> a -> a
**n
2) n -> n -> n
forall a. Num a => a -> a -> a
* n
yn -> n -> n
forall a. Floating a => a -> a -> a
**n
2)
r :: n
r = (n
a n -> n -> n
forall a. Num a => a -> a -> a
* n
len n -> n -> n
forall a. Num a => a -> a -> a
+ n -> n
forall a. Floating a => a -> a
sqrt n
d) n -> n -> n
forall a. Fractional a => a -> a -> a
/ (n
an -> n -> n
forall a. Floating a => a -> a -> a
**n
2 n -> n -> n
forall a. Num a => a -> a -> a
-n
1)
phi :: Angle n
phi = n -> Angle n
forall n. Floating n => n -> Angle n
asinA (n -> n -> n
forall a. Ord a => a -> a -> a
min n
1 (n
yn -> n -> n
forall a. Fractional a => a -> a -> a
/n
r))
arrowheadThorn :: RealFloat n => Angle n -> ArrowHT n
arrowheadThorn :: forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadThorn Angle n
theta n
len n
shaftWidth = (Path V2 n
hd Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale n
sz, Path V2 n
jt)
where
hd :: Path V2 n
hd = Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, Traced a,
HasOrigin a) =>
a -> a
snugL (Path V2 n -> Path V2 n)
-> (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Path V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Path v n
pathFromTrail (Trail V2 n -> Path V2 n)
-> (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Trail v n
glueTrail (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ Trail V2 n
hTop Trail V2 n -> Trail V2 n -> Trail V2 n
forall a. Semigroup a => a -> a -> a
<> Trail V2 n -> Trail V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY Trail V2 n
hTop
hTop :: Trail V2 n
hTop = Trail V2 n -> Trail V2 n
forall (v :: * -> *) n. Trail v n -> Trail v n
closeTrail (Trail V2 n -> Trail V2 n)
-> ([Segment Closed V2 n] -> Trail V2 n)
-> [Segment Closed V2 n]
-> Trail V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Segment Closed V2 n] -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
[Segment Closed v n] -> Trail v n
trailFromSegments ([Segment Closed V2 n] -> Trail V2 n)
-> [Segment Closed V2 n] -> Trail V2 n
forall a b. (a -> b) -> a -> b
$ [Segment Closed V2 n
c, Segment Closed V2 n
l]
jt :: Path V2 n
jt = Trail V2 n -> Path V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Path v n
pathFromTrail (Trail V2 n -> Path V2 n)
-> (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Path V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Trail V2 n -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
Trail v n -> Trail v n
glueTrail (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ Trail V2 n
j Trail V2 n -> Trail V2 n -> Trail V2 n
forall a. Semigroup a => a -> a -> a
<> Trail V2 n -> Trail V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY Trail V2 n
j
j :: Trail V2 n
j = Trail V2 n -> Trail V2 n
forall (v :: * -> *) n. Trail v n -> Trail v n
closeTrail (Trail V2 n -> Trail V2 n) -> Trail V2 n -> Trail V2 n
forall a b. (a -> b) -> a -> b
$ [Vn (Trail V2 n)] -> Trail V2 n
forall t. TrailLike t => [Vn t] -> t
fromOffsets [n -> n -> V2 n
forall a. a -> a -> V2 a
V2 (-n
jLength) n
0, n -> n -> V2 n
forall a. a -> a -> V2 a
V2 n
0 (n
shaftWidth n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
2)]
c :: Segment Closed V2 n
c = Angle n -> Segment Closed V2 n
forall n. Floating n => Angle n -> Segment Closed V2 n
curvedSide Angle n
theta
v :: V2 n
v = Angle n -> V2 n -> V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unitX
l :: Segment Closed V2 n
l = Segment Closed V2 n -> Segment Closed V2 n
forall n (v :: * -> *).
(Num n, Additive v) =>
Segment Closed v n -> Segment Closed v n
reverseSegment (Segment Closed V2 n -> Segment Closed V2 n)
-> (V2 n -> Segment Closed V2 n) -> V2 n -> Segment Closed V2 n
forall b c a. (b -> c) -> (a -> b) -> a -> c
. V2 n -> Segment Closed V2 n
forall (v :: * -> *) n. v n -> Segment Closed v n
straight (V2 n -> Segment Closed V2 n) -> V2 n -> Segment Closed V2 n
forall a b. (a -> b) -> a -> b
$ V2 n
t
t :: V2 n
t = V2 n
v V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^-^ n -> n -> V2 n
forall a. a -> a -> V2 a
V2 (-n
0.5) n
0
psi :: Angle n
psi = Angle n
forall v. Floating v => Angle v
fullTurn Angle n -> n -> Angle n
forall (f :: * -> *) a.
(Functor f, Fractional a) =>
f a -> a -> f a
^/ n
2 Angle n -> Angle n -> Angle n
forall a. Num a => Angle a -> Angle a -> Angle a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^-^ (V2 n -> V2 n
forall (f :: * -> *) a. (Functor f, Num a) => f a -> f a
negated V2 n
t V2 n -> Getting (Angle n) (V2 n) (Angle n) -> Angle n
forall s a. s -> Getting a s a -> a
^. Getting (Angle n) (V2 n) (Angle n)
forall n. RealFloat n => Lens' (V2 n) (Angle n)
Lens' (V2 n) (Angle n)
forall (t :: * -> *) n.
(HasTheta t, RealFloat n) =>
Lens' (t n) (Angle n)
_theta)
jLength :: n
jLength = n
shaftWidth n -> n -> n
forall a. Fractional a => a -> a -> a
/ (n
2 n -> n -> n
forall a. Num a => a -> a -> a
* Angle n -> n
forall n. Floating n => Angle n -> n
tanA Angle n
psi)
sz :: n
sz = n -> n -> n
forall a. Ord a => a -> a -> a
max n
1 ((n
len n -> n -> n
forall a. Num a => a -> a -> a
- n
jLength) n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
1.5)
curvedSide :: Floating n => Angle n -> Segment Closed V2 n
curvedSide :: forall n. Floating n => Angle n -> Segment Closed V2 n
curvedSide Angle n
theta = V2 n -> V2 n -> V2 n -> Segment Closed V2 n
forall (v :: * -> *) n. v n -> v n -> v n -> Segment Closed v n
bezier3 V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
ctrl1 V2 n
ctrl2 V2 n
end
where
v0 :: v n
v0 = v n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unit_X
v1 :: V2 n
v1 = Angle n -> V2 n -> V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unitX
ctrl1 :: v n
ctrl1 = v n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
v0
ctrl2 :: V2 n
ctrl2 = V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
v0 V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^+^ V2 n
v1
end :: V2 n
end = V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
v0 V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^+^ V2 n
v1
lineHead :: RealFloat n => ArrowHT n
lineHead :: forall n. RealFloat n => ArrowHT n
lineHead n
s n
w = (n -> Path V2 n
forall n t. (InSpace V2 n t, TrailLike t) => n -> t
square n
1 Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Fractional n, Transformable t) =>
n -> t -> t
scaleX n
s Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Fractional n, Transformable t) =>
n -> t -> t
scaleY n
w Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) =>
a -> a
alignL, Path V2 n
forall a. Monoid a => a
mempty)
noHead :: ArrowHT n
noHead :: forall n. ArrowHT n
noHead n
_ n
_ = (Path V2 n
forall a. Monoid a => a
mempty, Path V2 n
forall a. Monoid a => a
mempty)
tri :: RealFloat n => ArrowHT n
tri :: forall n. RealFloat n => ArrowHT n
tri = Angle n -> ArrowHT n
forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadTriangle (n
1n -> n -> n
forall a. Fractional a => a -> a -> a
/n
3 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn)
spike :: RealFloat n => ArrowHT n
spike :: forall n. RealFloat n => ArrowHT n
spike = Angle n -> ArrowHT n
forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadSpike (n
3n -> n -> n
forall a. Fractional a => a -> a -> a
/n
8 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn)
thorn :: RealFloat n => ArrowHT n
thorn :: forall n. RealFloat n => ArrowHT n
thorn = Angle n -> ArrowHT n
forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadThorn (n
3n -> n -> n
forall a. Fractional a => a -> a -> a
/n
8 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn)
dart :: RealFloat n => ArrowHT n
dart :: forall n. RealFloat n => ArrowHT n
dart = Angle n -> ArrowHT n
forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadDart (n
2n -> n -> n
forall a. Fractional a => a -> a -> a
/n
5 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn)
halfDart :: RealFloat n => ArrowHT n
halfDart :: forall n. RealFloat n => ArrowHT n
halfDart = Angle n -> ArrowHT n
forall n. RealFloat n => Angle n -> ArrowHT n
arrowheadHalfDart (n
2n -> n -> n
forall a. Fractional a => a -> a -> a
/n
5 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn)
headToTail :: OrderedField n => ArrowHT n -> ArrowHT n
headToTail :: forall n. OrderedField n => ArrowHT n -> ArrowHT n
headToTail ArrowHT n
hd = ArrowHT n
tl
where
tl :: ArrowHT n
tl n
sz n
shaftWidth = (Path V2 n
t, Path V2 n
j)
where
(Path V2 n
t', Path V2 n
j') = ArrowHT n
hd n
sz n
shaftWidth
t :: Path V2 n
t = Path V2 n -> Path V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R1 v, Transformable t) =>
t -> t
reflectX Path V2 n
t'
j :: Path V2 n
j = Path V2 n -> Path V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R1 v, Transformable t) =>
t -> t
reflectX Path V2 n
j'
arrowtailBlock :: forall n. (RealFloat n) => Angle n -> ArrowHT n
arrowtailBlock :: forall n. RealFloat n => Angle n -> ArrowHT n
arrowtailBlock Angle n
theta = n -> n -> (Path V2 n, Path V2 n)
aTail
where
aTail :: n -> n -> (Path V2 n, Path V2 n)
aTail n
len n
_ = (Path V2 n
t, Path V2 n
forall a. Monoid a => a
mempty)
where
t :: Path V2 n
t = n -> n -> Path V2 n
forall n t. (InSpace V2 n t, TrailLike t) => n -> n -> t
rect n
len (n
len n -> n -> n
forall a. Num a => a -> a -> a
* n
x) Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) =>
a -> a
alignR
a' :: V2 n
a' :: V2 n
a' = Angle n -> V2 n -> V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unitX
a :: V2 n
a = V2 n
a' V2 n -> V2 n -> V2 n
forall a. Num a => V2 a -> V2 a -> V2 a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
^-^ V2 n -> V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY V2 n
a'
x :: n
x = V2 n -> n
forall a. Floating a => V2 a -> a
forall (f :: * -> *) a. (Metric f, Floating a) => f a -> a
norm V2 n
a
arrowtailQuill :: OrderedField n => Angle n -> ArrowHT n
arrowtailQuill :: forall n. OrderedField n => Angle n -> ArrowHT n
arrowtailQuill Angle n
theta = n -> n -> (Path V2 n, Path V2 n)
aTail
where
aTail :: n -> n -> (Path V2 n, Path V2 n)
aTail n
len n
shaftWidth = (Path V2 n
t, Path V2 n
j)
where
t :: Path V2 n
t = Trail V2 n -> Path V2 n
forall n. OrderedField n => Trail V2 n -> Path V2 n
closedPath ([Point V2 n] -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
[Point v n] -> Trail v n
trailFromVertices [Point V2 n
forall {n}. Fractional n => P2 n
v0, Point V2 n
v1, Point V2 n
v2, Point V2 n
forall {n}. Fractional n => P2 n
v3, Point V2 n
v4, Point V2 n
v5, Point V2 n
forall {n}. Fractional n => P2 n
v0])
# scale sz # alignR
sz :: n
sz = n
len n -> n -> n
forall a. Fractional a => a -> a -> a
/ n
0.6
v0 :: P2 n
v0 = (n, n) -> P2 n
forall n. (n, n) -> P2 n
p2 (n
0.5, n
0)
v2 :: Point V2 n
v2 = Point V2 n
forall (f :: * -> *) a. (Additive f, Num a) => Point f a
origin Point V2 n -> Diff (Point V2) n -> Point V2 n
forall a. Num a => Point V2 a -> Diff (Point V2) a -> Point V2 a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.+^ (Angle n -> V2 n -> V2 n
forall n t.
(InSpace V2 n t, Transformable t, Floating n) =>
Angle n -> t -> t
rotate Angle n
theta V2 n
forall (v :: * -> *) n. (R1 v, Additive v, Num n) => v n
unitX V2 n -> (V2 n -> V2 n) -> V2 n
forall a b. a -> (a -> b) -> b
# n -> V2 n -> V2 n
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale n
0.5)
v1 :: Point V2 n
v1 = Point V2 n
v2 Point V2 n -> (Point V2 n -> Point V2 n) -> Point V2 n
forall a b. a -> (a -> b) -> b
# n -> Point V2 n -> Point V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R1 v, Transformable t) =>
n -> t -> t
translateX (n
5n -> n -> n
forall a. Fractional a => a -> a -> a
/n
8)
v3 :: P2 n
v3 = (n, n) -> P2 n
forall n. (n, n) -> P2 n
p2 (-n
0.1, n
0)
v4 :: Point V2 n
v4 = Point V2 n
v2 Point V2 n -> (Point V2 n -> Point V2 n) -> Point V2 n
forall a b. a -> (a -> b) -> b
# Point V2 n -> Point V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY
v5 :: Point V2 n
v5 = Point V2 n
v4 Point V2 n -> (Point V2 n -> Point V2 n) -> Point V2 n
forall a b. a -> (a -> b) -> b
# n -> Point V2 n -> Point V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R1 v, Transformable t) =>
n -> t -> t
translateX (n
5n -> n -> n
forall a. Fractional a => a -> a -> a
/n
8)
s :: n
s = n
1 n -> n -> n
forall a. Num a => a -> a -> a
- n
shaftWidth n -> n -> n
forall a. Fractional a => a -> a -> a
/ V2 n -> n
forall a. Floating a => V2 a -> a
forall (f :: * -> *) a. (Metric f, Floating a) => f a -> a
norm (Point V2 n
v1 Point V2 n -> Point V2 n -> Diff (Point V2) n
forall a. Num a => Point V2 a -> Point V2 a -> Diff (Point V2) a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> p a -> Diff p a
.-. Point V2 n
v5)
n1 :: Point V2 n
n1 = Point V2 n
forall {n}. Fractional n => P2 n
v0 Point V2 n -> (Point V2 n -> Point V2 n) -> Point V2 n
forall a b. a -> (a -> b) -> b
# n -> Point V2 n -> Point V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
n -> t -> t
translateY (n
0.5 n -> n -> n
forall a. Num a => a -> a -> a
* n
shaftWidth)
n2 :: Point V2 n
n2 = Point V2 n
v1 Point V2 n -> Diff (Point V2) n -> Point V2 n
forall a. Num a => Point V2 a -> Diff (Point V2) a -> Point V2 a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.-^ ((Point V2 n
v1 Point V2 n -> Point V2 n -> Diff (Point V2) n
forall a. Num a => Point V2 a -> Point V2 a -> Diff (Point V2) a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> p a -> Diff p a
.-. Point V2 n
forall {n}. Fractional n => P2 n
v0) V2 n -> (V2 n -> V2 n) -> V2 n
forall a b. a -> (a -> b) -> b
# n -> V2 n -> V2 n
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale n
s)
n3 :: Point V2 n
n3 = Point V2 n
v5 Point V2 n -> Diff (Point V2) n -> Point V2 n
forall a. Num a => Point V2 a -> Diff (Point V2) a -> Point V2 a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> Diff p a -> p a
.-^ ((Point V2 n
v5 Point V2 n -> Point V2 n -> Diff (Point V2) n
forall a. Num a => Point V2 a -> Point V2 a -> Diff (Point V2) a
forall (p :: * -> *) a. (Affine p, Num a) => p a -> p a -> Diff p a
.-. Point V2 n
forall {n}. Fractional n => P2 n
v0) V2 n -> (V2 n -> V2 n) -> V2 n
forall a b. a -> (a -> b) -> b
# n -> V2 n -> V2 n
forall (v :: * -> *) n a.
(InSpace v n a, Eq n, Fractional n, Transformable a) =>
n -> a -> a
scale n
s)
n4 :: Point V2 n
n4 = Point V2 n
n1 Point V2 n -> (Point V2 n -> Point V2 n) -> Point V2 n
forall a b. a -> (a -> b) -> b
# Point V2 n -> Point V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Transformable t) =>
t -> t
reflectY
j :: Path V2 n
j = Trail V2 n -> Path V2 n
forall n. OrderedField n => Trail V2 n -> Path V2 n
closedPath (Trail V2 n -> Path V2 n) -> Trail V2 n -> Path V2 n
forall a b. (a -> b) -> a -> b
$ [Point V2 n] -> Trail V2 n
forall (v :: * -> *) n.
(Metric v, OrderedField n) =>
[Point v n] -> Trail v n
trailFromVertices [Point V2 n
forall {n}. Fractional n => P2 n
v0, Point V2 n
n1, Point V2 n
n2, Point V2 n
forall {n}. Fractional n => P2 n
v0, Point V2 n
n3, Point V2 n
n4, Point V2 n
forall {n}. Fractional n => P2 n
v0]
lineTail :: RealFloat n => ArrowHT n
lineTail :: forall n. RealFloat n => ArrowHT n
lineTail n
s n
w = (n -> Path V2 n
forall n t. (InSpace V2 n t, TrailLike t) => n -> t
square n
1 Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Fractional n, Transformable t) =>
n -> t -> t
scaleY n
w Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# n -> Path V2 n -> Path V2 n
forall (v :: * -> *) n t.
(InSpace v n t, R2 v, Fractional n, Transformable t) =>
n -> t -> t
scaleX n
s Path V2 n -> (Path V2 n -> Path V2 n) -> Path V2 n
forall a b. a -> (a -> b) -> b
# Path V2 n -> Path V2 n
forall n a.
(InSpace V2 n a, Fractional n, Alignable a, HasOrigin a) =>
a -> a
alignR, Path V2 n
forall a. Monoid a => a
mempty)
noTail :: ArrowHT n
noTail :: forall n. ArrowHT n
noTail n
_ n
_ = (Path V2 n
forall a. Monoid a => a
mempty, Path V2 n
forall a. Monoid a => a
mempty)
tri' :: RealFloat n => ArrowHT n
tri' :: forall n. RealFloat n => ArrowHT n
tri' = ArrowHT n -> ArrowHT n
forall n. OrderedField n => ArrowHT n -> ArrowHT n
headToTail ArrowHT n
forall n. RealFloat n => ArrowHT n
tri
spike' :: RealFloat n => ArrowHT n
spike' :: forall n. RealFloat n => ArrowHT n
spike' = ArrowHT n -> ArrowHT n
forall n. OrderedField n => ArrowHT n -> ArrowHT n
headToTail ArrowHT n
forall n. RealFloat n => ArrowHT n
spike
thorn' :: RealFloat n => ArrowHT n
thorn' :: forall n. RealFloat n => ArrowHT n
thorn' = ArrowHT n -> ArrowHT n
forall n. OrderedField n => ArrowHT n -> ArrowHT n
headToTail ArrowHT n
forall n. RealFloat n => ArrowHT n
thorn
dart' :: RealFloat n => ArrowHT n
dart' :: forall n. RealFloat n => ArrowHT n
dart' = ArrowHT n -> ArrowHT n
forall n. OrderedField n => ArrowHT n -> ArrowHT n
headToTail ArrowHT n
forall n. RealFloat n => ArrowHT n
dart
halfDart' :: RealFloat n => ArrowHT n
halfDart' :: forall n. RealFloat n => ArrowHT n
halfDart' = ArrowHT n -> ArrowHT n
forall n. OrderedField n => ArrowHT n -> ArrowHT n
headToTail ArrowHT n
forall n. RealFloat n => ArrowHT n
halfDart
quill :: (Floating n, Ord n) => ArrowHT n
quill :: forall n. (Floating n, Ord n) => ArrowHT n
quill = Angle n -> ArrowHT n
forall n. OrderedField n => Angle n -> ArrowHT n
arrowtailQuill (n
2n -> n -> n
forall a. Fractional a => a -> a -> a
/n
5 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn)
block :: RealFloat n => ArrowHT n
block :: forall n. RealFloat n => ArrowHT n
block = Angle n -> ArrowHT n
forall n. RealFloat n => Angle n -> ArrowHT n
arrowtailBlock (n
7n -> n -> n
forall a. Fractional a => a -> a -> a
/n
16 n -> AReview (Angle n) n -> Angle n
forall b a. b -> AReview a b -> a
@@ AReview (Angle n) n
forall n. Floating n => Iso' (Angle n) n
Iso' (Angle n) n
turn)