dimensional-1.1: Statically checked physical dimensions, using Type Families and Data Kinds.

CopyrightCopyright (C) 2006-2018 Bjorn Buckwalter
LicenseBSD3
Maintainerbjorn@buckwalter.se
StabilityStable
PortabilityGHC only
Safe HaskellSafe
LanguageHaskell2010
Extensions
  • MonoLocalBinds
  • ScopedTypeVariables
  • TypeFamilies
  • ConstraintKinds
  • DataKinds
  • TypeSynonymInstances
  • FlexibleContexts
  • FlexibleInstances
  • KindSignatures
  • TypeOperators
  • ExplicitNamespaces
  • ExplicitForAll

Numeric.Units.Dimensional.Dimensions.TypeLevel

Contents

Description

This module defines type-level physical dimensions expressed in terms of the SI base dimensions using NumType for type-level integers.

Type-level arithmetic, synonyms for the base dimensions, and conversion to the term-level are included.

Synopsis

Kind of Type-Level Dimensions

data Dimension Source #

Represents a physical dimension in the basis of the 7 SI base dimensions, where the respective dimensions are represented by type variables using the following convention:

  • l: Length
  • m: Mass
  • t: Time
  • i: Electric current
  • th: Thermodynamic temperature
  • n: Amount of substance
  • j: Luminous intensity

For the equivalent term-level representation, see Dimension'

Dimension Arithmetic

type family (a :: Dimension) * (b :: Dimension) where ... infixl 7 Source #

Multiplication of dimensions corresponds to adding of the base dimensions' exponents.

Equations

DOne * d = d 
d * DOne = d 
(Dim l m t i th n j) * (Dim l' m' t' i' th' n' j') = Dim (l + l') (m + m') (t + t') (i + i') (th + th') (n + n') (j + j') 

type family (a :: Dimension) / (d :: Dimension) where ... infixl 7 Source #

Division of dimensions corresponds to subtraction of the base dimensions' exponents.

Equations

d / DOne = d 
d / d = DOne 
(Dim l m t i th n j) / (Dim l' m' t' i' th' n' j') = Dim (l - l') (m - m') (t - t') (i - i') (th - th') (n - n') (j - j') 

type family (d :: Dimension) ^ (x :: TypeInt) where ... infixr 8 Source #

Powers of dimensions corresponds to multiplication of the base dimensions' exponents by the exponent.

We limit ourselves to integer powers of Dimensionals as fractional powers make little physical sense.

Equations

DOne ^ x = DOne 
d ^ Zero = DOne 
d ^ Pos1 = d 
(Dim l m t i th n j) ^ x = Dim (l * x) (m * x) (t * x) (i * x) (th * x) (n * x) (j * x) 

type Recip (d :: Dimension) = DOne / d Source #

The reciprocal of a dimension is defined as the result of dividing DOne by it, or of negating each of the base dimensions' exponents.

type family NRoot (d :: Dimension) (x :: TypeInt) where ... Source #

Roots of dimensions corresponds to division of the base dimensions' exponents by the order of the root.

Equations

NRoot DOne x = DOne 
NRoot d Pos1 = d 
NRoot (Dim l m t i th n j) x = Dim (l / x) (m / x) (t / x) (i / x) (th / x) (n / x) (j / x) 

type Sqrt d = NRoot d Pos2 Source #

Square root is a special case of NRoot with order 2.

type Cbrt d = NRoot d Pos3 Source #

Cube root is a special case of NRoot with order 3.

Synonyms for Base Dimensions

type DOne = Dim Zero Zero Zero Zero Zero Zero Zero Source #

The type-level dimension of dimensionless values.

Conversion to Term Level

type KnownDimension (d :: Dimension) = HasDimension (Proxy d) Source #

A KnownDimension is one for which we can construct a term-level representation. Each validly constructed type of kind Dimension has a KnownDimension instance.

While KnownDimension is a constraint synonym, the presence of KnownDimension d in a context allows use of dimension :: Proxy d -> Dimension'.