{- | Copyright : Copyright (C) 2006-2018 Bjorn Buckwalter License : BSD3 Maintainer : bjorn@buckwalter.se Stability : Stable Defines convenience functions for inspecting and manipulating quantities with 'RealFloat' floating-point representations. The dimensionally-typed versions of functions from Patrick Perry's @ieee754@ package copy that package's API as closely as possible, by permission. In turn they are based on the @tango@ math library for the D language. -} {-# LANGUAGE ScopedTypeVariables #-} module Numeric.Units.Dimensional.Float ( -- * Lifted Predicates from 'RealFloat' isDenormalized, isInfinite, isNaN, isNegativeZero -- * Convenience Functions , isFiniteNumber, scaleFloat -- * Lifted Functions from "Numeric.IEEE" -- ** Values , infinity, minNormal, maxFinite, epsilon, nan -- ** Arithmetic , predIEEE, succIEEE, bisectIEEE, copySign -- ** NaN with Payload , nanWithPayload, nanPayload, F.maxNaNPayload -- ** Comparisons , identicalIEEE, minNum, maxNum, minNaN, maxNaN ) where import Control.Applicative import Data.Word (Word64) import Prelude (RealFloat) import qualified Prelude as P import Numeric.IEEE (IEEE) import qualified Numeric.IEEE as F import Numeric.Units.Dimensional.Internal (liftQ, liftQ2) import Numeric.Units.Dimensional.Prelude hiding (RealFloat(..)) import Numeric.Units.Dimensional.Coercion -- $setup -- >>> :set -XExtendedDefaultRules -- >>> :set -XNegativeLiterals -- | 'True' if the representation of the argument is too small to be represented in normalized format. isDenormalized :: RealFloat a => Quantity d a -> Bool isDenormalized = P.isDenormalized . unQuantity -- | 'True' if the representation of the argument is a number and is not infinite. -- -- >>> isFiniteNumber (_1 / _0) -- False -- -- >>> isFiniteNumber (_0 / _0) -- False -- -- >>> isFiniteNumber (_3 / _2) -- True isFiniteNumber :: RealFloat a => Quantity d a -> Bool isFiniteNumber = not . liftA2 (||) isNaN isInfinite -- | 'True' if the representation of the argument is an IEEE infinity or negative infinity. -- -- >>> isInfinite (_1 / _0) -- True -- -- >>> isInfinite (42 *~ micro farad) -- False isInfinite :: RealFloat a => Quantity d a -> Bool isInfinite = P.isInfinite . unQuantity -- | 'True' if the representation of the argument is an IEEE "not-a-number" (NaN) value. -- -- >>> isNaN _3 -- False -- -- >>> isNaN (_1 / _0) -- False -- -- >>> isNaN (asin _4) -- True isNaN :: RealFloat a => Quantity d a -> Bool isNaN = P.isNaN . unQuantity -- | 'True' if the representation of the argument is an IEEE negative zero. -- -- >>> isNegativeZero _0 -- False -- -- >>> isNegativeZero $ (-1e-200 *~ one) * (1e-200 *~ one) -- True isNegativeZero :: RealFloat a => Quantity d a -> Bool isNegativeZero = P.isNegativeZero . unQuantity -- | Multiplies a floating-point quantity by an integer power of the radix of the representation type. -- -- Use 'P.floatRadix' to determine the radix. -- -- >>> let x = 3 *~ meter -- >>> scaleFloat 3 x -- 24.0 m scaleFloat :: RealFloat a => Int -> Quantity d a -> Quantity d a scaleFloat x = Quantity . P.scaleFloat x . unQuantity -- | An infinite floating-point quantity. infinity :: IEEE a => Quantity d a infinity = Quantity F.infinity -- | The smallest representable positive quantity whose representation is normalized. minNormal :: IEEE a => Quantity d a minNormal = Quantity F.minNormal -- | The largest representable finite floating-point quantity. maxFinite :: IEEE a => Quantity d a maxFinite = Quantity F.maxFinite -- | The smallest positive value @x@ such that @_1 + x@ is representable. epsilon :: IEEE a => Dimensionless a epsilon = Quantity F.epsilon -- | @copySign x y@ returns the quantity @x@ with its sign changed to match that of @y@. copySign :: IEEE a => Quantity d a -> Quantity d a -> Quantity d a copySign = liftQ2 F.copySign -- | Return 'True' if two floating-point quantities are /exactly/ (bitwise) equal. identicalIEEE :: IEEE a => Quantity d a -> Quantity d a -> Bool identicalIEEE (Quantity x) (Quantity y) = F.identicalIEEE x y -- | Return the next largest representable floating-point quantity (@Infinity@ and @NaN@ are unchanged). succIEEE :: IEEE a => Quantity d a -> Quantity d a succIEEE = liftQ F.succIEEE -- | Return the next smallest representable floating-point quantity (@Infinity@ and @NaN@ are unchanged). predIEEE :: IEEE a => Quantity d a -> Quantity d a predIEEE = liftQ F.predIEEE -- | Given two floating-point quantities with the same sign, return the quantity whose representation is halfway -- between their representations on the IEEE number line. If the signs of the values differ or either is @NaN@, -- the value is undefined. bisectIEEE :: IEEE a => Quantity d a -> Quantity d a -> Quantity d a bisectIEEE (Quantity x) (Quantity y) = Quantity $ F.bisectIEEE x y -- | Default @NaN@ quantity. nan :: IEEE a => Quantity d a nan = Quantity F.nan -- | Quiet @NaN@ quantity with a positive integer payload. -- Payload must be less than 'maxNaNPayload' of the representation type. -- -- Beware that while some platforms allow using 0 as a payload, this behavior is not portable. nanWithPayload :: IEEE a => Word64 -> Quantity d a nanWithPayload = Quantity . F.nanWithPayload -- | The payload stored in a @NaN@ quantity. Undefined if the argument is not @NaN@. nanPayload :: IEEE a => Quantity d a -> Word64 nanPayload = F.nanPayload . unQuantity -- | Return the minimum of two quantities; if one value is @NaN@, return the other. Prefer the first if both values are @NaN@. minNum :: RealFloat a => Quantity d a -> Quantity d a -> Quantity d a minNum = liftQ2 F.minNum -- | Return the maximum of two quantities; if one value is @NaN@, return the other. Prefer the first if both values are @NaN@. maxNum :: RealFloat a => Quantity d a -> Quantity d a -> Quantity d a maxNum = liftQ2 F.maxNum -- | Return the minimum of two quantities; if one value is @NaN@, return it. Prefer the first if both values are @NaN@. minNaN :: RealFloat a => Quantity d a -> Quantity d a -> Quantity d a minNaN = liftQ2 F.minNaN -- | Return the maximum of two quantities; if one value is @NaN@, return it. Prefer the first if both values are @NaN@. maxNaN :: RealFloat a => Quantity d a -> Quantity d a -> Quantity d a maxNaN = liftQ2 F.maxNaN