dsp-0.2.5: Haskell Digital Signal Processing

Copyright(c) Matthew Donadio 2003
LicenseGPL
Maintainerm.p.donadio@ieee.org
Stabilityexperimental
Portabilityportable
Safe HaskellSafe
LanguageHaskell98

DSP.Filter.FIR.PolyInterp

Description

Polynomial interpolators. Taken from:

Olli Niemitalo (ollinie@freenet.hut.fi), "Polynomial Interpolators for High-Quality Resampling of Oversampled Audio" Search for "deip.pdf" with Google and you will find it.

Synopsis

Documentation

mkcoef Source #

Arguments

:: (Num a, Ix b, Integral b) 
=> (a -> a)

f

-> b

p

-> a

x

-> Array b a

h[n]

mkcoef takes the continuous impluse response function (one of the functions below, f) and number of points in the interpolation, p, time shifts it by x, samples it, and creates an array with the interpolation coeficients that can be used as a FIR filter.

bspline_1p0o :: (Ord a, Fractional a) => a -> a Source #

bspline_2p1o :: (Ord a, Fractional a) => a -> a Source #

bspline_4p3o :: (Ord a, Fractional a) => a -> a Source #

bspline_6p5o :: (Ord a, Fractional a) => a -> a Source #

lagrange_4p3o :: (Ord a, Fractional a) => a -> a Source #

lagrange_6p5o :: (Ord a, Fractional a) => a -> a Source #

hermite_4p3o :: (Ord a, Fractional a) => a -> a Source #

hermite_6p3o :: (Ord a, Fractional a) => a -> a Source #

hermite_6p5o :: (Ord a, Fractional a) => a -> a Source #

sndosc_4p5o :: (Ord a, Fractional a) => a -> a Source #

sndosc_6p5o :: (Ord a, Fractional a) => a -> a Source #

watte_4p2o :: (Ord a, Fractional a) => a -> a Source #

parabolic2x_4p2o :: (Ord a, Fractional a) => a -> a Source #

optimal_2p3o2x :: (Ord a, Fractional a) => a -> a Source #

optimal_2p3o4x :: (Ord a, Fractional a) => a -> a Source #

optimal_2p3o8x :: (Ord a, Fractional a) => a -> a Source #

optimal_2p3o16x :: (Ord a, Fractional a) => a -> a Source #

optimal_2p3o32x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p2o2x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p2o4x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p2o8x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p2o16x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p2o32x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p3o2x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p3o4x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p3o8x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p3o16x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p3o32x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p4o2x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p4o4x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p4o8x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p4o16x :: (Ord a, Fractional a) => a -> a Source #

optimal_4p4o32x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p4o2x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p4o4x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p4o8x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p4o16x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p4o32x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p5o2x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p5o4x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p5o8x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p5o16x :: (Ord a, Fractional a) => a -> a Source #

optimal_6p5o32x :: (Ord a, Fractional a) => a -> a Source #