module Matrix.QR.Givens (
leastSquares,
decompose, solve, det, detAbs,
Rotation, rotateVector,
Upper, solveUpper, detUpper,
) where
import qualified Matrix.Sparse as Sparse
import DSP.Basic (toMaybe, (^!))
import Control.Monad (mfilter)
import qualified Data.Foldable as Fold
import qualified Data.List as List
import qualified Data.Map as Map
import Data.Map (Map)
import Data.Array
(Array, Ix, array, bounds, elems, rangeSize, range, (!), (//), )
data Rotation i a = Rotation (i,i) (a,a)
deriving Show
data Upper i j a = Upper ((i,j), (i,j)) (Map i (Map j a))
deriving Show
decompose :: (Ix i, Enum i, Ix j, Enum j, RealFloat a) =>
Sparse.Matrix i j a
-> ([Rotation i a], Upper i j a)
decompose a =
(\(qs,rows) -> (concat qs, Upper (Sparse.bounds a) $ Map.fromList rows)) .
unzip .
List.unfoldr
(\a0 ->
let bnds@((m0,_), _) = Sparse.bounds a0
(q,a1) = step a0
in toMaybe (not $ emptyRange bnds) $
((q, (m0, Sparse.getRow m0 a1)), submatrix a1))
$ a
emptyRange :: (Ix i) => (i,i) -> Bool
emptyRange = null . range
submatrix ::
(Ord i, Enum i, Ord j, Enum j) => Sparse.Matrix i j a -> Sparse.Matrix i j a
submatrix a =
let ((m0,n0), mn1) = Sparse.bounds a
in Sparse.fromRows ((succ m0, succ n0), mn1) $
Map.delete m0 $ Sparse.toRows a
step ::
(Ord i, Ord j, RealFloat a) =>
Sparse.Matrix i j a -> ([Rotation i a], Sparse.Matrix i j a)
step a =
let bnds@((m0,n0), _) = Sparse.bounds a
rows = Sparse.toRows a
topRow = Map.findWithDefault Map.empty m0 rows
in (\((xi,xrem), finalRows) ->
(Map.elems $ Map.mapMaybe fst finalRows,
Sparse.fromRows bnds $ Map.insert m0 (Map.insert n0 xi xrem) $
fmap snd finalRows)) $
Map.mapAccumWithKey
(\(xi,xrem) mi yrow ->
let yrem = Map.delete n0 yrow
jrot = Just . Rotation (m0,mi)
in case mfilter (0/=) $ Map.lookup n0 yrow of
Nothing -> ((xi,xrem),(Nothing,yrem))
Just yi ->
if xi==0
then ((yi,yrem), (jrot (0,-1), fmap negate xrem))
else
let rot = rotationFromXY (xi,yi)
(rx,ry) = rotateRows rot (xrem, yrem)
in ((fst $ rotateSingle rot (xi,yi), rx),
(jrot rot, ry)))
(Map.findWithDefault 0 n0 topRow, Map.delete n0 topRow)
(Map.delete m0 rows)
rotationFromXY :: (RealFloat a) => (a,a) -> (a,a)
rotationFromXY (x,y) =
if abs x > abs y
then let q = y/x; k = recipNorm q in (k,-q*k)
else let q = x/y; k = recipNorm q in (q*k,-k)
recipNorm :: Floating a => a -> a
recipNorm q = recip $ sqrt (1+q^!2)
rotateSingle :: (Num a) => (a,a) -> (a,a) -> (a,a)
rotateSingle (c,s) (x,y) = (c*x-s*y, s*x+c*y)
rotateRows ::
(Ord j, Num a) => (a,a) -> (Map j a, Map j a) -> (Map j a, Map j a)
rotateRows (c,s) (xs,ys) =
let rs =
Map.intersectionWith (curry $ rotateSingle (c,s)) xs ys
`Map.union`
fmap (\x -> ( c*x, s*x)) (Map.difference xs ys)
`Map.union`
fmap (\y -> (-s*y, c*y)) (Map.difference ys xs)
in (fmap fst rs, fmap snd rs)
rotateVector :: (Ix i, Num a) => Rotation i a -> Array i a -> Array i a
rotateVector (Rotation (i0,i1) cs) x =
let (y0,y1) = rotateSingle cs (x!i0,x!i1)
in x // [(i0,y0),(i1,y1)]
solveUpper ::
(Ix i, Ix j, Fractional a) => Upper i j a -> Array i a -> Array j a
solveUpper (Upper ((m0,n0), (m1,n1)) rows0) b =
if bounds b == (m0,m1)
then
array (n0,n1) $ Map.toList $
foldr
(\(row,bi) xs ->
let ((j,a),as) = Map.deleteFindMin row
in Map.insert j
((bi - Fold.sum (Map.intersectionWith (*) as xs)) / a) xs)
Map.empty
(zip (Map.elems rows0) (elems b))
else error "solveUpper: vertical bounds mismatch"
solve ::
(Ix i, Ix j, Fractional a) =>
([Rotation i a], Upper i j a) -> Array i a -> Array j a
solve (qs, u) b = solveUpper u $ foldl (flip rotateVector) b qs
leastSquares ::
(Ix i, Enum i, Ix j, Enum j, RealFloat a) =>
Sparse.Matrix i j a -> Array i a -> Array j a
leastSquares = solve . decompose
detUpper ::
(Ix i, Ix j, Fractional a) => Upper i j a -> a
detUpper (Upper ((_m0,n0), (_m1,n1)) rows) =
if rangeSize (n0,n1) == Map.size rows
then product $ map (snd . Map.findMin) $ Map.elems rows
else 0
det :: (Ix i, Enum i, Ix j, Enum j, RealFloat a) => Sparse.Matrix i j a -> a
det = detUpper . snd . decompose
detAbs :: (Ix i, Enum i, Ix j, Enum j, RealFloat a) => Sparse.Matrix i j a -> a
detAbs = abs . det