{-# LANGUAGE Rank2Types #-}
module Data.Either.Validation
( Validation(..)
, _Success
, _Failure
, eitherToValidation
, validationToEither
, _Validation
, vap
, ealt
, vapm, apm
) where
import Control.Applicative
import Data.Bifoldable(Bifoldable(bifoldr))
import Data.Bifunctor(Bifunctor(bimap))
import Data.Bitraversable(Bitraversable(bitraverse))
import Data.Foldable (Foldable(foldr))
import Data.Functor.Alt (Alt((<!>)))
import Data.Functor.Apply (Apply ((<.>)))
import Data.Monoid (Monoid(mappend, mempty))
import Data.Profunctor
import Data.Semigroup (Semigroup((<>)))
import Data.Traversable (Traversable(traverse))
import Prelude hiding (foldr)
data Validation e a
= Failure e
| Success a
deriving (Eq, Ord, Show)
instance Functor (Validation e) where
fmap _ (Failure e) = Failure e
fmap f (Success a) = Success (f a)
instance Semigroup e => Apply (Validation e) where
Failure e1 <.> b = Failure $ case b of
Failure e2 -> e1 <> e2
Success _ -> e1
Success _ <.> Failure e = Failure e
Success f <.> Success x = Success (f x)
instance Semigroup e => Applicative (Validation e) where
pure = Success
(<*>) = (<.>)
instance Semigroup e => Alt (Validation e) where
s@Success{} <!> _ = s
_ <!> s@Success{} = s
Failure m <!> Failure n = Failure (m <> n)
instance (Semigroup e, Monoid e) => Alternative (Validation e) where
empty = Failure mempty
(<|>) = (<!>)
instance Foldable (Validation e) where
foldr f x (Success a) = f a x
foldr _ x (Failure _) = x
instance Traversable (Validation e) where
traverse f (Success a) = Success <$> f a
traverse _ (Failure e) = pure (Failure e)
instance Bifunctor Validation where
bimap f _ (Failure e) = Failure (f e)
bimap _ g (Success a) = Success (g a)
instance Bifoldable Validation where
bifoldr _ g x (Success a) = g a x
bifoldr f _ x (Failure e) = f e x
instance Bitraversable Validation where
bitraverse _ g (Success a) = Success <$> g a
bitraverse f _ (Failure e) = Failure <$> f e
instance Semigroup e => Semigroup (Validation e a) where
x@Success{} <> _ = x
_ <> x@Success{} = x
Failure e1 <> Failure e2 = Failure (e1 <> e2)
instance Monoid e => Monoid (Validation e a) where
mempty = Failure mempty
x@Success{} `mappend` _ = x
_ `mappend` x@Success{} = x
Failure e1 `mappend` Failure e2 = Failure (e1 `mappend` e2)
type Prism s t a b = forall p f. (Choice p, Applicative f) => p a (f b) -> p s (f t)
prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
prism bt seta = dimap seta (either pure (fmap bt)) . right'
{-# INLINE prism #-}
_Failure :: Prism (Validation a c) (Validation b c) a b
_Failure = prism
(\ x -> Failure x)
(\ x
-> case x of
Failure y -> Right y
Success y -> Left (Success y))
{-# INLINE _Failure #-}
_Success :: Prism (Validation c a) (Validation c b) a b
_Success = prism
(\ x -> Success x)
(\ x
-> case x of
Failure y -> Left (Failure y)
Success y -> Right y)
{-# INLINE _Success #-}
type Iso s t a b = forall p f. (Profunctor p, Functor f) => p a (f b) -> p s (f t)
iso :: (s -> a) -> (b -> t) -> Iso s t a b
iso sa bt = dimap sa (fmap bt)
{-# INLINE iso #-}
validationToEither :: Validation e a -> Either e a
validationToEither x = case x of
Failure e -> Left e
Success a -> Right a
{-# INLINE validationToEither #-}
eitherToValidation :: Either e a -> Validation e a
eitherToValidation x = case x of
Left e -> Failure e
Right a -> Success a
{-# INLINE eitherToValidation #-}
_Validation :: Iso (Validation e a) (Validation g b) (Either e a) (Either g b)
_Validation = iso validationToEither eitherToValidation
{-# INLINE _Validation #-}
vap :: Semigroup m => Either m (a -> b) -> Either m a -> Either m b
vap (Left m) b = Left $ case b of
Left n -> m <> n
Right{} -> m
vap Right{} (Left n) = Left n
vap (Right f) (Right a) = Right (f a)
{-# INLINE vap #-}
apm :: Monoid m => Validation m (a -> b) -> Validation m a -> Validation m b
apm (Failure m) b = Failure $ m `mappend` case b of
Failure n -> n
Success{} -> mempty
apm Success{} (Failure n) = Failure n
apm (Success f) (Success a) = Success (f a)
{-# INLINE apm #-}
vapm :: Monoid m => Either m (a -> b) -> Either m a -> Either m b
vapm (Left m) b = Left $ m `mappend` case b of
Left n -> n
Right{} -> mempty
vapm Right{} (Left n) = Left n
vapm (Right f) (Right a) = Right (f a)
{-# INLINE vapm #-}
ealt :: Validation e a -> Validation e a -> Validation e a
ealt Failure{} r = r
ealt (Success a) _ = Success a
{-# INLINE ealt #-}