{-# LANGUAGE MultiParamTypeClasses #-}
module Data.Equivalence.STT
(
Equiv
, Class
, leastEquiv
, getClass
, combine
, combineAll
, same
, desc
, remove
, equate
, equateAll
, equivalent
, classDesc
, removeClass
) where
import Control.Monad.ST.Trans
import Control.Monad
import Data.Maybe
import Data.Map (Map)
import qualified Data.Map as Map
newtype Class s c a = Class (STRef s (Entry s c a))
newtype Entry s c a = Entry {forall s c a. Entry s c a -> STRef s (EntryData s c a)
unentry :: STRef s (EntryData s c a)}
data EntryData s c a = Node {
forall s c a. EntryData s c a -> Entry s c a
entryParent :: Entry s c a,
forall s c a. EntryData s c a -> a
entryValue :: a
}
| Root {
forall s c a. EntryData s c a -> c
entryDesc :: c,
forall s c a. EntryData s c a -> Int
entryWeight :: Int,
entryValue :: a,
forall s c a. EntryData s c a -> Bool
entryDeleted :: Bool
}
type Entries s c a = STRef s (Map a (Entry s c a))
data Equiv s c a = Equiv {
forall s c a. Equiv s c a -> Entries s c a
entries :: Entries s c a,
forall s c a. Equiv s c a -> a -> c
singleDesc :: a -> c,
forall s c a. Equiv s c a -> c -> c -> c
combDesc :: c -> c -> c
}
leastEquiv
:: (Monad m, Applicative m)
=> (a -> c)
-> (c -> c -> c)
-> STT s m (Equiv s c a)
leastEquiv :: forall (m :: * -> *) a c s.
(Monad m, Applicative m) =>
(a -> c) -> (c -> c -> c) -> STT s m (Equiv s c a)
leastEquiv a -> c
mk c -> c -> c
com = do
STRef s (Map a (Entry s c a))
es <- Map a (Entry s c a) -> STT s m (STRef s (Map a (Entry s c a)))
forall (m :: * -> *) a s. Applicative m => a -> STT s m (STRef s a)
newSTRef Map a (Entry s c a)
forall k a. Map k a
Map.empty
Equiv s c a -> STT s m (Equiv s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Equiv {entries :: STRef s (Map a (Entry s c a))
entries = STRef s (Map a (Entry s c a))
es, singleDesc :: a -> c
singleDesc = a -> c
mk, combDesc :: c -> c -> c
combDesc = c -> c -> c
com}
representative' :: (Monad m, Applicative m) => Entry s c a -> STT s m (Maybe (Entry s c a),Bool)
representative' :: forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' (Entry STRef s (EntryData s c a)
e) = do
EntryData s c a
ed <- STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (EntryData s c a)
e
case EntryData s c a
ed of
Root {entryDeleted :: forall s c a. EntryData s c a -> Bool
entryDeleted = Bool
del} -> do
(Maybe (Entry s c a), Bool) -> STT s m (Maybe (Entry s c a), Bool)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (Entry s c a)
forall a. Maybe a
Nothing, Bool
del)
Node {entryParent :: forall s c a. EntryData s c a -> Entry s c a
entryParent = Entry s c a
parent} -> do
(Maybe (Entry s c a)
mparent',Bool
del) <- Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' Entry s c a
parent
case Maybe (Entry s c a)
mparent' of
Maybe (Entry s c a)
Nothing -> (Maybe (Entry s c a), Bool) -> STT s m (Maybe (Entry s c a), Bool)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return ((Maybe (Entry s c a), Bool)
-> STT s m (Maybe (Entry s c a), Bool))
-> (Maybe (Entry s c a), Bool)
-> STT s m (Maybe (Entry s c a), Bool)
forall a b. (a -> b) -> a -> b
$ (Entry s c a -> Maybe (Entry s c a)
forall a. a -> Maybe a
Just Entry s c a
parent, Bool
del)
Just Entry s c a
parent' -> STRef s (EntryData s c a) -> EntryData s c a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s (EntryData s c a)
e EntryData s c a
ed{entryParent :: Entry s c a
entryParent = Entry s c a
parent'} STT s m ()
-> STT s m (Maybe (Entry s c a), Bool)
-> STT s m (Maybe (Entry s c a), Bool)
forall a b. STT s m a -> STT s m b -> STT s m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Maybe (Entry s c a), Bool) -> STT s m (Maybe (Entry s c a), Bool)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Entry s c a -> Maybe (Entry s c a)
forall a. a -> Maybe a
Just Entry s c a
parent', Bool
del)
representative :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> STT s m (Entry s c a)
representative :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
representative Equiv s c a
eq a
v = do
Maybe (Entry s c a)
mentry <- Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
getEntry Equiv s c a
eq a
v
case Maybe (Entry s c a)
mentry of
Maybe (Entry s c a)
Nothing -> Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
mkEntry Equiv s c a
eq a
v
Just Entry s c a
entry -> do
(Maybe (Entry s c a)
mrepr,Bool
del) <- Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' Entry s c a
entry
if Bool
del
then Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
mkEntry Equiv s c a
eq a
v
else case Maybe (Entry s c a)
mrepr of
Maybe (Entry s c a)
Nothing -> Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
entry
Just Entry s c a
repr -> Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
repr
classRep :: (Monad m, Applicative m, Ord a) => Equiv s c a -> Class s c a -> STT s m (Entry s c a)
classRep :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> STT s m (Entry s c a)
classRep Equiv s c a
eq (Class STRef s (Entry s c a)
p) = do
Entry s c a
entry <- STRef s (Entry s c a) -> STT s m (Entry s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (Entry s c a)
p
(Maybe (Entry s c a)
mrepr,Bool
del) <- Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' Entry s c a
entry
if Bool
del
then do a
v <- (EntryData s c a -> a) -> STT s m (EntryData s c a) -> STT s m a
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM EntryData s c a -> a
forall s c a. EntryData s c a -> a
entryValue (STT s m (EntryData s c a) -> STT s m a)
-> STT s m (EntryData s c a) -> STT s m a
forall a b. (a -> b) -> a -> b
$ STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef (Entry s c a -> STRef s (EntryData s c a)
forall s c a. Entry s c a -> STRef s (EntryData s c a)
unentry Entry s c a
entry)
Entry s c a
en <- Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
getEntry' Equiv s c a
eq a
v
(Maybe (Entry s c a)
mrepr,Bool
del) <- Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' Entry s c a
en
if Bool
del then do
Entry s c a
en' <- Equiv s c a -> Entry s c a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Entry s c a -> STT s m (Entry s c a)
mkEntry' Equiv s c a
eq Entry s c a
en
STRef s (Entry s c a) -> Entry s c a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s (Entry s c a)
p Entry s c a
en'
Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
en'
else Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Entry s c a -> Maybe (Entry s c a) -> Entry s c a
forall a. a -> Maybe a -> a
fromMaybe Entry s c a
en Maybe (Entry s c a)
mrepr)
else Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Entry s c a -> Maybe (Entry s c a) -> Entry s c a
forall a. a -> Maybe a -> a
fromMaybe Entry s c a
entry Maybe (Entry s c a)
mrepr)
mkEntry' :: (Monad m, Applicative m, Ord a)
=> Equiv s c a -> Entry s c a
-> STT s m (Entry s c a)
mkEntry' :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Entry s c a -> STT s m (Entry s c a)
mkEntry' Equiv s c a
eq (Entry STRef s (EntryData s c a)
e) = STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (EntryData s c a)
e STT s m (EntryData s c a)
-> (EntryData s c a -> STT s m (Entry s c a))
-> STT s m (Entry s c a)
forall a b. STT s m a -> (a -> STT s m b) -> STT s m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
mkEntry Equiv s c a
eq (a -> STT s m (Entry s c a))
-> (EntryData s c a -> a)
-> EntryData s c a
-> STT s m (Entry s c a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. EntryData s c a -> a
forall s c a. EntryData s c a -> a
entryValue
mkEntry :: (Monad m, Applicative m, Ord a)
=> Equiv s c a -> a
-> STT s m (Entry s c a)
mkEntry :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
mkEntry Equiv {entries :: forall s c a. Equiv s c a -> Entries s c a
entries = Entries s c a
mref, singleDesc :: forall s c a. Equiv s c a -> a -> c
singleDesc = a -> c
mkDesc} a
val = do
STRef s (EntryData s c a)
e <- EntryData s c a -> STT s m (STRef s (EntryData s c a))
forall (m :: * -> *) a s. Applicative m => a -> STT s m (STRef s a)
newSTRef Root
{ entryDesc :: c
entryDesc = a -> c
mkDesc a
val,
entryWeight :: Int
entryWeight = Int
1,
entryValue :: a
entryValue = a
val,
entryDeleted :: Bool
entryDeleted = Bool
False
}
let entry :: Entry s c a
entry = STRef s (EntryData s c a) -> Entry s c a
forall s c a. STRef s (EntryData s c a) -> Entry s c a
Entry STRef s (EntryData s c a)
e
Map a (Entry s c a)
m <- Entries s c a -> STT s m (Map a (Entry s c a))
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef Entries s c a
mref
Entries s c a -> Map a (Entry s c a) -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef Entries s c a
mref (a -> Entry s c a -> Map a (Entry s c a) -> Map a (Entry s c a)
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert a
val Entry s c a
entry Map a (Entry s c a)
m)
Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
entry
getClass :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> STT s m (Class s c a)
getClass :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Class s c a)
getClass Equiv s c a
eq a
v = do
Entry s c a
en <- (Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
getEntry' Equiv s c a
eq a
v)
(STRef s (Entry s c a) -> Class s c a)
-> STT s m (STRef s (Entry s c a)) -> STT s m (Class s c a)
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM STRef s (Entry s c a) -> Class s c a
forall s c a. STRef s (Entry s c a) -> Class s c a
Class (STT s m (STRef s (Entry s c a)) -> STT s m (Class s c a))
-> STT s m (STRef s (Entry s c a)) -> STT s m (Class s c a)
forall a b. (a -> b) -> a -> b
$ Entry s c a -> STT s m (STRef s (Entry s c a))
forall (m :: * -> *) a s. Applicative m => a -> STT s m (STRef s a)
newSTRef Entry s c a
en
getEntry' :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> STT s m (Entry s c a)
getEntry' :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
getEntry' Equiv s c a
eq a
v = do
Maybe (Entry s c a)
mentry <- Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
getEntry Equiv s c a
eq a
v
case Maybe (Entry s c a)
mentry of
Maybe (Entry s c a)
Nothing -> Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
mkEntry Equiv s c a
eq a
v
Just Entry s c a
entry -> Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
entry
getEntry :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
getEntry :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
getEntry Equiv { entries :: forall s c a. Equiv s c a -> Entries s c a
entries = Entries s c a
mref} a
val = do
Map a (Entry s c a)
m <- Entries s c a -> STT s m (Map a (Entry s c a))
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef Entries s c a
mref
case a -> Map a (Entry s c a) -> Maybe (Entry s c a)
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup a
val Map a (Entry s c a)
m of
Maybe (Entry s c a)
Nothing -> Maybe (Entry s c a) -> STT s m (Maybe (Entry s c a))
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (Entry s c a)
forall a. Maybe a
Nothing
Just Entry s c a
entry -> Maybe (Entry s c a) -> STT s m (Maybe (Entry s c a))
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe (Entry s c a) -> STT s m (Maybe (Entry s c a)))
-> Maybe (Entry s c a) -> STT s m (Maybe (Entry s c a))
forall a b. (a -> b) -> a -> b
$ Entry s c a -> Maybe (Entry s c a)
forall a. a -> Maybe a
Just Entry s c a
entry
equateEntry :: (Monad m, Applicative m, Ord a) => Equiv s c a -> Entry s c a -> Entry s c a -> STT s m (Entry s c a)
equateEntry :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Entry s c a -> Entry s c a -> STT s m (Entry s c a)
equateEntry Equiv {combDesc :: forall s c a. Equiv s c a -> c -> c -> c
combDesc = c -> c -> c
mkDesc} repx :: Entry s c a
repx@(Entry STRef s (EntryData s c a)
rx) repy :: Entry s c a
repy@(Entry STRef s (EntryData s c a)
ry) =
if (STRef s (EntryData s c a)
rx STRef s (EntryData s c a) -> STRef s (EntryData s c a) -> Bool
forall a. Eq a => a -> a -> Bool
/= STRef s (EntryData s c a)
ry) then do
EntryData s c a
dx <- STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (EntryData s c a)
rx
EntryData s c a
dy <- STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (EntryData s c a)
ry
case (EntryData s c a
dx, EntryData s c a
dy) of
( Root{entryWeight :: forall s c a. EntryData s c a -> Int
entryWeight = Int
wx, entryDesc :: forall s c a. EntryData s c a -> c
entryDesc = c
chx, entryValue :: forall s c a. EntryData s c a -> a
entryValue = a
vx}
, Root{entryWeight :: forall s c a. EntryData s c a -> Int
entryWeight = Int
wy, entryDesc :: forall s c a. EntryData s c a -> c
entryDesc = c
chy, entryValue :: forall s c a. EntryData s c a -> a
entryValue = a
vy} ) ->
if Int
wx Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
wy
then do
STRef s (EntryData s c a) -> EntryData s c a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s (EntryData s c a)
ry Node {entryParent :: Entry s c a
entryParent = Entry s c a
repx, entryValue :: a
entryValue = a
vy}
STRef s (EntryData s c a) -> EntryData s c a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s (EntryData s c a)
rx EntryData s c a
dx{entryWeight :: Int
entryWeight = Int
wx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
wy, entryDesc :: c
entryDesc = c -> c -> c
mkDesc c
chx c
chy}
Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
repx
else do
STRef s (EntryData s c a) -> EntryData s c a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s (EntryData s c a)
rx Node {entryParent :: Entry s c a
entryParent = Entry s c a
repy, entryValue :: a
entryValue = a
vx}
STRef s (EntryData s c a) -> EntryData s c a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s (EntryData s c a)
ry EntryData s c a
dy{entryWeight :: Int
entryWeight = Int
wx Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
wy, entryDesc :: c
entryDesc = c -> c -> c
mkDesc c
chx c
chy}
Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
repy
(EntryData s c a, EntryData s c a)
_ -> [Char] -> STT s m (Entry s c a)
forall a. HasCallStack => [Char] -> a
error [Char]
"error on `equateEntry`"
else Entry s c a -> STT s m (Entry s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Entry s c a
repx
combineEntries :: (Monad m, Applicative m, Ord a)
=> Equiv s c a -> [b] -> (b -> STT s m (Entry s c a)) -> STT s m ()
combineEntries :: forall (m :: * -> *) a s c b.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> [b] -> (b -> STT s m (Entry s c a)) -> STT s m ()
combineEntries Equiv s c a
_ [] b -> STT s m (Entry s c a)
_ = () -> STT s m ()
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
combineEntries Equiv s c a
eq (b
e:[b]
es) b -> STT s m (Entry s c a)
rep = do
Entry s c a
er <- b -> STT s m (Entry s c a)
rep b
e
Entry s c a -> [b] -> STT s m ()
run Entry s c a
er [b]
es
where run :: Entry s c a -> [b] -> STT s m ()
run Entry s c a
er (b
f:[b]
r) = do
Entry s c a
fr <- b -> STT s m (Entry s c a)
rep b
f
Entry s c a
er' <- Equiv s c a -> Entry s c a -> Entry s c a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Entry s c a -> Entry s c a -> STT s m (Entry s c a)
equateEntry Equiv s c a
eq Entry s c a
er Entry s c a
fr
Entry s c a -> [b] -> STT s m ()
run Entry s c a
er' [b]
r
run Entry s c a
_ [b]
_ = () -> STT s m ()
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
combineAll :: (Monad m, Applicative m, Ord a) => Equiv s c a -> [Class s c a] -> STT s m ()
combineAll :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> [Class s c a] -> STT s m ()
combineAll Equiv s c a
eq [Class s c a]
cls = Equiv s c a
-> [Class s c a]
-> (Class s c a -> STT s m (Entry s c a))
-> STT s m ()
forall (m :: * -> *) a s c b.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> [b] -> (b -> STT s m (Entry s c a)) -> STT s m ()
combineEntries Equiv s c a
eq [Class s c a]
cls (Equiv s c a -> Class s c a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> STT s m (Entry s c a)
classRep Equiv s c a
eq)
combine :: (Monad m, Applicative m, Ord a) => Equiv s c a -> Class s c a -> Class s c a -> STT s m (Class s c a)
combine :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> Class s c a -> STT s m (Class s c a)
combine Equiv s c a
eq Class s c a
x Class s c a
y = Equiv s c a -> [Class s c a] -> STT s m ()
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> [Class s c a] -> STT s m ()
combineAll Equiv s c a
eq [Class s c a
x,Class s c a
y] STT s m () -> STT s m (Class s c a) -> STT s m (Class s c a)
forall a b. STT s m a -> STT s m b -> STT s m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Class s c a -> STT s m (Class s c a)
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Class s c a
x
equateAll :: (Monad m, Applicative m, Ord a) => Equiv s c a -> [a] -> STT s m ()
equateAll :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> [a] -> STT s m ()
equateAll Equiv s c a
eq [a]
cls = Equiv s c a -> [a] -> (a -> STT s m (Entry s c a)) -> STT s m ()
forall (m :: * -> *) a s c b.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> [b] -> (b -> STT s m (Entry s c a)) -> STT s m ()
combineEntries Equiv s c a
eq [a]
cls (Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
representative Equiv s c a
eq)
equate :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> a -> STT s m ()
equate :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> a -> STT s m ()
equate Equiv s c a
eq a
x a
y = Equiv s c a -> [a] -> STT s m ()
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> [a] -> STT s m ()
equateAll Equiv s c a
eq [a
x,a
y]
desc :: (Monad m, Applicative m, Ord a) => Equiv s c a -> Class s c a -> STT s m c
desc :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> STT s m c
desc Equiv s c a
eq Class s c a
cl = do
Entry STRef s (EntryData s c a)
e <- Equiv s c a -> Class s c a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> STT s m (Entry s c a)
classRep Equiv s c a
eq Class s c a
cl
(EntryData s c a -> c) -> STT s m (EntryData s c a) -> STT s m c
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM EntryData s c a -> c
forall s c a. EntryData s c a -> c
entryDesc (STT s m (EntryData s c a) -> STT s m c)
-> STT s m (EntryData s c a) -> STT s m c
forall a b. (a -> b) -> a -> b
$ STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (EntryData s c a)
e
classDesc :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> STT s m c
classDesc :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m c
classDesc Equiv s c a
eq a
val = do
Entry STRef s (EntryData s c a)
e <- Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
representative Equiv s c a
eq a
val
(EntryData s c a -> c) -> STT s m (EntryData s c a) -> STT s m c
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM EntryData s c a -> c
forall s c a. EntryData s c a -> c
entryDesc (STT s m (EntryData s c a) -> STT s m c)
-> STT s m (EntryData s c a) -> STT s m c
forall a b. (a -> b) -> a -> b
$ STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (EntryData s c a)
e
same :: (Monad m, Applicative m, Ord a) => Equiv s c a -> Class s c a -> Class s c a -> STT s m Bool
same :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> Class s c a -> STT s m Bool
same Equiv s c a
eq Class s c a
c1 Class s c a
c2 = do
(Entry STRef s (EntryData s c a)
r1) <- Equiv s c a -> Class s c a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> STT s m (Entry s c a)
classRep Equiv s c a
eq Class s c a
c1
(Entry STRef s (EntryData s c a)
r2) <- Equiv s c a -> Class s c a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> STT s m (Entry s c a)
classRep Equiv s c a
eq Class s c a
c2
Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return (STRef s (EntryData s c a)
r1 STRef s (EntryData s c a) -> STRef s (EntryData s c a) -> Bool
forall a. Eq a => a -> a -> Bool
== STRef s (EntryData s c a)
r2)
equivalent :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> a -> STT s m Bool
equivalent :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> a -> STT s m Bool
equivalent Equiv s c a
eq a
v1 a
v2 = do
(Entry STRef s (EntryData s c a)
r1) <- Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
representative Equiv s c a
eq a
v1
(Entry STRef s (EntryData s c a)
r2) <- Equiv s c a -> a -> STT s m (Entry s c a)
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Entry s c a)
representative Equiv s c a
eq a
v2
Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return (STRef s (EntryData s c a)
r1 STRef s (EntryData s c a) -> STRef s (EntryData s c a) -> Bool
forall a. Eq a => a -> a -> Bool
== STRef s (EntryData s c a)
r2)
modifySTRef :: (Monad m, Applicative m) => STRef s a -> (a -> a) -> STT s m ()
modifySTRef :: forall (m :: * -> *) s a.
(Monad m, Applicative m) =>
STRef s a -> (a -> a) -> STT s m ()
modifySTRef STRef s a
r a -> a
f = STRef s a -> STT s m a
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s a
r STT s m a -> (a -> STT s m ()) -> STT s m ()
forall a b. STT s m a -> (a -> STT s m b) -> STT s m b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (STRef s a -> a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s a
r (a -> STT s m ()) -> (a -> a) -> a -> STT s m ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> a
f)
removeEntry :: (Monad m, Applicative m, Ord a) => Entry s c a -> STT s m ()
removeEntry :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Entry s c a -> STT s m ()
removeEntry (Entry STRef s (EntryData s c a)
r) = STRef s (EntryData s c a)
-> (EntryData s c a -> EntryData s c a) -> STT s m ()
forall (m :: * -> *) s a.
(Monad m, Applicative m) =>
STRef s a -> (a -> a) -> STT s m ()
modifySTRef STRef s (EntryData s c a)
r EntryData s c a -> EntryData s c a
forall {s} {c} {a} {s}. EntryData s c a -> EntryData s c a
change
where change :: EntryData s c a -> EntryData s c a
change EntryData s c a
e = EntryData s c a
e {entryDeleted :: Bool
entryDeleted = Bool
True}
remove :: (Monad m, Applicative m, Ord a) => Equiv s c a -> Class s c a -> STT s m Bool
remove :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> Class s c a -> STT s m Bool
remove Equiv s c a
eq (Class STRef s (Entry s c a)
p) = do
Entry s c a
entry <- STRef s (Entry s c a) -> STT s m (Entry s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef STRef s (Entry s c a)
p
(Maybe (Entry s c a)
mrepr,Bool
del) <- Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' Entry s c a
entry
if Bool
del then do
a
v <- (EntryData s c a -> a) -> STT s m (EntryData s c a) -> STT s m a
forall (m :: * -> *) a1 r. Monad m => (a1 -> r) -> m a1 -> m r
liftM EntryData s c a -> a
forall s c a. EntryData s c a -> a
entryValue (STT s m (EntryData s c a) -> STT s m a)
-> STT s m (EntryData s c a) -> STT s m a
forall a b. (a -> b) -> a -> b
$ STRef s (EntryData s c a) -> STT s m (EntryData s c a)
forall (m :: * -> *) s a. Applicative m => STRef s a -> STT s m a
readSTRef (Entry s c a -> STRef s (EntryData s c a)
forall s c a. Entry s c a -> STRef s (EntryData s c a)
unentry Entry s c a
entry)
Maybe (Entry s c a)
men <- Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
getEntry Equiv s c a
eq a
v
case Maybe (Entry s c a)
men of
Maybe (Entry s c a)
Nothing -> Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Just Entry s c a
en -> do
STRef s (Entry s c a) -> Entry s c a -> STT s m ()
forall (m :: * -> *) s a.
Applicative m =>
STRef s a -> a -> STT s m ()
writeSTRef STRef s (Entry s c a)
p Entry s c a
en
(Maybe (Entry s c a)
mentry,Bool
del) <- Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' Entry s c a
en
if Bool
del
then Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
else Entry s c a -> STT s m ()
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Entry s c a -> STT s m ()
removeEntry (Entry s c a -> Maybe (Entry s c a) -> Entry s c a
forall a. a -> Maybe a -> a
fromMaybe Entry s c a
en Maybe (Entry s c a)
mentry)
STT s m () -> STT s m Bool -> STT s m Bool
forall a b. STT s m a -> STT s m b -> STT s m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
else Entry s c a -> STT s m ()
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Entry s c a -> STT s m ()
removeEntry (Entry s c a -> Maybe (Entry s c a) -> Entry s c a
forall a. a -> Maybe a -> a
fromMaybe Entry s c a
entry Maybe (Entry s c a)
mrepr)
STT s m () -> STT s m Bool -> STT s m Bool
forall a b. STT s m a -> STT s m b -> STT s m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
removeClass :: (Monad m, Applicative m, Ord a) => Equiv s c a -> a -> STT s m Bool
removeClass :: forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m Bool
removeClass Equiv s c a
eq a
v = do
Maybe (Entry s c a)
mentry <- Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Equiv s c a -> a -> STT s m (Maybe (Entry s c a))
getEntry Equiv s c a
eq a
v
case Maybe (Entry s c a)
mentry of
Maybe (Entry s c a)
Nothing -> Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Just Entry s c a
entry -> do
(Maybe (Entry s c a)
mentry, Bool
del) <- Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
forall (m :: * -> *) s c a.
(Monad m, Applicative m) =>
Entry s c a -> STT s m (Maybe (Entry s c a), Bool)
representative' Entry s c a
entry
if Bool
del
then Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
else Entry s c a -> STT s m ()
forall (m :: * -> *) a s c.
(Monad m, Applicative m, Ord a) =>
Entry s c a -> STT s m ()
removeEntry (Entry s c a -> Maybe (Entry s c a) -> Entry s c a
forall a. a -> Maybe a -> a
fromMaybe Entry s c a
entry Maybe (Entry s c a)
mentry)
STT s m () -> STT s m Bool -> STT s m Bool
forall a b. STT s m a -> STT s m b -> STT s m b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Bool -> STT s m Bool
forall a. a -> STT s m a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True