Portability | non-portable |
---|---|
Stability | experimental |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Safe Haskell | Trustworthy |
This module supports monads that can throw extensible exceptions. The
exceptions are the very same from Control.Exception, and the operations
offered very similar, but here they are not limited to IO
.
This code is in the style of both transformers and mtl, and is compatible with them, though doesn't mimic the module structure or offer the complete range of features in those packages.
This is very similar to ErrorT
and MonadError
, but based on features of
Control.Exception. In particular, it handles the complex case of
asynchronous exceptions by including mask
in the typeclass. Note that the
extensible extensions feature relies the RankNTypes language extension.
- class Monad m => MonadThrow m where
- class MonadThrow m => MonadCatch m where
- catch :: Exception e => m a -> (e -> m a) -> m a
- mask :: ((forall a. m a -> m a) -> m b) -> m b
- uninterruptibleMask :: ((forall a. m a -> m a) -> m b) -> m b
- mask_ :: MonadCatch m => m a -> m a
- uninterruptibleMask_ :: MonadCatch m => m a -> m a
- catchAll :: MonadCatch m => m a -> (SomeException -> m a) -> m a
- catchIOError :: MonadCatch m => m a -> (IOError -> m a) -> m a
- catchJust :: (MonadCatch m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m a
- catchIf :: (MonadCatch m, Exception e) => (e -> Bool) -> m a -> (e -> m a) -> m a
- data Handler m a = forall e . Exception e => Handler (e -> m a)
- catches :: (Foldable f, MonadCatch m) => m a -> f (Handler m a) -> m a
- handle :: (MonadCatch m, Exception e) => (e -> m a) -> m a -> m a
- handleAll :: MonadCatch m => (SomeException -> m a) -> m a -> m a
- handleIOError :: MonadCatch m => (IOError -> m a) -> m a -> m a
- handleJust :: (MonadCatch m, Exception e) => (e -> Maybe b) -> (b -> m a) -> m a -> m a
- handleIf :: (MonadCatch m, Exception e) => (e -> Bool) -> (e -> m a) -> m a -> m a
- try :: (MonadCatch m, Exception e) => m a -> m (Either e a)
- tryJust :: (MonadCatch m, Exception e) => (e -> Maybe b) -> m a -> m (Either b a)
- onException :: MonadCatch m => m a -> m b -> m a
- bracket :: MonadCatch m => m a -> (a -> m b) -> (a -> m c) -> m c
- bracket_ :: MonadCatch m => m a -> m b -> m c -> m c
- finally :: MonadCatch m => m a -> m b -> m a
- bracketOnError :: MonadCatch m => m a -> (a -> m b) -> (a -> m c) -> m c
- class (Typeable e, Show e) => Exception e where
- toException :: e -> SomeException
- fromException :: SomeException -> Maybe e
- data SomeException where
- SomeException :: Exception e => e -> SomeException
Typeclass
The mtl style typeclass
class Monad m => MonadThrow m whereSource
A class for monads in which exceptions may be thrown.
throwM :: Exception e => e -> m aSource
Throw an exception. Note that this throws when this action is run in
the monad m
, not when it is applied. It is a generalization of
Control.Exception's throwIO
.
Should satisfy the law:
throwM e >> f = throwM e
MonadThrow [] | |
MonadThrow IO | |
MonadThrow Maybe | |
~ * e SomeException => MonadThrow (Either e) | |
MonadThrow m => MonadThrow (IdentityT m) | |
Monad m => MonadThrow (CatchT m) | |
MonadThrow m => MonadThrow (ReaderT r m) | |
MonadThrow m => MonadThrow (StateT s m) | |
MonadThrow m => MonadThrow (StateT s m) | |
(MonadThrow m, Monoid w) => MonadThrow (WriterT w m) | |
(MonadThrow m, Monoid w) => MonadThrow (WriterT w m) | |
(MonadThrow m, Monoid w) => MonadThrow (RWST r w s m) | |
(MonadThrow m, Monoid w) => MonadThrow (RWST r w s m) |
class MonadThrow m => MonadCatch m whereSource
catch :: Exception e => m a -> (e -> m a) -> m aSource
Provide a handler for exceptions thrown during execution of the first
action. Note that type of the type of the argument to the handler will
constrain which exceptions are caught. See Control.Exception's
catch
.
mask :: ((forall a. m a -> m a) -> m b) -> m bSource
Runs an action with asynchronous exceptions disabled. The action is
provided a method for restoring the async. environment to what it was
at the mask
call. See Control.Exception's mask
.
uninterruptibleMask :: ((forall a. m a -> m a) -> m b) -> m bSource
Like mask
, but the masked computation is not interruptible (see
Control.Exception's uninterruptibleMask
. WARNING:
Only use if you need to mask exceptions around an interruptible operation
AND you can guarantee the interruptible operation will only block for a
short period of time. Otherwise you render the program/thread unresponsive
and/or unkillable.
MonadCatch IO | |
MonadCatch m => MonadCatch (IdentityT m) | |
Monad m => MonadCatch (CatchT m) | |
MonadCatch m => MonadCatch (ReaderT r m) | |
MonadCatch m => MonadCatch (StateT s m) | |
MonadCatch m => MonadCatch (StateT s m) | |
(MonadCatch m, Monoid w) => MonadCatch (WriterT w m) | |
(MonadCatch m, Monoid w) => MonadCatch (WriterT w m) | |
(MonadCatch m, Monoid w) => MonadCatch (RWST r w s m) | |
(MonadCatch m, Monoid w) => MonadCatch (RWST r w s m) |
Utilities
These functions follow those from Control.Exception, except that they are
based on methods from the MonadCatch
typeclass. See
Control.Exception for API usage.
mask_ :: MonadCatch m => m a -> m aSource
Like mask
, but does not pass a restore
action to the argument.
uninterruptibleMask_ :: MonadCatch m => m a -> m aSource
Like uninterruptibleMask
, but does not pass a restore
action to the
argument.
catchAll :: MonadCatch m => m a -> (SomeException -> m a) -> m aSource
Catches all exceptions, and somewhat defeats the purpose of the extensible exception system. Use sparingly.
catchIOError :: MonadCatch m => m a -> (IOError -> m a) -> m aSource
Catch all IOError
(eqv. IOException
) exceptions. Still somewhat too
general, but better than using catchAll
. See catchIf
for an easy way
of catching specific IOError
s based on the predicates in System.IO.Error.
catchJust :: (MonadCatch m, Exception e) => (e -> Maybe b) -> m a -> (b -> m a) -> m aSource
A more generalized way of determining which exceptions to catch at run time.
catchIf :: (MonadCatch m, Exception e) => (e -> Bool) -> m a -> (e -> m a) -> m aSource
Catch exceptions only if they pass some predicate. Often useful with the
predicates for testing IOError
values in System.IO.Error.
Generalized version of Handler
catches :: (Foldable f, MonadCatch m) => m a -> f (Handler m a) -> m aSource
Catches different sorts of exceptions. See Control.Exception's catches
handle :: (MonadCatch m, Exception e) => (e -> m a) -> m a -> m aSource
Flipped catch
. See Control.Exception's handle
.
handleAll :: MonadCatch m => (SomeException -> m a) -> m a -> m aSource
Flipped catchAll
handleIOError :: MonadCatch m => (IOError -> m a) -> m a -> m aSource
Flipped catchIOError
handleJust :: (MonadCatch m, Exception e) => (e -> Maybe b) -> (b -> m a) -> m a -> m aSource
Flipped catchJust
. See Control.Exception's handleJust
.
handleIf :: (MonadCatch m, Exception e) => (e -> Bool) -> (e -> m a) -> m a -> m aSource
Flipped catchIf
try :: (MonadCatch m, Exception e) => m a -> m (Either e a)Source
Similar to catch
, but returns an Either
result. See Control.Exception's
try
.
tryJust :: (MonadCatch m, Exception e) => (e -> Maybe b) -> m a -> m (Either b a)Source
A variant of try
that takes an exception predicate to select
which exceptions are caught. See Control.Exception's tryJust
onException :: MonadCatch m => m a -> m b -> m aSource
Run an action only if an exception is thrown in the main action. The exception is not caught, simply rethrown.
bracket :: MonadCatch m => m a -> (a -> m b) -> (a -> m c) -> m cSource
Generalized abstracted pattern of safe resource acquisition and release
in the face of exceptions. The first action "acquires" some value, which
is "released" by the second action at the end. The third action "uses"
the value and its result is the result of the bracket
.
If an exception occurs during the use, the release still happens before the exception is rethrown.
bracket_ :: MonadCatch m => m a -> m b -> m c -> m cSource
Version of bracket
without any value being passed to the second and
third actions.
finally :: MonadCatch m => m a -> m b -> m aSource
Perform an action with a finalizer action that is run, even if an exception occurs.
bracketOnError :: MonadCatch m => m a -> (a -> m b) -> (a -> m c) -> m cSource
Like bracket
, but only performs the final action if there was an
exception raised by the in-between computation.
Re-exports from Control.Exception
class (Typeable e, Show e) => Exception e where
Any type that you wish to throw or catch as an exception must be an
instance of the Exception
class. The simplest case is a new exception
type directly below the root:
data MyException = ThisException | ThatException deriving (Show, Typeable) instance Exception MyException
The default method definitions in the Exception
class do what we need
in this case. You can now throw and catch ThisException
and
ThatException
as exceptions:
*Main> throw ThisException `catch` \e -> putStrLn ("Caught " ++ show (e :: MyException)) Caught ThisException
In more complicated examples, you may wish to define a whole hierarchy of exceptions:
--------------------------------------------------------------------- -- Make the root exception type for all the exceptions in a compiler data SomeCompilerException = forall e . Exception e => SomeCompilerException e deriving Typeable instance Show SomeCompilerException where show (SomeCompilerException e) = show e instance Exception SomeCompilerException compilerExceptionToException :: Exception e => e -> SomeException compilerExceptionToException = toException . SomeCompilerException compilerExceptionFromException :: Exception e => SomeException -> Maybe e compilerExceptionFromException x = do SomeCompilerException a <- fromException x cast a --------------------------------------------------------------------- -- Make a subhierarchy for exceptions in the frontend of the compiler data SomeFrontendException = forall e . Exception e => SomeFrontendException e deriving Typeable instance Show SomeFrontendException where show (SomeFrontendException e) = show e instance Exception SomeFrontendException where toException = compilerExceptionToException fromException = compilerExceptionFromException frontendExceptionToException :: Exception e => e -> SomeException frontendExceptionToException = toException . SomeFrontendException frontendExceptionFromException :: Exception e => SomeException -> Maybe e frontendExceptionFromException x = do SomeFrontendException a <- fromException x cast a --------------------------------------------------------------------- -- Make an exception type for a particular frontend compiler exception data MismatchedParentheses = MismatchedParentheses deriving (Typeable, Show) instance Exception MismatchedParentheses where toException = frontendExceptionToException fromException = frontendExceptionFromException
We can now catch a MismatchedParentheses
exception as
MismatchedParentheses
, SomeFrontendException
or
SomeCompilerException
, but not other types, e.g. IOException
:
*Main> throw MismatchedParenthesescatch
e -> putStrLn ("Caught " ++ show (e :: MismatchedParentheses)) Caught MismatchedParentheses *Main> throw MismatchedParenthesescatch
e -> putStrLn ("Caught " ++ show (e :: SomeFrontendException)) Caught MismatchedParentheses *Main> throw MismatchedParenthesescatch
e -> putStrLn ("Caught " ++ show (e :: SomeCompilerException)) Caught MismatchedParentheses *Main> throw MismatchedParenthesescatch
e -> putStrLn ("Caught " ++ show (e :: IOException)) *** Exception: MismatchedParentheses
toException :: e -> SomeException
fromException :: SomeException -> Maybe e
data SomeException where
The SomeException
type is the root of the exception type hierarchy.
When an exception of type e
is thrown, behind the scenes it is
encapsulated in a SomeException
.
SomeException :: Exception e => e -> SomeException |