{-# LANGUAGE DataKinds #-} {-# LANGUAGE PolyKinds #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# OPTIONS_GHC -Wall #-} {-# OPTIONS_GHC -Werror=incomplete-patterns #-} {-| Module : Fcf.Alg.List Description : ListF structure working with Algebras, ColAlgebras, and other stuff Copyright : (c) gspia 2020- License : BSD Maintainer : gspia = Fcf.Alg.List Type-level 'ListF' to be used with Cata, Ana and Hylo. This module also contains other list-related functions (that might move to other place some day). -} -------------------------------------------------------------------------------- module Fcf.Alg.List where import qualified GHC.TypeLits as TL import Fcf.Core (Eval, Exp, type (@@)) import Fcf.Classes (Map) import Fcf.Combinators (type (=<<), type (<=<), Pure) import Fcf.Data.List (Foldr, Concat, TakeWhile, DropWhile, Reverse , type (++), ZipWith, Elem, Take, Unfoldr) import Fcf.Utils (If, TyEq) import Fcf.Data.Bool (type (&&), type (||), Not) import Fcf.Data.Nat import Fcf.Alg.Morphism -------------------------------------------------------------------------------- -- For the doctests: -- $setup -- >>> import Fcf.Combinators -------------------------------------------------------------------------------- -- | Base functor for a list of type @[a]@. data ListF a b = ConsF a b | NilF -- We need a functor instance for Cata and Ana to work. type instance Eval (Map f 'NilF) = 'NilF type instance Eval (Map f ('ConsF a b)) = 'ConsF a (Eval (f b)) -------------------------------------------------------------------------------- -- | ListToFix can be used to turn a norma type-level list into the base -- functor type ListF, to be used with e.g. Cata. For examples in use, see -- 'LenAlg' and 'SumAlg'. -- -- Ideally, we would have one ToFix type-level function for which we could -- give type instances for different type-level types, like lists, trees -- etc. See TODO.md. -- -- === __Example__ -- -- >>> :kind! Eval (ListToFix '[1,2,3]) -- Eval (ListToFix '[1,2,3]) :: Fix (ListF Nat) -- = 'Fix ('ConsF 1 ('Fix ('ConsF 2 ('Fix ('ConsF 3 ('Fix 'NilF)))))) data ListToFix :: [a] -> Exp (Fix (ListF a)) type instance Eval (ListToFix '[]) = 'Fix 'NilF type instance Eval (ListToFix (a ': as)) = 'Fix ('ConsF a (Eval (ListToFix as))) -- | Example algebra to calculate list length. -- -- === __Example__ -- -- >>> :kind! Eval (Cata LenAlg =<< ListToFix '[1,2,3]) -- Eval (Cata LenAlg =<< ListToFix '[1,2,3]) :: Nat -- = 3 data LenAlg :: Algebra (ListF a) Nat type instance Eval (LenAlg 'NilF) = 0 type instance Eval (LenAlg ('ConsF a b)) = 1 TL.+ b -- | Example algebra to calculate the sum of Nats in a list. -- -- === __Example__ -- -- >>> :kind! Eval (Cata SumAlg =<< ListToFix '[1,2,3,4]) -- Eval (Cata SumAlg =<< ListToFix '[1,2,3,4]) :: Nat -- = 10 data SumAlg :: Algebra (ListF Nat) Nat type instance Eval (SumAlg 'NilF) = 0 type instance Eval (SumAlg ('ConsF a b)) = a TL.+ b -- | Example algebra to calculate the prod of Nats in a list. -- -- === __Example__ -- -- >>> :kind! Eval (Cata ProdAlg =<< ListToFix '[1,2,3,4]) -- Eval (Cata ProdAlg =<< ListToFix '[1,2,3,4]) :: Nat -- = 24 data ProdAlg :: Algebra (ListF Nat) Nat type instance Eval (ProdAlg 'NilF) = 1 type instance Eval (ProdAlg ('ConsF a b)) = a TL.* b -------------------------------------------------------------------------------- -- | Form a Fix-structure that can be used with Para. -- -- === __Example__ -- -- >>> :kind! Eval (ListToParaFix '[1,2,3]) -- Eval (ListToParaFix '[1,2,3]) :: Fix (ListF (Nat, [Nat])) -- = 'Fix -- ('ConsF -- '(1, '[2, 3]) -- ('Fix ('ConsF '(2, '[3]) ('Fix ('ConsF '(3, '[]) ('Fix 'NilF)))))) data ListToParaFix :: [a] -> Exp (Fix (ListF (a,[a]))) type instance Eval (ListToParaFix '[]) = 'Fix 'NilF type instance Eval (ListToParaFix (a ': as)) = 'Fix ('ConsF '(a,as) (Eval (ListToParaFix as))) -- | Example from recursion-package by Vanessa McHale. -- -- This removes duplicates from a list (by keeping the right-most one). -- -- === __Example__ -- -- >>> :kind! Eval (Para DedupAlg =<< ListToParaFix '[1,1,3,2,5,1,3,2]) -- Eval (Para DedupAlg =<< ListToParaFix '[1,1,3,2,5,1,3,2]) :: [Nat] -- = '[5, 1, 3, 2] data DedupAlg :: RAlgebra (ListF (a,[a])) [a] type instance Eval (DedupAlg 'NilF) = '[] type instance Eval (DedupAlg ('ConsF '(a,as) '(_fxs, past))) = Eval (If (Eval (TyEq (Eval (Elem a past)) 'True )) (Pure past) (Pure (a ': as)) ) -- | Example from Recursion Schemes by example by Tim Williams. -- -- === __Example__ -- -- >>> :kind! Eval (Sliding 3 '[1,2,3,4,5,6]) -- Eval (Sliding 3 '[1,2,3,4,5,6]) :: [[Nat]] -- = '[ '[1, 2, 3], '[2, 3, 4], '[3, 4, 5], '[4, 5, 6], '[5, 6], '[6]] data Sliding :: Nat -> [a] -> Exp [[a]] type instance Eval (Sliding n lst) = Eval (Para (SlidingAlg n) =<< ListToParaFix lst) -- | Tim Williams, Recursion Schemes by example, example for Para. -- See 'Sliding'-function. data SlidingAlg :: Nat -> RAlgebra (ListF (a, [a])) [[a]] type instance Eval (SlidingAlg _ 'NilF) = '[] type instance Eval (SlidingAlg n ('ConsF '(a,as) '(_fxs,past))) = Eval (Take n (a ': as)) ': past -- | Tim Williams, Recursion Schemes by example, example for Histo. data EvensStrip :: ListF a (Ann (ListF a) [a]) -> Exp [a] type instance Eval (EvensStrip 'NilF) = '[] type instance Eval (EvensStrip ('ConsF x y)) = x ': Eval (Attr y) -- | Tim Williams, Recursion Schemes by example, example for Histo. data EvensAlg :: ListF a (Ann (ListF a) [a]) -> Exp [a] type instance Eval (EvensAlg 'NilF) = '[] type instance Eval (EvensAlg ('ConsF _ rst )) = Eval (EvensStrip =<< Strip rst) -- | This picks up the elements on even positions on a list and is an -- example on how to use Histo. This example is -- from Tim Williams, Recursion Schemes by example. -- -- === __Example__ -- -- >>> :kind! Eval (Evens =<< RunInc 8) -- Eval (Evens =<< RunInc 8) :: [Nat] -- = '[2, 4, 6, 8] data Evens :: [a] -> Exp [a] type instance Eval (Evens lst) = Eval (Histo EvensAlg =<< ListToFix lst) -- | For the ListRunAlg data NumIter :: a -> Nat -> Exp (Maybe (a,Nat)) type instance Eval (NumIter a s) = (If (Eval (s > 0) ) ( 'Just '( a, s TL.- 1 )) 'Nothing ) -- | For the RunInc data ListRunAlg :: Nat -> Exp (Maybe (Nat,Nat)) type instance Eval (ListRunAlg s) = Eval (NumIter s s ) -- | Construct a run (that is, a natuaral number sequence from 1 to arg). -- -- === __Example__ -- -- >>> :kind! Eval (RunInc 8) -- Eval (RunInc 8) :: [Nat] -- = '[1, 2, 3, 4, 5, 6, 7, 8] data RunInc :: Nat -> Exp [Nat] type instance Eval (RunInc n) = Eval (Reverse =<< Unfoldr ListRunAlg n) -------------------------------------------------------------------------------- -- | Sum a Nat-list. -- -- === __Example__ -- -- >>> :kind! Eval (Sum '[1,2,3]) -- Eval (Sum '[1,2,3]) :: Nat -- = 6 data Sum :: [Nat] -> Exp Nat type instance Eval (Sum ns) = Eval (Foldr (+) 0 ns) -------------------------------------------------------------------------------- -- | Partition -- -- === __Example__ -- -- >>> :kind! Eval (Fcf.Alg.List.Partition ((>=) 35) '[ 20, 30, 40, 50]) -- Eval (Fcf.Alg.List.Partition ((>=) 35) '[ 20, 30, 40, 50]) :: ([Nat], -- [Nat]) -- = '( '[20, 30], '[40, 50]) data Partition :: (a -> Exp Bool) -> [a] -> Exp ([a],[a]) type instance Eval (Partition p lst) = Eval (Foldr (PartHelp p) '( '[], '[]) lst) -- helper data PartHelp :: (a -> Exp Bool) -> a -> ([a],[a]) -> Exp ([a],[a]) type instance Eval (PartHelp p a '(xs,ys)) = If (Eval (p a)) '(a ': xs, ys) '(xs, a ': ys) -- | Intersperse for type-level lists. -- -- === __Example__ -- -- >>> :kind! Eval (Intersperse 0 '[1,2,3,4]) -- Eval (Intersperse 0 '[1,2,3,4]) :: [Nat] -- = '[1, 0, 2, 0, 3, 0, 4] data Intersperse :: a -> [a] -> Exp [a] type instance Eval (Intersperse _ '[] ) = '[] type instance Eval (Intersperse sep (x ': xs)) = x ': Eval (PrependToAll sep xs) -- helper for Intersperse data PrependToAll :: a -> [a] -> Exp [a] type instance Eval (PrependToAll _ '[] ) = '[] type instance Eval (PrependToAll sep (x ': xs)) = sep ': x ': Eval (PrependToAll sep xs) -- | Intercalate for type-level lists. -- -- === __Example__ -- -- >>> :kind! Eval (Intercalate '[", "] '[ '["Lorem"], '["ipsum"], '["dolor"] ]) -- Eval (Intercalate '[", "] '[ '["Lorem"], '["ipsum"], '["dolor"] ]) :: [TL.Symbol] -- = '["Lorem", ", ", "ipsum", ", ", "dolor"] data Intercalate :: [a] -> [[a]] -> Exp [a] type instance Eval (Intercalate xs xss) = Eval (Concat =<< Intersperse xs xss) -- | 'Span', applied to a predicate @p@ and a type-level list @xs@, returns a -- type-level tuple where -- first element is longest prefix (possibly empty) of @xs@ of elements that -- satisfy @p@ and second element is the remainder of the list: -- -- === __Example__ -- -- >>> :kind! Eval (Span (Flip (<) 3) '[1,2,3,4,1,2,3,4]) -- Eval (Span (Flip (<) 3) '[1,2,3,4,1,2,3,4]) :: ([Nat], [Nat]) -- = '( '[1, 2], '[3, 4, 1, 2, 3, 4]) -- -- >>> :kind! Eval (Span (Flip (<) 9) '[1,2,3]) -- Eval (Span (Flip (<) 9) '[1,2,3]) :: ([Nat], [Nat]) -- = '( '[1, 2, 3], '[]) -- -- >>> :kind! Eval (Span (Flip (<) 0) '[1,2,3]) -- Eval (Span (Flip (<) 0) '[1,2,3]) :: ([Nat], [Nat]) -- = '( '[], '[1, 2, 3]) data Span :: (a -> Exp Bool) -> [a] -> Exp ([a],[a]) type instance Eval (Span p lst) = '( Eval (TakeWhile p lst), Eval (DropWhile p lst)) -- | 'Break', applied to a predicate @p@ and a type-level list @xs@, returns a -- type-level tuple where -- first element is longest prefix (possibly empty) of @xs@ of elements that -- /do not satisfy/ @p@ and second element is the remainder of the list: -- -- === __Example__ -- -- >>> :kind! Eval (Break (Flip (>) 3) '[1,2,3,4,1,2,3,4]) -- Eval (Break (Flip (>) 3) '[1,2,3,4,1,2,3,4]) :: ([Nat], [Nat]) -- = '( '[1, 2, 3], '[4, 1, 2, 3, 4]) -- -- >>> :kind! Eval (Break (Flip (<) 9) '[1,2,3]) -- Eval (Break (Flip (<) 9) '[1,2,3]) :: ([Nat], [Nat]) -- = '( '[], '[1, 2, 3]) -- -- >>> :kind! Eval (Break (Flip (>) 9) '[1,2,3]) -- Eval (Break (Flip (>) 9) '[1,2,3]) :: ([Nat], [Nat]) -- = '( '[1, 2, 3], '[]) data Break :: (a -> Exp Bool) -> [a] -> Exp ([a],[a]) type instance Eval (Break p lst) = Eval (Span (Not <=< p) lst) -- | IsPrefixOf takes two type-level lists and returns true -- iff the first list is a prefix of the second. -- -- === __Example__ -- -- >>> :kind! Eval (IsPrefixOf '[0,1,2] '[0,1,2,3,4,5]) -- Eval (IsPrefixOf '[0,1,2] '[0,1,2,3,4,5]) :: Bool -- = 'True -- -- >>> :kind! Eval (IsPrefixOf '[0,1,2] '[0,1,3,2,4,5]) -- Eval (IsPrefixOf '[0,1,2] '[0,1,3,2,4,5]) :: Bool -- = 'False -- -- >>> :kind! Eval (IsPrefixOf '[] '[0,1,3,2,4,5]) -- Eval (IsPrefixOf '[] '[0,1,3,2,4,5]) :: Bool -- = 'True -- -- >>> :kind! Eval (IsPrefixOf '[0,1,3,2,4,5] '[]) -- Eval (IsPrefixOf '[0,1,3,2,4,5] '[]) :: Bool -- = 'False data IsPrefixOf :: [a] -> [a] -> Exp Bool type instance Eval (IsPrefixOf xs ys) = IsPrefixOf_ xs ys -- helper for IsPrefixOf type family IsPrefixOf_ (xs :: [a]) (ys :: [a]) :: Bool where IsPrefixOf_ '[] _ = 'True IsPrefixOf_ _ '[] = 'False IsPrefixOf_ (x ': xs) (y ': ys) = Eval ((Eval (TyEq x y)) && IsPrefixOf_ xs ys) -- | IsSuffixOf take two type-level lists and returns true -- iff the first list is a suffix of the second. -- -- === __Example__ -- -- >>> :kind! Eval (IsSuffixOf '[3,4,5] '[0,1,2,3,4,5]) -- Eval (IsSuffixOf '[3,4,5] '[0,1,2,3,4,5]) :: Bool -- = 'True -- -- >>> :kind! Eval (IsSuffixOf '[3,4,5] '[0,1,3,2,4,5]) -- Eval (IsSuffixOf '[3,4,5] '[0,1,3,2,4,5]) :: Bool -- = 'False -- -- >>> :kind! Eval (IsSuffixOf '[] '[0,1,3,2,4,5]) -- Eval (IsSuffixOf '[] '[0,1,3,2,4,5]) :: Bool -- = 'True -- -- >>> :kind! Eval (IsSuffixOf '[0,1,3,2,4,5] '[]) -- Eval (IsSuffixOf '[0,1,3,2,4,5] '[]) :: Bool -- = 'False data IsSuffixOf :: [a] -> [a] -> Exp Bool type instance Eval (IsSuffixOf xs ys) = Eval (IsPrefixOf (Reverse @@ xs) (Reverse @@ ys)) -- | IsInfixOf take two type-level lists and returns true -- iff the first list is a infix of the second. -- -- === __Example__ -- -- >>> :kind! Eval (IsInfixOf '[2,3,4] '[0,1,2,3,4,5,6]) -- Eval (IsInfixOf '[2,3,4] '[0,1,2,3,4,5,6]) :: Bool -- = 'True -- -- >>> :kind! Eval (IsInfixOf '[2,4,4] '[0,1,2,3,4,5,6]) -- Eval (IsInfixOf '[2,4,4] '[0,1,2,3,4,5,6]) :: Bool -- = 'False data IsInfixOf :: [a] -> [a] -> Exp Bool type instance Eval (IsInfixOf xs ys) = Eval (Any (IsPrefixOf xs) =<< Tails ys) -- | Tails -- -- === __Example__ -- -- >>> :kind! Eval (Tails '[0,1,2,3]) -- Eval (Tails '[0,1,2,3]) :: [[Nat]] -- = '[ '[0, 1, 2, 3], '[1, 2, 3], '[2, 3], '[3]] data Tails :: [a] -> Exp [[a]] type instance Eval (Tails '[]) = '[] type instance Eval (Tails (a ': as)) = (a ': as) ': Eval (Tails as) -------------------------------------------------------------------------------- -- | Give true if all of the booleans in the list are true. -- -- === __Example__ -- -- >>> :kind! Eval (And '[ 'True, 'True]) -- Eval (And '[ 'True, 'True]) :: Bool -- = 'True -- -- >>> :kind! Eval (And '[ 'True, 'True, 'False]) -- Eval (And '[ 'True, 'True, 'False]) :: Bool -- = 'False data And :: [Bool] -> Exp Bool type instance Eval (And lst) = Eval (Foldr (&&) 'True lst) -- | Type-level All. -- -- === __Example__ -- -- >>> :kind! Eval (All (Flip (<) 6) '[0,1,2,3,4,5]) -- Eval (All (Flip (<) 6) '[0,1,2,3,4,5]) :: Bool -- = 'True -- -- >>> :kind! Eval (All (Flip (<) 5) '[0,1,2,3,4,5]) -- Eval (All (Flip (<) 5) '[0,1,2,3,4,5]) :: Bool -- = 'False data All :: (a -> Exp Bool) -> [a] -> Exp Bool type instance Eval (All p lst) = Eval (And =<< Map p lst) -- | Give true if any of the booleans in the list is true. -- -- === __Example__ -- -- >>> :kind! Eval (Or '[ 'True, 'True]) -- Eval (Or '[ 'True, 'True]) :: Bool -- = 'True -- -- >>> :kind! Eval (Or '[ 'False, 'False]) -- Eval (Or '[ 'False, 'False]) :: Bool -- = 'False data Or :: [Bool] -> Exp Bool type instance Eval (Or lst) = Eval (Foldr (||) 'False lst) -- | Type-level Any. -- -- === __Example__ -- -- >>> :kind! Eval (Any (Flip (<) 5) '[0,1,2,3,4,5]) -- Eval (Any (Flip (<) 5) '[0,1,2,3,4,5]) :: Bool -- = 'True -- -- >>> :kind! Eval (Any (Flip (<) 0) '[0,1,2,3,4,5]) -- Eval (Any (Flip (<) 0) '[0,1,2,3,4,5]) :: Bool -- = 'False data Any :: (a -> Exp Bool) -> [a] -> Exp Bool type instance Eval (Any p lst) = Eval (Or =<< Map p lst) -------------------------------------------------------------------------------- -- | Snoc for type-level lists. -- -- === __Example__ -- -- >>> :kind! Eval (Snoc '[1,2,3] 4) -- Eval (Snoc '[1,2,3] 4) :: [Nat] -- = '[1, 2, 3, 4] data Snoc :: [a] -> a -> Exp [a] type instance Eval (Snoc lst a) = Eval (lst ++ '[a]) -- | ToList for type-level lists. -- -- === __Example__ -- -- >>> :kind! Eval (ToList 1) -- Eval (ToList 1) :: [Nat] -- = '[1] data ToList :: a -> Exp [a] type instance Eval (ToList a) = '[a] -- | Equal tests for list equality. We may change the name to (==). -- -- === __Example__ -- -- >>> :kind! Eval (Equal '[1,2,3] '[1,2,3]) -- Eval (Equal '[1,2,3] '[1,2,3]) :: Bool -- = 'True -- -- >>> :kind! Eval (Equal '[1,2,3] '[1,3,2]) -- Eval (Equal '[1,2,3] '[1,3,2]) :: Bool -- = 'False data Equal :: [a] -> [a] -> Exp Bool type instance Eval (Equal as bs) = Eval (And =<< ZipWith TyEq as bs)