{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE Safe #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Fin.Enum (
Enum (..),
gfrom, GFrom,
gto, GTo,
GEnumSize,
) where
import Prelude hiding (Enum (..))
import Data.Bifunctor (bimap)
import Data.Fin (Fin (..))
import Data.Nat (Nat (..))
import Data.Proxy (Proxy (..))
import GHC.Generics (M1 (..), U1 (..), V1, (:+:) (..))
import qualified Data.Fin as F
import qualified Data.Type.Nat as N
import qualified Data.Void as V
import qualified GHC.Generics as G
class Enum a where
type EnumSize a :: Nat
type EnumSize a = GEnumSize a
from :: a -> Fin (EnumSize a)
default from :: (G.Generic a, GFrom a, EnumSize a ~ GEnumSize a) => a -> Fin (EnumSize a)
from = a -> Fin (EnumSize a)
forall a. (Generic a, GFrom a) => a -> Fin (GEnumSize a)
gfrom
to :: Fin (EnumSize a) -> a
default to :: (G.Generic a, GTo a, EnumSize a ~ GEnumSize a) => Fin (EnumSize a) -> a
to = Fin (EnumSize a) -> a
forall a. (Generic a, GTo a) => Fin (GEnumSize a) -> a
gto
instance Enum V.Void where
type EnumSize V.Void = N.Nat0
from :: Void -> Fin (EnumSize Void)
from = Void -> Fin (EnumSize Void)
forall a. Void -> a
V.absurd
to :: Fin (EnumSize Void) -> Void
to = Fin (EnumSize Void) -> Void
forall b. Fin Nat0 -> b
F.absurd
instance Enum ()
instance Enum Bool
instance Enum Ordering
instance (Enum a, Enum b, N.SNatI (EnumSize a)) => Enum (Either a b) where
type EnumSize (Either a b) = N.Plus (EnumSize a) (EnumSize b)
to :: Fin (EnumSize (Either a b)) -> Either a b
to = (Fin (EnumSize a) -> a)
-> (Fin (EnumSize b) -> b)
-> Either (Fin (EnumSize a)) (Fin (EnumSize b))
-> Either a b
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Fin (EnumSize a) -> a
forall a. Enum a => Fin (EnumSize a) -> a
to Fin (EnumSize b) -> b
forall a. Enum a => Fin (EnumSize a) -> a
to (Either (Fin (EnumSize a)) (Fin (EnumSize b)) -> Either a b)
-> (Fin (Plus (EnumSize a) (EnumSize b))
-> Either (Fin (EnumSize a)) (Fin (EnumSize b)))
-> Fin (Plus (EnumSize a) (EnumSize b))
-> Either a b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Fin (Plus (EnumSize a) (EnumSize b))
-> Either (Fin (EnumSize a)) (Fin (EnumSize b))
forall (n :: Nat) (m :: Nat).
SNatI n =>
Fin (Plus n m) -> Either (Fin n) (Fin m)
F.split
from :: Either a b -> Fin (EnumSize (Either a b))
from = Either (Fin (EnumSize a)) (Fin (EnumSize b))
-> Fin (Plus (EnumSize a) (EnumSize b))
forall (n :: Nat) (m :: Nat).
SNatI n =>
Either (Fin n) (Fin m) -> Fin (Plus n m)
F.append (Either (Fin (EnumSize a)) (Fin (EnumSize b))
-> Fin (Plus (EnumSize a) (EnumSize b)))
-> (Either a b -> Either (Fin (EnumSize a)) (Fin (EnumSize b)))
-> Either a b
-> Fin (Plus (EnumSize a) (EnumSize b))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> Fin (EnumSize a))
-> (b -> Fin (EnumSize b))
-> Either a b
-> Either (Fin (EnumSize a)) (Fin (EnumSize b))
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap a -> Fin (EnumSize a)
forall a. Enum a => a -> Fin (EnumSize a)
from b -> Fin (EnumSize b)
forall a. Enum a => a -> Fin (EnumSize a)
from
type GEnumSize a = EnumSizeRep (G.Rep a) N.Nat0
type family EnumSizeRep (a :: * -> *) (n :: Nat) :: Nat where
EnumSizeRep (a :+: b ) n = EnumSizeRep a (EnumSizeRep b n)
EnumSizeRep V1 n = n
EnumSizeRep (M1 _d _c a) n = EnumSizeRep a n
EnumSizeRep U1 n = 'S n
gfrom :: (G.Generic a, GFrom a) => a -> Fin (GEnumSize a)
gfrom :: a -> Fin (GEnumSize a)
gfrom = \a
x -> Rep a (Any @*) -> Proxy @Nat Nat0 -> Fin (GEnumSize a)
forall (a :: * -> *) x (n :: Nat).
GFromRep a =>
a x -> Proxy @Nat n -> Fin (EnumSizeRep a n)
gfromRep (a -> Rep a (Any @*)
forall a x. Generic a => a -> Rep a x
G.from a
x) (Proxy @Nat Nat0
forall k (t :: k). Proxy @k t
Proxy :: Proxy N.Nat0)
type GFrom a = GFromRep (G.Rep a)
class GFromRep (a :: * -> *) where
gfromRep :: a x -> Proxy n -> Fin (EnumSizeRep a n)
gfromSkip :: Proxy a -> Fin n -> Fin (EnumSizeRep a n)
instance (GFromRep a, GFromRep b) => GFromRep (a :+: b) where
gfromRep :: (:+:) @* a b x
-> Proxy @Nat n -> Fin (EnumSizeRep ((:+:) @* a b) n)
gfromRep (L1 a x
a) Proxy @Nat n
n = a x
-> Proxy @Nat (EnumSizeRep b n)
-> Fin (EnumSizeRep a (EnumSizeRep b n))
forall (a :: * -> *) x (n :: Nat).
GFromRep a =>
a x -> Proxy @Nat n -> Fin (EnumSizeRep a n)
gfromRep a x
a (Proxy @Nat n -> Proxy @Nat (EnumSizeRep b n)
forall (n :: Nat). Proxy @Nat n -> Proxy @Nat (EnumSizeRep b n)
prSkip Proxy @Nat n
n) where
prSkip :: Proxy n -> Proxy (EnumSizeRep b n)
prSkip :: Proxy @Nat n -> Proxy @Nat (EnumSizeRep b n)
prSkip Proxy @Nat n
_ = Proxy @Nat (EnumSizeRep b n)
forall k (t :: k). Proxy @k t
Proxy
gfromRep (R1 b x
b) Proxy @Nat n
n = Proxy @(* -> *) a
-> Fin (EnumSizeRep b n) -> Fin (EnumSizeRep a (EnumSizeRep b n))
forall (a :: * -> *) (n :: Nat).
GFromRep a =>
Proxy @(* -> *) a -> Fin n -> Fin (EnumSizeRep a n)
gfromSkip (Proxy @(* -> *) a
forall k (t :: k). Proxy @k t
Proxy :: Proxy a) (b x -> Proxy @Nat n -> Fin (EnumSizeRep b n)
forall (a :: * -> *) x (n :: Nat).
GFromRep a =>
a x -> Proxy @Nat n -> Fin (EnumSizeRep a n)
gfromRep b x
b Proxy @Nat n
n)
gfromSkip :: Proxy @(* -> *) ((:+:) @* a b)
-> Fin n -> Fin (EnumSizeRep ((:+:) @* a b) n)
gfromSkip Proxy @(* -> *) ((:+:) @* a b)
_ Fin n
n = Proxy @(* -> *) a
-> Fin (EnumSizeRep b n) -> Fin (EnumSizeRep a (EnumSizeRep b n))
forall (a :: * -> *) (n :: Nat).
GFromRep a =>
Proxy @(* -> *) a -> Fin n -> Fin (EnumSizeRep a n)
gfromSkip (Proxy @(* -> *) a
forall k (t :: k). Proxy @k t
Proxy :: Proxy a) (Proxy @(* -> *) b -> Fin n -> Fin (EnumSizeRep b n)
forall (a :: * -> *) (n :: Nat).
GFromRep a =>
Proxy @(* -> *) a -> Fin n -> Fin (EnumSizeRep a n)
gfromSkip (Proxy @(* -> *) b
forall k (t :: k). Proxy @k t
Proxy :: Proxy b) Fin n
n)
instance GFromRep a => GFromRep (M1 d c a) where
gfromRep :: M1 @* d c a x -> Proxy @Nat n -> Fin (EnumSizeRep (M1 @* d c a) n)
gfromRep (M1 a x
a) Proxy @Nat n
n = a x -> Proxy @Nat n -> Fin (EnumSizeRep a n)
forall (a :: * -> *) x (n :: Nat).
GFromRep a =>
a x -> Proxy @Nat n -> Fin (EnumSizeRep a n)
gfromRep a x
a Proxy @Nat n
n
gfromSkip :: Proxy @(* -> *) (M1 @* d c a)
-> Fin n -> Fin (EnumSizeRep (M1 @* d c a) n)
gfromSkip Proxy @(* -> *) (M1 @* d c a)
_ Fin n
n = Proxy @(* -> *) a -> Fin n -> Fin (EnumSizeRep a n)
forall (a :: * -> *) (n :: Nat).
GFromRep a =>
Proxy @(* -> *) a -> Fin n -> Fin (EnumSizeRep a n)
gfromSkip (Proxy @(* -> *) a
forall k (t :: k). Proxy @k t
Proxy :: Proxy a) Fin n
n
instance GFromRep V1 where
gfromRep :: V1 @* x -> Proxy @Nat n -> Fin (EnumSizeRep (V1 @*) n)
gfromRep V1 @* x
v Proxy @Nat n
_ = case V1 @* x
v of {}
gfromSkip :: Proxy @(* -> *) (V1 @*) -> Fin n -> Fin (EnumSizeRep (V1 @*) n)
gfromSkip Proxy @(* -> *) (V1 @*)
_ Fin n
n = Fin n
Fin (EnumSizeRep (V1 @*) n)
n
instance GFromRep U1 where
gfromRep :: U1 @* x -> Proxy @Nat n -> Fin (EnumSizeRep (U1 @*) n)
gfromRep U1 @* x
U1 Proxy @Nat n
_ = Fin (EnumSizeRep (U1 @*) n)
forall (n :: Nat). Fin ('S n)
FZ
gfromSkip :: Proxy @(* -> *) (U1 @*) -> Fin n -> Fin (EnumSizeRep (U1 @*) n)
gfromSkip Proxy @(* -> *) (U1 @*)
_ Fin n
n = Fin n -> Fin ('S n)
forall (n :: Nat). Fin n -> Fin ('S n)
FS Fin n
n
gto :: (G.Generic a, GTo a) => Fin (GEnumSize a) -> a
gto :: Fin (GEnumSize a) -> a
gto = \Fin (GEnumSize a)
x -> Rep a (Any @*) -> a
forall a x. Generic a => Rep a x -> a
G.to (Rep a (Any @*) -> a) -> Rep a (Any @*) -> a
forall a b. (a -> b) -> a -> b
$ Fin (GEnumSize a)
-> (Rep a (Any @*) -> Rep a (Any @*))
-> (Fin Nat0 -> Rep a (Any @*))
-> Rep a (Any @*)
forall (a :: * -> *) (n :: Nat) x r.
GToRep a =>
Fin (EnumSizeRep a n) -> (a x -> r) -> (Fin n -> r) -> r
gtoRep Fin (GEnumSize a)
x Rep a (Any @*) -> Rep a (Any @*)
forall a. a -> a
id Fin Nat0 -> Rep a (Any @*)
forall b. Fin Nat0 -> b
F.absurd
type GTo a = GToRep (G.Rep a)
class GToRep (a :: * -> *) where
gtoRep :: Fin (EnumSizeRep a n) -> (a x -> r) -> (Fin n -> r) -> r
instance (GToRep a, GToRep b) => GToRep (a :+: b) where
gtoRep :: Fin (EnumSizeRep ((:+:) @* a b) n)
-> ((:+:) @* a b x -> r) -> (Fin n -> r) -> r
gtoRep Fin (EnumSizeRep ((:+:) @* a b) n)
n (:+:) @* a b x -> r
s Fin n -> r
k = Fin (EnumSizeRep a (EnumSizeRep b n))
-> (a x -> r) -> (Fin (EnumSizeRep b n) -> r) -> r
forall (a :: * -> *) (n :: Nat) x r.
GToRep a =>
Fin (EnumSizeRep a n) -> (a x -> r) -> (Fin n -> r) -> r
gtoRep Fin (EnumSizeRep a (EnumSizeRep b n))
Fin (EnumSizeRep ((:+:) @* a b) n)
n ((:+:) @* a b x -> r
s ((:+:) @* a b x -> r) -> (a x -> (:+:) @* a b x) -> a x -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a x -> (:+:) @* a b x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> (:+:) @k f g p
L1) ((Fin (EnumSizeRep b n) -> r) -> r)
-> (Fin (EnumSizeRep b n) -> r) -> r
forall a b. (a -> b) -> a -> b
$ \Fin (EnumSizeRep b n)
r -> Fin (EnumSizeRep b n) -> (b x -> r) -> (Fin n -> r) -> r
forall (a :: * -> *) (n :: Nat) x r.
GToRep a =>
Fin (EnumSizeRep a n) -> (a x -> r) -> (Fin n -> r) -> r
gtoRep Fin (EnumSizeRep b n)
r ((:+:) @* a b x -> r
s ((:+:) @* a b x -> r) -> (b x -> (:+:) @* a b x) -> b x -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b x -> (:+:) @* a b x
forall k (f :: k -> *) (g :: k -> *) (p :: k).
g p -> (:+:) @k f g p
R1) Fin n -> r
k
instance GToRep a => GToRep (M1 d c a) where
gtoRep :: Fin (EnumSizeRep (M1 @* d c a) n)
-> (M1 @* d c a x -> r) -> (Fin n -> r) -> r
gtoRep Fin (EnumSizeRep (M1 @* d c a) n)
n M1 @* d c a x -> r
s = Fin (EnumSizeRep a n) -> (a x -> r) -> (Fin n -> r) -> r
forall (a :: * -> *) (n :: Nat) x r.
GToRep a =>
Fin (EnumSizeRep a n) -> (a x -> r) -> (Fin n -> r) -> r
gtoRep Fin (EnumSizeRep a n)
Fin (EnumSizeRep (M1 @* d c a) n)
n (M1 @* d c a x -> r
s (M1 @* d c a x -> r) -> (a x -> M1 @* d c a x) -> a x -> r
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a x -> M1 @* d c a x
forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 @k i c f p
M1)
instance GToRep V1 where
gtoRep :: Fin (EnumSizeRep (V1 @*) n) -> (V1 @* x -> r) -> (Fin n -> r) -> r
gtoRep Fin (EnumSizeRep (V1 @*) n)
n V1 @* x -> r
_ Fin n -> r
k = Fin n -> r
k Fin n
Fin (EnumSizeRep (V1 @*) n)
n
instance GToRep U1 where
gtoRep :: Fin (EnumSizeRep (U1 @*) n) -> (U1 @* x -> r) -> (Fin n -> r) -> r
gtoRep Fin (EnumSizeRep (U1 @*) n)
FZ U1 @* x -> r
s Fin n -> r
_ = U1 @* x -> r
s U1 @* x
forall k (p :: k). U1 @k p
U1
gtoRep (FS Fin n
n) U1 @* x -> r
_ Fin n -> r
k = Fin n -> r
k Fin n
Fin n
n