Flat Bool Source # | One bit is plenty for a Bool. >>> test False
(True,1,"0")
>>> test True
(True,1,"1")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Char Source # | Char's are mapped to Word32 and then encoded. For ascii characters, the encoding is standard ascii. >>> test 'a'
(True,8,"01100001")
For unicode characters, the encoding is non standard. >>> test 'È'
(True,16,"11001000 00000001")
>>> test '不'
(True,24,"10001101 10011100 00000001")
>>> test "\x1F600"
(True,26,"11000000 01110110 00000011 10")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Double Source # | Doubles are encoded as standard IEEE binary64 values: IEEE_754_binary64 ≡ IEEE_754_binary64 {sign :: Sign,
exponent :: MostSignificantFirst Bits11,
fraction :: MostSignificantFirst Bits52}
|
Instance detailsDefined in Flat.Instances.Base |
Flat Float Source # | Floats are encoded as standard IEEE binary32 values: IEEE_754_binary32 ≡ IEEE_754_binary32 {sign :: Sign,
exponent :: MostSignificantFirst Bits8,
fraction :: MostSignificantFirst Bits23}
>>> test (0::Float)
(True,32,"00000000 00000000 00000000 00000000")
>>> test (1.4012984643E-45::Float)
(True,32,"00000000 00000000 00000000 00000001")
>>> test (1.1754942107E-38::Float)
(True,32,"00000000 01111111 11111111 11111111")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Int Source # | Integer, Int, Int16, Int32 and Int64 are defined as the ZigZag encoded version of the equivalent unsigned Word: Int ≡ Int (ZigZag Word)
Int64 ≡ Int64 (ZigZag Word64)
Int32 ≡ Int32 (ZigZag Word32)
Int16 ≡ Int16 (ZigZag Word16)
Int8 ≡ Int8 (ZigZag Word8)
ZigZag a ≡ ZigZag a
ZigZag encoding alternates between positive and negative numbers, so that numbers whose absolute value is small can be encoded efficiently: >>> test (0::Int)
(True,8,"00000000")
>>> test (-1::Int)
(True,8,"00000001")
>>> test (1::Int)
(True,8,"00000010")
>>> test (-2::Int)
(True,8,"00000011")
>>> test (2::Int)
(True,8,"00000100")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Int8 Source # | >>> test (0::Int8)
(True,8,"00000000")
>>> test (127::Int8)
(True,8,"11111110")
>>> test (-128::Int8)
(True,8,"11111111")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Int16 Source # | >>> test (0::Int16)
(True,8,"00000000")
>>> test (1::Int16)
(True,8,"00000010")
>>> test (-1::Int16)
(True,8,"00000001")
>>> test (minBound::Int16)
(True,24,"11111111 11111111 00000011")
equivalent to 0b1111111111111111 >>> test (maxBound::Int16)
(True,24,"11111110 11111111 00000011")
equivalent to 0b1111111111111110 |
Instance detailsDefined in Flat.Instances.Base |
Flat Int32 Source # | >>> test (0::Int32)
(True,8,"00000000")
>>> test (minBound::Int32)
(True,40,"11111111 11111111 11111111 11111111 00001111")
>>> test (maxBound::Int32)
(True,40,"11111110 11111111 11111111 11111111 00001111")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Int64 Source # | >>> test (0::Int64)
(True,8,"00000000")
>>> test (minBound::Int64)
(True,80,"11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 00000001")
>>> test (maxBound::Int64)
(True,80,"11111110 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 00000001")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Integer Source # | Integers are encoded just as the fixed size Ints. >>> test (0::Integer)
(True,8,"00000000")
>>> test (-1::Integer)
(True,8,"00000001")
>>> test (1::Integer)
(True,8,"00000010")
>>> test (-(2^4)::Integer)
(True,8,"00011111")
>>> test (2^4::Integer)
(True,8,"00100000")
>>> test (-(2^120)::Integer)
(True,144,"11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 11111111 00000011")
>>> test (2^120::Integer)
(True,144,"10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 00000100")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Natural Source # | Naturals are encoded just as the fixed size Words. >>> test (0::Natural)
(True,8,"00000000")
>>> test (2^120::Natural)
(True,144,"10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 10000000 00000010")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Word Source # | Natural, Word, Word16, Word32 and Word64 are encoded as a non empty list of 7 bits chunks (least significant chunk first and most significant bit first in every chunk). Words are always encoded in a whole number of bytes, as every chunk is 8 bits long (1 bit for the List constructor, plus 7 bits for the value). The actual definition is: Word64 ≡ Word64 Word
Word32 ≡ Word32 Word
Word16 ≡ Word16 Word
Word ≡ Word (LeastSignificantFirst (NonEmptyList (MostSignificantFirst Word7)))
LeastSignificantFirst a ≡ LeastSignificantFirst a
NonEmptyList a ≡ Elem a
| Cons a (NonEmptyList a)
MostSignificantFirst a ≡ MostSignificantFirst a
Word7 ≡ V0
| V1
| V2
...
| V127
Values between as 0 and 127 fit in a single byte. 127 (0b1111111) is represented as Elem V127 and encoded as: Elem=0 127=1111111 >>> test (127::Word)
(True,8,"01111111")
254 (0b11111110) is represented as Cons V126 (Elem V1) (254=128+126) and encoded as: Cons=1 V126=1111110 (Elem=0 V1=0000001): >>> test (254::Word)
(True,16,"11111110 00000001")
Another example, 32768 (Ob1000000000000000 = 0000010 0000000 0000000): >>> test (32768::Word32)
(True,24,"10000000 10000000 00000010")
As this is a variable length encoding, values are encoded in the same way, whatever their type: >>> all (test (3::Word) ==) [test (3::Word16),test (3::Word32),test (3::Word64)]
True
|
Instance detailsDefined in Flat.Instances.Base |
Flat Word8 Source # | Word8 always take 8 bits. >>> test (0::Word8)
(True,8,"00000000")
>>> test (255::Word8)
(True,8,"11111111")
|
Instance detailsDefined in Flat.Instances.Base |
Flat Word16 Source # | |
Instance detailsDefined in Flat.Instances.Base |
Flat Word32 Source # | |
Instance detailsDefined in Flat.Instances.Base |
Flat Word64 Source # | |
Instance detailsDefined in Flat.Instances.Base |
Flat () Source # | `()`, as all data types with a single constructor, has a zero-length encoding. >>> test ()
(True,0,"")
|
Instance detailsDefined in Flat.Instances.Base |
Flat All Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat Any Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat ShortByteString Source # | >>> tst ((False,True,False,SBS.pack [11,22,33]))
(True,51,[65,3,11,22,33,0])
|
Instance detailsDefined in Flat.Instances.ByteString |
Flat ByteString Source # | >>> tst ((False,True,False,L.pack [11,22,33]))
(True,51,[65,3,11,22,33,0])
|
Instance detailsDefined in Flat.Instances.ByteString |
Flat ByteString Source # | ByteString, ByteString.Lazy and ByteString.Short are all encoded as Prealigned Arrays: PreAligned a ≡ PreAligned {preFiller :: Filler, preValue :: a}
Filler ≡ FillerBit Filler
| FillerEnd
Array v = A0
| A1 v (Array v)
| A2 v v (Array v)
...
| A255 ... (Array v)
That's to say as a byte-aligned sequence of blocks of up to 255 elements, with every block preceded by the count of the elements in the block and a final 0-length block. >>> tst (B.pack [11,22,33])
(True,48,[1,3,11,22,33,0])
where: 1= PreAlignment (takes a byte if we are already on a byte boundary) 3= Number of bytes in ByteString 11,22,33= Bytes 0= End of Array >>> tst (B.pack [])
(True,16,[1,0])
Pre-alignment ensures that a ByteString always starts at a byte boundary: >>> tst ((False,True,False,B.pack [11,22,33]))
(True,51,[65,3,11,22,33,0])
All ByteStrings are encoded in the same way: >>> all (tst (B.pack [55]) ==) [tst (L.pack [55]),tst (SBS.pack [55])]
True
|
Instance detailsDefined in Flat.Instances.ByteString |
Flat Text Source # | |
Instance detailsDefined in Flat.Instances.Text |
Flat Text Source # | Text (and Data.Text.Lazy) is encoded as a byte aligned array of bytes corresponding to its UTF8 encoding. >>> tst $ T.pack ""
(True,16,[1,0])
>>> tst $ T.pack "aaa"
(True,120,[1,3,97,97,97,0])
>>> tst $ T.pack "¢¢¢"
(True,120,[1,6,194,162,194,162,194,162,0])
>>> tst $ T.pack "日日日"
(True,120,[1,9,230,151,165,230,151,165,230,151,165,0])
>>> tst $ T.pack "𐍈𐍈𐍈"
(True,120,[1,12,240,144,141,136,240,144,141,136,240,144,141,136,0])
Strict and Lazy Text has the same encoding: >>> tst (T.pack "abc") == tst (TL.pack "abc")
True
|
Instance detailsDefined in Flat.Instances.Text |
Flat UTF16Text Source # | |
Instance detailsDefined in Flat.Instances.Text |
Flat UTF8Text Source # | |
Instance detailsDefined in Flat.Instances.Text |
Flat Filler Source # | Use a special encoding for the filler |
Instance detailsDefined in Flat.Filler |
Flat [Char] Source # | For better encoding/decoding performance, it is useful to declare instances of concrete list types, such as [Char]. >>> test ""
(True,1,"0")
>>> test "aaa"
(True,28,"10110000 11011000 01101100 0010")
|
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat [a] Source # | >>> test ([]::[Bool])
(True,1,"0")
>>> test [False,False]
(True,5,"10100")
|
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Maybe a) Source # | >>> test (Nothing::Maybe Bool)
(True,1,"0")
>>> test (Just False::Maybe Bool)
(True,2,"10")
|
Instance detailsDefined in Flat.Instances.Base |
(Integral a, Flat a) => Flat (Ratio a) Source # | Ratios are encoded as tuples of (numerator,denominator) >>> test (3%4::Ratio Word8)
(True,16,"00000011 00000100")
|
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Complex a) Source # | >>> test (4 :+ 2 :: Complex Word8)
(True,16,"00000100 00000010")
|
Instance detailsDefined in Flat.Instances.Base |
Flat (Fixed a) Source # | >>> test (MkFixed 123 :: Fixed E0)
(True,16,"11110110 00000001")
>>> test (MkFixed 123 :: Fixed E0) == test (MkFixed 123 :: Fixed E2)
True
|
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Min a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Max a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (First a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Last a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Option a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Identity a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Dual a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Sum a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (Product a) Source # | Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (NonEmpty a) Source # | >>> test (B.fromList [True])
(True,2,"10")
>>> test (B.fromList [False,False])
(True,4,"0100")
|
Instance detailsDefined in Flat.Instances.Base |
Flat a => Flat (IntMap a) Source # | Maps are defined as a list of (Key,Value) tuples: Map = List (Key,Value)
List a = Nil | Cons a (List a)
>>> tst (Data.IntMap.empty :: IntMap ())
(True,1,[0])
>>> asList Data.IntMap.fromList [(1,"a"),(2,"b")]
True
|
Instance detailsDefined in Flat.Instances.Containers |
Flat a => Flat (Tree a) Source # | >>> tst (Node (1::Word8) [Node 2 [Node 3 []], Node 4 []])
(True,39,[1,129,64,200,32])
|
Instance detailsDefined in Flat.Instances.Containers |
Flat a => Flat (Seq a) Source # | Data.Sequence.Seq is encoded as a list. >>> asList Data.Sequence.fromList [3::Word8,4,7]
True
In flat <0.4, it was encoded as an Array. If you want to restore the previous behaviour, use AsArray: >>> tst $ AsArray (Data.Sequence.fromList [11::Word8,22,33])
(True,40,[3,11,22,33,0])
>>> tst $ Data.Sequence.fromList [11::Word8,22,33]
(True,28,[133,197,164,32])
|
Instance detailsDefined in Flat.Instances.Containers |
(Flat a, Ord a) => Flat (Set a) Source # | Data.Set is encoded as a list >>> asList Data.Set.fromList [3::Word8,4,7]
True
|
Instance detailsDefined in Flat.Instances.Containers |
Flat a => Flat (DList a) Source # | >>> test (Data.DList.fromList [7::Word,7])
(True,19,"10000011 11000001 110")
>>> let l = [7::Word,7] in flat (Data.DList.fromList l) == flat l
True
|
Instance detailsDefined in Flat.Instances.DList |
(Hashable a, Eq a, Flat a) => Flat (HashSet a) Source # | >>> test (Data.HashSet.fromList [1..3::Word])
(True,28,"10000000 11000000 10100000 0110")
|
Instance detailsDefined in Flat.Instances.Unordered |
(Unbox a, Flat a) => Flat (Vector a) Source # | |
Instance detailsDefined in Flat.Instances.Vector |
(Storable a, Flat a) => Flat (Vector a) Source # | |
Instance detailsDefined in Flat.Instances.Vector |
Flat a => Flat (Vector a) Source # | Vectors are encoded as arrays. >>> tst (V.fromList [11::Word8,22,33])
(True,40,[3,11,22,33,0])
All Vectors are encoded in the same way: >>> let l = [11::Word8,22,33] in all (tst (V.fromList l) ==) [tst (U.fromList l),tst (S.fromList l)]
True
|
Instance detailsDefined in Flat.Instances.Vector |
(IsMap map, Flat (ContainerKey map), Flat (MapValue map)) => Flat (AsMap map) Source # | |
Instance detailsDefined in Flat.Instances.Mono |
(IsSet set, Flat (Element set)) => Flat (AsSet set) Source # | |
Instance detailsDefined in Flat.Instances.Mono |
(IsSequence l, Flat (Element l)) => Flat (AsList l) Source # | |
Instance detailsDefined in Flat.Instances.Mono |
(IsSequence r, Flat (Element r)) => Flat (AsArray r) Source # | |
Instance detailsDefined in Flat.Instances.Mono |
Flat a => Flat (PreAligned a) Source # | |
Instance detailsDefined in Flat.Filler |
Flat a => Flat (PostAligned a) Source # | |
Instance detailsDefined in Flat.Filler |
(Flat a, Flat b) => Flat (Either a b) Source # | >>> test (Left False::Either Bool ())
(True,2,"00")
>>> test (Right ()::Either Bool ())
(True,1,"1")
|
Instance detailsDefined in Flat.Instances.Base |
(Flat a, Flat b) => Flat (a, b) Source # | Tuples are supported up to 7 elements. >>> test (False,())
(True,1,"0")
>>> test ((),())
(True,0,"")
"7 elements tuples ought to be enough for anybody" (Bill Gates - apocryphal) >>> test (False,True,True,True,False,True,True)
(True,7,"0111011")
tst (1::Int,"2","3","4","5","6","7","8")
...error |
Instance detailsDefined in Flat.Instances.Base |
(Flat i, Flat e, Ix i, IArray UArray e) => Flat (UArray i e) Source # | |
Instance detailsDefined in Flat.Instances.Array |
(Flat i, Flat e, Ix i) => Flat (Array i e) Source # | Array is encoded as (lowBound,highBound,AsArray (elems array)): >>> let arr = A.array ((1::Word,4::Word),(2,5)) [((1,4),11::Word),((1,5),22),((2,4),33),((2,5),44)] in tst (bounds arr,AsArray(elems arr)) == tst arr
True
As it's easy to see: >>> tst $ A.array ((1::Word,4::Word),(2,5)) [((1,4),11::Word),((1,5),22),((2,4),33),((2,5),44)]
(True,80,[1,4,2,5,4,11,22,33,44,0])
>>> tst $ A.array ((1,4),(2,5)) [((1,4),"1.4"),((1,5),"1.5"),((2,4),"2.4"),((2,5),"2.5")]
(True,160,[2,8,4,10,4,152,203,166,137,140,186,106,153,75,166,137,148,186,106,0])
Arrays and Unboxed Arrays are encoded in the same way: >>> let bounds = ((1::Word,4::Word),(2,5));elems=[11::Word,22,33,44] in tst (U.listArray bounds elems :: U.UArray (Word,Word) Word) == tst (A.listArray bounds elems)
True
|
Instance detailsDefined in Flat.Instances.Array |
(Flat a, Flat b, Ord a) => Flat (Map a b) Source # | Maps are encoded as lists: >>> tst (Data.Map.empty :: Map () ())
(True,1,[0])
>>> asList Data.Map.fromList [("a","aa"),("b","bb")]
True
Key/Values are encoded in order: >>> let l = [("a","aa"),("b","bb")] in tst (Data.Map.fromList l) == tst (Data.Map.fromList $ Prelude.reverse l)
True
IntMap and Map are encoded in the same way: >>> let l = [(2::Int,"b"),(1,"a")] in tst (Data.IntMap.fromList l) == tst (Data.Map.fromList l)
True
|
Instance detailsDefined in Flat.Instances.Containers |
(Hashable k, Eq k, Flat k, Flat v) => Flat (HashMap k v) Source # | >>> test (Data.HashMap.Strict.fromList [(1,11),(2,22)])
(True,35,"10000001 00001011 01000001 00001011 000")
>>> test (Data.HashMap.Lazy.fromList [(1,11),(2,22)])
(True,35,"10000001 00001011 01000001 00001011 000")
|
Instance detailsDefined in Flat.Instances.Unordered |
(Flat a, Flat b, Flat c) => Flat (a, b, c) Source # | |
Instance detailsDefined in Flat.Instances.Base |
Flat (f a) => Flat (Alt f a) Source # | >>> let w = Just (11::Word8); a = Alt w <> Alt (Just 24) in tst a == tst w
True
>>> let w = Just (11::Word8); a = Alt Nothing <> Alt w in tst a == tst w
True
Since: 0.4.4 |
Instance detailsDefined in Flat.Instances.Base |
(Flat a, Flat b, Flat c, Flat d) => Flat (a, b, c, d) Source # | |
Instance detailsDefined in Flat.Instances.Base |
(Flat a, Flat b, Flat c, Flat d, Flat e) => Flat (a, b, c, d, e) Source # | |
Instance detailsDefined in Flat.Instances.Base Methods encode :: (a, b, c, d, e) -> Encoding Source # decode :: Get (a, b, c, d, e) Source # size :: (a, b, c, d, e) -> NumBits -> NumBits Source # |
(Flat a, Flat b, Flat c, Flat d, Flat e, Flat f) => Flat (a, b, c, d, e, f) Source # | |
Instance detailsDefined in Flat.Instances.Base Methods encode :: (a, b, c, d, e, f) -> Encoding Source # decode :: Get (a, b, c, d, e, f) Source # size :: (a, b, c, d, e, f) -> NumBits -> NumBits Source # |
(Flat a, Flat b, Flat c, Flat d, Flat e, Flat f, Flat g) => Flat (a, b, c, d, e, f, g) Source # | |
Instance detailsDefined in Flat.Instances.Base Methods encode :: (a, b, c, d, e, f, g) -> Encoding Source # decode :: Get (a, b, c, d, e, f, g) Source # size :: (a, b, c, d, e, f, g) -> NumBits -> NumBits Source # |