module Control.Foldl.NonEmpty where
import Control.Applicative (liftA2)
import Control.Foldl (Fold(..))
import Data.List.NonEmpty (NonEmpty(..))
import Data.Profunctor (Profunctor(..))
import Prelude hiding (head, last, minimum, maximum)
import qualified Control.Foldl as Foldl
data Fold1 a b = Fold1 (a -> Fold a b)
instance Functor (Fold1 a) where
fmap :: forall a b. (a -> b) -> Fold1 a a -> Fold1 a b
fmap a -> b
f (Fold1 a -> Fold a a
k) = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) a -> Fold a a
k)
{-# INLINE fmap #-}
instance Profunctor Fold1 where
lmap :: forall a b c. (a -> b) -> Fold1 b c -> Fold1 a c
lmap a -> b
f (Fold1 b -> Fold b c
k) = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 a -> Fold a c
k'
where
k' :: a -> Fold a c
k' a
a = forall (p :: * -> * -> *) a b c.
Profunctor p =>
(a -> b) -> p b c -> p a c
lmap a -> b
f (b -> Fold b c
k (a -> b
f a
a))
{-# INLINE lmap #-}
rmap :: forall b c a. (b -> c) -> Fold1 a b -> Fold1 a c
rmap = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap
{-# INLINE rmap #-}
instance Applicative (Fold1 a) where
pure :: forall a. a -> Fold1 a a
pure a
b = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (forall (f :: * -> *) a. Applicative f => a -> f a
pure (forall (f :: * -> *) a. Applicative f => a -> f a
pure a
b))
{-# INLINE pure #-}
Fold1 a -> Fold a (a -> b)
l <*> :: forall a b. Fold1 a (a -> b) -> Fold1 a a -> Fold1 a b
<*> Fold1 a -> Fold a a
r = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
(<*>) a -> Fold a (a -> b)
l a -> Fold a a
r)
{-# INLINE (<*>) #-}
instance Semigroup b => Semigroup (Fold1 a b) where
<> :: Fold1 a b -> Fold1 a b -> Fold1 a b
(<>) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Semigroup a => a -> a -> a
(<>)
{-# INLINE (<>) #-}
instance Monoid b => Monoid (Fold1 a b) where
mempty :: Fold1 a b
mempty = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Monoid a => a
mempty
{-# INLINE mempty #-}
mappend :: Fold1 a b -> Fold1 a b -> Fold1 a b
mappend = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Monoid a => a -> a -> a
mappend
{-# INLINE mappend #-}
instance Num b => Num (Fold1 a b) where
fromInteger :: Integer -> Fold1 a b
fromInteger = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Num a => Integer -> a
fromInteger
{-# INLINE fromInteger #-}
negate :: Fold1 a b -> Fold1 a b
negate = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
negate
{-# INLINE negate #-}
abs :: Fold1 a b -> Fold1 a b
abs = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
abs
{-# INLINE abs #-}
signum :: Fold1 a b -> Fold1 a b
signum = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Num a => a -> a
signum
{-# INLINE signum #-}
+ :: Fold1 a b -> Fold1 a b -> Fold1 a b
(+) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Num a => a -> a -> a
(+)
{-# INLINE (+) #-}
* :: Fold1 a b -> Fold1 a b -> Fold1 a b
(*) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Num a => a -> a -> a
(*)
{-# INLINE (*) #-}
(-) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (-)
{-# INLINE (-) #-}
instance Fractional b => Fractional (Fold1 a b) where
fromRational :: Rational -> Fold1 a b
fromRational = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Fractional a => Rational -> a
fromRational
{-# INLINE fromRational #-}
recip :: Fold1 a b -> Fold1 a b
recip = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Fractional a => a -> a
recip
{-# INLINE recip #-}
/ :: Fold1 a b -> Fold1 a b -> Fold1 a b
(/) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Fractional a => a -> a -> a
(/)
{-# INLINE (/) #-}
instance Floating b => Floating (Fold1 a b) where
pi :: Fold1 a b
pi = forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a. Floating a => a
pi
{-# INLINE pi #-}
exp :: Fold1 a b -> Fold1 a b
exp = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
exp
{-# INLINE exp #-}
sqrt :: Fold1 a b -> Fold1 a b
sqrt = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
sqrt
{-# INLINE sqrt #-}
log :: Fold1 a b -> Fold1 a b
log = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
log
{-# INLINE log #-}
sin :: Fold1 a b -> Fold1 a b
sin = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
sin
{-# INLINE sin #-}
tan :: Fold1 a b -> Fold1 a b
tan = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
tan
{-# INLINE tan #-}
cos :: Fold1 a b -> Fold1 a b
cos = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
cos
{-# INLINE cos #-}
asin :: Fold1 a b -> Fold1 a b
asin = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
asin
{-# INLINE asin #-}
atan :: Fold1 a b -> Fold1 a b
atan = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
atan
{-# INLINE atan #-}
acos :: Fold1 a b -> Fold1 a b
acos = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
acos
{-# INLINE acos #-}
sinh :: Fold1 a b -> Fold1 a b
sinh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
sinh
{-# INLINE sinh #-}
tanh :: Fold1 a b -> Fold1 a b
tanh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
tanh
{-# INLINE tanh #-}
cosh :: Fold1 a b -> Fold1 a b
cosh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
cosh
{-# INLINE cosh #-}
asinh :: Fold1 a b -> Fold1 a b
asinh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
asinh
{-# INLINE asinh #-}
atanh :: Fold1 a b -> Fold1 a b
atanh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
atanh
{-# INLINE atanh #-}
acosh :: Fold1 a b -> Fold1 a b
acosh = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. Floating a => a -> a
acosh
{-# INLINE acosh #-}
** :: Fold1 a b -> Fold1 a b -> Fold1 a b
(**) = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Floating a => a -> a -> a
(**)
{-# INLINE (**) #-}
logBase :: Fold1 a b -> Fold1 a b -> Fold1 a b
logBase = forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 forall a. Floating a => a -> a -> a
logBase
{-# INLINE logBase #-}
fold1 :: Fold1 a b -> NonEmpty a -> b
fold1 :: forall a b. Fold1 a b -> NonEmpty a -> b
fold1 (Fold1 a -> Fold a b
k) (a
a :| [a]
as) = forall (f :: * -> *) a b. Foldable f => Fold a b -> f a -> b
Foldl.fold (a -> Fold a b
k a
a) [a]
as
{-# INLINABLE fold1 #-}
fromFold :: Fold a b -> Fold1 a b
fromFold :: forall a b. Fold a b -> Fold1 a b
fromFold (Fold x -> a -> x
step x
begin x -> b
done) = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
a -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold x -> a -> x
step (x -> a -> x
step x
begin a
a) x -> b
done)
{-# INLINABLE fromFold #-}
sconcat :: Semigroup a => Fold1 a a
sconcat :: forall a. Semigroup a => Fold1 a a
sconcat = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold forall a. Semigroup a => a -> a -> a
(<>) a
begin forall a. a -> a
id)
{-# INLINABLE sconcat #-}
head :: Fold1 a a
head :: forall a. Fold1 a a
head = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold forall {p} {p}. p -> p -> p
step a
begin forall a. a -> a
id)
where
step :: p -> p -> p
step p
a p
_ = p
a
{-# INLINABLE head #-}
last :: Fold1 a a
last :: forall a. Fold1 a a
last = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold forall {p} {p}. p -> p -> p
step a
begin forall a. a -> a
id)
where
step :: p -> p -> p
step p
_ p
a = p
a
{-# INLINABLE last #-}
maximum :: Ord a => Fold1 a a
maximum :: forall a. Ord a => Fold1 a a
maximum = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold forall a. Ord a => a -> a -> a
max a
begin forall a. a -> a
id)
{-# INLINABLE maximum #-}
maximumBy :: (a -> a -> Ordering) -> Fold1 a a
maximumBy :: forall a. (a -> a -> Ordering) -> Fold1 a a
maximumBy a -> a -> Ordering
cmp = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
max' a
begin forall a. a -> a
id)
where
max' :: a -> a -> a
max' a
x a
y = case a -> a -> Ordering
cmp a
x a
y of
Ordering
GT -> a
x
Ordering
_ -> a
y
{-# INLINABLE maximumBy #-}
minimum :: Ord a => Fold1 a a
minimum :: forall a. Ord a => Fold1 a a
minimum = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold forall a. Ord a => a -> a -> a
min a
begin forall a. a -> a
id)
{-# INLINABLE minimum #-}
minimumBy :: (a -> a -> Ordering) -> Fold1 a a
minimumBy :: forall a. (a -> a -> Ordering) -> Fold1 a a
minimumBy a -> a -> Ordering
cmp = forall a b. (a -> Fold a b) -> Fold1 a b
Fold1 (\a
begin -> forall a b x. (x -> a -> x) -> x -> (x -> b) -> Fold a b
Fold a -> a -> a
min' a
begin forall a. a -> a
id)
where
min' :: a -> a -> a
min' a
x a
y = case a -> a -> Ordering
cmp a
x a
y of
Ordering
GT -> a
y
Ordering
_ -> a
x
{-# INLINABLE minimumBy #-}