----------------------------------------------------------------------------- -- | -- Module : ForSyDe.Shallow.Utility.Matrix -- Copyright : (c) ForSyDe Group, KTH 2019 -- License : BSD-style (see the file LICENSE) -- -- Maintainer : forsyde-dev@kth.se -- Stability : experimental -- Portability : portable -- -- This module defines the data type 'Matrix' and corresponding -- functions. It is a shallow interpretation of 2D arrays and is used -- for quick prototyping of array algorithms and skeletons, although -- itself is a type synonym for a `Vector` of `Vector`s. Therefore -- this module is simply a collection of utility functions on 2D -- vectors used mainly for convenience. For a type-checked fixed-size -- data type for representing matrices, see the -- <http://hackage.haskell.org/package/matrix matrix> or -- <http://hackage.haskell.org/package/repa REPA> packages. -- -- __OBS:__ The lengths in the API documentation for function arguments -- are not type-safe, but rather suggestions for usage in designing -- matrix algorithms or skeletons. ----------------------------------------------------------------------------- module ForSyDe.Shallow.Utility.Matrix ( Matrix, prettyMat, -- * Queries nullMat, sizeMat, wellFormedMat, -- * Generators matrix, fromMatrix, unitMat, indexMat, -- * Functional skeletons mapMat, zipWithMat, zipWith3Mat, reduceMat, dotVecMat, dotMatMat, -- * Selectors atMat, takeMat, dropMat, cropMat, groupMat, stencilMat, -- * Permutators zipMat, unzipMat, rotateMat, reverseMat, transposeMat, replaceMat ) where import ForSyDe.Shallow.Core.Vector import Data.List (intercalate) -- | 'Matrix' is simply a type synonym for vector of vectors. This -- means that /any/ function on 'Vector' works also on 'Matrix'. type Matrix a = Vector (Vector a) -- | Prints out to the terminal a matrix in a readable format, where -- all elements are right-aligned and separated by a custom separator. -- -- >>> let m = matrix 3 3 [1,2,3,3,100,4,12,32,67] -- >>> prettyMat "|" m -- 1| 2| 3 -- 3|100| 4 -- 12| 32|67 prettyMat :: Show a => String -- ^ separator string -> Matrix a -- ^ input matrix -> IO () prettyMat sep mat = mapM_ putStrLn $ fromVector $ printMat maxWdt strMat where maxWdt = reduceV (zipWithV max) $ mapMat length strMat strMat = mapMat show mat printMat w = mapV (\row -> printRow w row) printRow w = intercalate sep . fromVector . zipWithV align w align n str = replicate (n - length str) ' ' ++ str -- | Checks if a matrix is null. @<>@ and @<<>>@ are both null -- matrices. nullMat :: Matrix a -> Bool nullMat NullV = True nullMat (NullV:>NullV) = True nullMat _ = False -- | Returns the X and Y dimensions of matrix and checks if it is well formed. sizeMat :: Matrix a -> (Int,Int) sizeMat m = (x,y) where y = lengthV m x = (lengthV . headV) (wellFormedMat m) -- | Checks if a matrix is well-formed, meaning that all its rows are -- of equal length. Returns the same matrix in case it is well-formed -- or throws an exception if it is ill-formed. wellFormedMat :: Matrix a -> Matrix a wellFormedMat NullV = error "matrix is null" wellFormedMat m@(_:>NullV) = m wellFormedMat m@(x:>xs) | reduceV (&&) (mapV (\r -> lengthV r == lengthV x) xs) = m | otherwise = error "matrix ill-formed: rows are of unequal lengths" groupEvery :: Int -> [a] -> [[a]] groupEvery _ [] = [] groupEvery n l | n < 0 = error $ "cannot group list by negative n: " ++ show n | length l < n = error "input list cannot be split into all-equal parts" | otherwise = take n l : groupEvery n (drop n l) -- | Converts a list into a 'Matrix'. See example from 'prettyMat'. matrix :: Int -- ^ number of columns (X dimension) @= x@ -> Int -- ^ number of rows (Y dimension) @= y@ -> [a] -- ^ list of values; /length/ = @x * y@ -> Matrix a -- ^ 'Matrix' of values; /size/ = @(x,y)@ matrix x y = vector . map vector . groupEvery x . check where check l | length l == x * y = l | otherwise = error $ "cannot form matrix (" ++ show x ++ "," ++ show y ++ ") from a list with " ++ show (length l) ++ " elements" -- | Converts a matrix back to a list. fromMatrix :: Matrix a -- ^ /size/ = @(x,y)@ -> [a] -- ^ /length/ = @x * y@ fromMatrix = concatMap fromVector . fromVector -- | Creates a unit (i.e. singleton) matrix, which is a matrix with -- only one element. unitMat :: a -> Matrix a -- ^ /size/ = @(1,1)@ unitMat a = (a:>NullV):>NullV -- | Returns an /infinite matrix/ with (X,Y) index pairs. You need to -- zip it against another (finite) matrix or to extract a finite -- subset in order to be useful (see example below). -- -- >>> prettyMat " " $ takeMat 3 4 indexMat -- (0,0) (1,0) (2,0) -- (0,1) (1,1) (2,1) -- (0,2) (1,2) (2,2) -- (0,3) (1,3) (2,3) indexMat :: Matrix (Int, Int) indexMat = zipWithMat (,) colix rowix where colix = vector $ repeat $ vector [0..] rowix = transposeMat colix -- | Maps a function on every value of a matrix. -- -- __OBS:__ this function does not check if the output matrix is well-formed. mapMat :: (a -> b) -> Matrix a -- ^ /size/ = @(xa,ya)@ -> Matrix b -- ^ /size/ = @(xa,ya)@ mapMat = mapV . mapV -- | Applies a binary function pair-wise on each element in two matrices. -- -- __OBS:__ this function does not check if the output matrix is well-formed. zipWithMat :: (a -> b -> c) -> Matrix a -- ^ /size/ = @(xa,ya)@ -> Matrix b -- ^ /size/ = @(xb,yb)@ -> Matrix c -- ^ /size/ = @(minimum [xa,xb], minimum [ya,yb])@ zipWithMat f = zipWithV (zipWithV f) -- | Applies a function 3-tuple-wise on each element in three matrices. -- -- __OBS:__ this function does not check if the output matrix is well-formed. zipWith3Mat :: (a -> b -> c -> d) -> Matrix a -- ^ /size/ = @(xa,ya)@ -> Matrix b -- ^ /size/ = @(xb,yb)@ -> Matrix c -- ^ /size/ = @(xc,yc)@ -> Matrix d -- ^ /size/ = @(minimum [xa,xb,xc], minimum [ya,yb,yc])@ zipWith3Mat f = zipWith3V (\a b c -> zipWith3V f a b c) -- | Reduces all the elements of a matrix to one element based on a -- binary function. -- -- >>> let m = matrix 3 3 [1,2,3,11,12,13,21,22,23] -- >>> reduceMat (+) m -- 108 reduceMat :: (a -> a -> a) -> Matrix a -> a reduceMat f = reduceV f . mapV (reduceV f) -- | Pattern implementing the template for a dot operation between a -- vector and a matrix. -- -- >>> let mA = matrix 4 4 [1,-1,1,1, 1,-1,-1,-1, 1,1,-1,1, 1,1,1,-1] -- >>> let y = vector[1,0,0,0] -- >>> dotVecMat (+) (*) mA y -- <1,1,1,1> dotVecMat :: (a -> a -> a) -- ^ kernel function for a row/column reduction, e.g. @(+)@ for dot product -> (b -> a -> a) -- ^ binary operation for pair-wise elements, e.g. @(*)@ for dot product -> Matrix b -- ^ /size/ = @(xa,ya)@ -> Vector a -- ^ /length/ = @xa@ -> Vector a -- ^ /length/ = @xa@ dotVecMat f g mA y = mapV (\x -> reduceV f $ zipWithV g x y) mA -- | Pattern implementing the template for a dot operation between two -- matrices. -- -- >>> let mA = matrix 4 4 [1,-1,1,1, 1,-1,-1,-1, 1,1,-1,1, 1,1,1,-1] -- >>> prettyMat " " $ dotMatMat (+) (*) mA mA -- 2 -2 2 2 -- 2 -2 -2 -2 -- 2 2 2 -2 -- 2 2 -2 2 dotMatMat :: (a -> a -> a) -- ^ kernel function for a row/column reduction, e.g. @(+)@ for dot product -> (b -> a -> a) -- ^ binary operation for pair-wise elements, e.g. @(*)@ for dot product -> Matrix b -- ^ /size/ = @(xa,ya)@ -> Matrix a -- ^ /size/ = @(ya,xa)@ -> Matrix a -- ^ /size/ = @(xa,xa)@ dotMatMat f g m = mapV (dotVecMat f g m) . transposeMat -- | Returns the element of a matrix at a certain position. -- -- >>> let m = matrix 3 3 [1,2,3,11,12,13,21,22,23] -- >>> atMat 2 1 m -- 13 atMat :: Int -- ^ X index starting from zero -> Int -- ^ Y index starting from zero -> Matrix a -> a atMat x y mat = (mat `atV` y) `atV` x -- | Returns the upper-left part of a matrix until a specific -- position. -- -- >>> let m = matrix 4 4 [1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34] -- >>> prettyMat " " $ takeMat 2 2 m -- 1 2 -- 11 12 takeMat :: Int -- ^ X index starting from zero -> Int -- ^ Y index starting from zero -> Matrix a -> Matrix a takeMat x y = mapV (takeV x) . takeV y -- | Returns the upper-left part of a matrix until a specific -- position. -- -- >>> let m = matrix 4 4 [1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34] -- >>> prettyMat " " $ dropMat 2 2 m -- 23 24 -- 33 34 dropMat :: Int -- ^ X index starting from zero -> Int -- ^ Y index starting from zero -> Matrix a -> Matrix a dropMat x y = mapV (dropV x) . dropV y -- | Crops a section of a matrix. -- -- >>> let m = matrix 4 4 [1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34] -- >>> prettyMat " " m -- 1 2 3 4 -- 11 12 13 14 -- 21 22 23 24 -- 31 32 33 34 -- >>> prettyMat " " $ cropMat 2 3 1 1 m -- 12 13 -- 22 23 -- 32 33 cropMat :: Int -- ^ crop width = @w@ -> Int -- ^ crop height = @h@ -> Int -- ^ X start position = @x0@ -> Int -- ^ Y start position = @y0@ -> Matrix a -- ^ /size/ = @(xa,ya)@ -> Matrix a -- ^ /size/ = @(minimum [w,xa-x0], minimum [h,xa-x0])@ cropMat w h pX pY = takeMat w h . dropMat pX pY -- cropMat w h pX pY = mapV (crop w pX) . crop h pY -- where crop size pos = dropV pos . takeV (pos + size) -- | Groups a matrix into smaller equallly-shaped matrices. -- -- >>> let m = matrix 4 4 [1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34] -- >>> prettyMat " " $ groupMat 2 2 m -- <<1,2>,<11,12>> <<3,4>,<13,14>> -- <<21,22>,<31,32>> <<23,24>,<33,34>> groupMat :: Int -- ^ width of groups = @w@ -> Int -- ^ height of groups = @h@ -> Matrix a -- ^ /size/ = @(xa,ya)@ -> Matrix (Matrix a) -- ^ /size/ = @(xa `div` w,ya `div` h)@ groupMat w h = mapV transposeMat . groupV h . mapV (groupV w) -- | Returns a stencil of neighboring elements for each possible -- element in a vector. -- -- >>> let m = matrix 4 4 [1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34] -- >>> prettyMat " " $ stencilMat 2 2 m -- <<1,2>,<11,12>> <<2,3>,<12,13>> <<3,4>,<13,14>> -- <<11,12>,<21,22>> <<12,13>,<22,23>> <<13,14>,<23,24>> -- <<21,22>,<31,32>> <<22,23>,<32,33>> <<23,24>,<33,34>> stencilMat :: Int -> Int -> Matrix a -> Matrix (Matrix a) stencilMat r c = arrange . groupCols . groupRows where groupRows = mapV (takeV r) . dropFromEnd r . tailsV groupCols = mapMat (mapV (takeV c) . dropFromEnd c . tailsV) arrange = mapV transposeMat dropFromEnd n v = takeV (lengthV v - n) v -- | Reverses the order of elements in a matrix reverseMat :: Matrix a -> Matrix a reverseMat = reverseV . mapV reverseV -- | Pattern which "rotates" a matrix. The rotation is controled with -- the /x/ and /y/ index arguments as following: -- -- * @(> 0)@ : rotates the matrix right/down with the corresponding -- number of positions. -- -- * @(= 0)@ : does not modify the position for that axis. -- -- * @(< 0)@ : rotates the matrix left/up with the corresponding -- number of positions. -- -- >>> let m = matrix 4 4 [1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34] -- >>> prettyMat " " $ rotateMat (-1) 1 m -- 32 33 34 31 -- 2 3 4 1 -- 12 13 14 11 -- 22 23 24 21 rotateMat :: Int -- ^ index on X axis -> Int -- ^ index on Y axis -> Vector (Vector a) -> Vector (Vector a) rotateMat x y = rotateV y . mapV (rotateV x) -- | Transposes a matrx. transposeMat :: Matrix a -- ^ /size/ = @(x,y)@ -> Matrix a -- ^ /size/ = @(y,x)@ transposeMat NullV = NullV transposeMat (NullV:>xss) = transposeMat xss transposeMat rows = (mapV headV rows) :> transposeMat (mapV tailV rows) -- | Replaces a part of matrix with another (smaller) part, starting -- from an arbitrary position. -- -- >>> let m = matrix 4 4 [1,2,3,4,11,12,13,14,21,22,23,24,31,32,33,34] -- >>> let m1 = matrix 2 2 [101,202,303,404] -- >>> prettyMat " " $ replaceMat 1 1 m1 m -- 1 2 3 4 -- 11 101 202 14 -- 21 303 404 24 -- 31 32 33 34 replaceMat :: Int -> Int -> Matrix a -> Matrix a -> Matrix a replaceMat x y mask = replace y h (zipWithV (\m o -> replace x w (\_ -> m) o) mask) where (w,h) = sizeMat mask replace start size replaceF vec = let begin = takeV start vec middle = replaceF $ dropV start $ takeV (start + size) vec end = dropV (start + size) vec in begin <+> middle <+> end zipMat :: Matrix a -- ^ /size/ = @(xa,ya)@ -> Matrix b -- ^ /size/ = @(xb,yb)@ -> Matrix (a,b) -- ^ /size/ = @(minimum [xa,xb], minimum [ya,yb])@ zipMat = zipWithMat (,) unzipMat :: Matrix (a,b) -- ^ /size/ = @(x,y)@ -> (Matrix a, Matrix b) -- ^ /size/ = @(x,y)@ and @(x,y)@ unzipMat = unzipV . mapV unzipV