License | BSD-style |
---|---|
Maintainer | Haskell Foundation |
Safe Haskell | None |
Language | Haskell2010 |
A block of memory that contains elements of a type, very similar to an unboxed array but with the key difference:
- It doesn't have slicing capability (no cheap take or drop)
- It consume less memory: 1 Offset, 1 CountOf, 1 Pinning status trimmed
- It's unpackable in any constructor
- It uses unpinned memory by default
- data Block ty = Block ByteArray#
- data MutableBlock ty st = MutableBlock (MutableByteArray# st)
- length :: forall ty. PrimType ty => Block ty -> CountOf ty
- unsafeThaw :: (PrimType ty, PrimMonad prim) => Block ty -> prim (MutableBlock ty (PrimState prim))
- unsafeFreeze :: PrimMonad prim => MutableBlock ty (PrimState prim) -> prim (Block ty)
- unsafeIndex :: forall ty. PrimType ty => Block ty -> Offset ty -> ty
- thaw :: (PrimMonad prim, PrimType ty) => Block ty -> prim (MutableBlock ty (PrimState prim))
- freeze :: (PrimType ty, PrimMonad prim) => MutableBlock ty (PrimState prim) -> prim (Block ty)
- copy :: PrimType ty => Block ty -> Block ty
- create :: forall ty. PrimType ty => CountOf ty -> (Offset ty -> ty) -> Block ty
- singleton :: PrimType ty => ty -> Block ty
- replicate :: PrimType ty => CountOf ty -> ty -> Block ty
- index :: PrimType ty => Block ty -> Offset ty -> ty
- map :: (PrimType a, PrimType b) => (a -> b) -> Block a -> Block b
- foldl :: PrimType ty => (a -> ty -> a) -> a -> Block ty -> a
- foldl' :: PrimType ty => (a -> ty -> a) -> a -> Block ty -> a
- foldr :: PrimType ty => (ty -> a -> a) -> a -> Block ty -> a
- cons :: PrimType ty => ty -> Block ty -> Block ty
- snoc :: PrimType ty => Block ty -> ty -> Block ty
- uncons :: PrimType ty => Block ty -> Maybe (ty, Block ty)
- unsnoc :: PrimType ty => Block ty -> Maybe (Block ty, ty)
- sub :: PrimType ty => Block ty -> Offset ty -> Offset ty -> Block ty
- splitAt :: PrimType ty => CountOf ty -> Block ty -> (Block ty, Block ty)
- revSplitAt :: PrimType ty => CountOf ty -> Block ty -> (Block ty, Block ty)
- splitOn :: PrimType ty => (ty -> Bool) -> Block ty -> [Block ty]
- break :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty)
- span :: PrimType ty => (ty -> Bool) -> Block ty -> (Block ty, Block ty)
- elem :: PrimType ty => ty -> Block ty -> Bool
- all :: PrimType ty => (ty -> Bool) -> Block ty -> Bool
- any :: PrimType ty => (ty -> Bool) -> Block ty -> Bool
- find :: PrimType ty => (ty -> Bool) -> Block ty -> Maybe ty
- filter :: PrimType ty => (ty -> Bool) -> Block ty -> Block ty
- reverse :: forall ty. PrimType ty => Block ty -> Block ty
- sortBy :: forall ty. PrimType ty => (ty -> ty -> Ordering) -> Block ty -> Block ty
- intersperse :: forall ty. PrimType ty => ty -> Block ty -> Block ty
- unsafeCopyToPtr :: forall ty prim. PrimMonad prim => Block ty -> Ptr ty -> prim ()
Documentation
A block of memory containing unpacked bytes representing values of type ty
PrimType ty => IsList (Block ty) Source # | |
(PrimType ty, Eq ty) => Eq (Block ty) Source # | |
Data ty => Data (Block ty) Source # | |
(PrimType ty, Ord ty) => Ord (Block ty) Source # | |
(PrimType ty, Show ty) => Show (Block ty) Source # | |
PrimType ty => Monoid (Block ty) Source # | |
NormalForm (Block ty) Source # | |
PrimType ty => Copy (Block ty) Source # | |
PrimType ty => Collection (Block ty) Source # | |
PrimType ty => Foldable (Block ty) Source # | |
PrimType ty => IndexedCollection (Block ty) Source # | |
PrimType ty => Sequential (Block ty) Source # | |
type Item (Block ty) Source # | |
type Element (Block ty) Source # | |
data MutableBlock ty st Source #
A Mutable block of memory containing unpacked bytes representing values of type ty
PrimType ty => MutableCollection (MutableBlock ty) Source # | |
type MutableFreezed (MutableBlock ty) Source # | |
type MutableKey (MutableBlock ty) Source # | |
type MutableValue (MutableBlock ty) Source # | |
Properties
Lowlevel functions
unsafeThaw :: (PrimType ty, PrimMonad prim) => Block ty -> prim (MutableBlock ty (PrimState prim)) Source #
Thaw an immutable block.
If the immutable block is modified, then the original immutable block will be modified too, but lead to unexpected results when querying
unsafeFreeze :: PrimMonad prim => MutableBlock ty (PrimState prim) -> prim (Block ty) Source #
Freeze a mutable block into a block.
If the mutable block is still use after freeze, then the modification will be reflected in an unexpected way in the Block.
unsafeIndex :: forall ty. PrimType ty => Block ty -> Offset ty -> ty Source #
Return the element at a specific index from an array without bounds checking.
Reading from invalid memory can return unpredictable and invalid values.
use index
if unsure.
thaw :: (PrimMonad prim, PrimType ty) => Block ty -> prim (MutableBlock ty (PrimState prim)) Source #
Thaw a Block into a MutableBlock
the Block is not modified, instead a new Mutable Block is created and its content is copied to the mutable block
freeze :: (PrimType ty, PrimMonad prim) => MutableBlock ty (PrimState prim) -> prim (Block ty) Source #
copy :: PrimType ty => Block ty -> Block ty Source #
Copy every cells of an existing Block to a new Block
safer api
:: PrimType ty | |
=> CountOf ty | the size of the block (in element of ty) |
-> (Offset ty -> ty) | the function that set the value at the index |
-> Block ty | the array created |
Create a new array of size n by settings each cells through the
function
f.
index :: PrimType ty => Block ty -> Offset ty -> ty Source #
Return the element at a specific index from an array.
If the index @n is out of bounds, an error is raised.
map :: (PrimType a, PrimType b) => (a -> b) -> Block a -> Block b Source #
Map all element a
from a block to a new block of b