free-5.1.10: Monads for free
Safe HaskellSafe
LanguageHaskell2010

Control.Monad.Trans.Free.Ap

Description

Given an applicative, the free monad transformer.

Synopsis

The base functor

data FreeF f a b Source #

The base functor for a free monad.

Constructors

Pure a 
Free (f b) 

Instances

Instances details
Generic1 (FreeF f a :: Type -> Type) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Associated Types

type Rep1 (FreeF f a) :: k -> Type #

Methods

from1 :: forall (a0 :: k). FreeF f a a0 -> Rep1 (FreeF f a) a0 #

to1 :: forall (a0 :: k). Rep1 (FreeF f a) a0 -> FreeF f a a0 #

Foldable f => Bifoldable (FreeF f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

bifold :: Monoid m => FreeF f m m -> m #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> FreeF f a b -> m #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> FreeF f a b -> c #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> FreeF f a b -> c #

Functor f => Bifunctor (FreeF f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

bimap :: (a -> b) -> (c -> d) -> FreeF f a c -> FreeF f b d #

first :: (a -> b) -> FreeF f a c -> FreeF f b c #

second :: (b -> c) -> FreeF f a b -> FreeF f a c #

Traversable f => Bitraversable (FreeF f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

bitraverse :: Applicative f0 => (a -> f0 c) -> (b -> f0 d) -> FreeF f a b -> f0 (FreeF f c d) #

Eq1 f => Eq2 (FreeF f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> FreeF f a c -> FreeF f b d -> Bool #

Ord1 f => Ord2 (FreeF f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> FreeF f a c -> FreeF f b d -> Ordering #

Read1 f => Read2 (FreeF f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (FreeF f a b) #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [FreeF f a b] #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (FreeF f a b) #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [FreeF f a b] #

Show1 f => Show2 (FreeF f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> FreeF f a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [FreeF f a b] -> ShowS #

Foldable f => Foldable (FreeF f a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fold :: Monoid m => FreeF f a m -> m #

foldMap :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m #

foldMap' :: Monoid m => (a0 -> m) -> FreeF f a a0 -> m #

foldr :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b #

foldr' :: (a0 -> b -> b) -> b -> FreeF f a a0 -> b #

foldl :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b #

foldl' :: (b -> a0 -> b) -> b -> FreeF f a a0 -> b #

foldr1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 #

foldl1 :: (a0 -> a0 -> a0) -> FreeF f a a0 -> a0 #

toList :: FreeF f a a0 -> [a0] #

null :: FreeF f a a0 -> Bool #

length :: FreeF f a a0 -> Int #

elem :: Eq a0 => a0 -> FreeF f a a0 -> Bool #

maximum :: Ord a0 => FreeF f a a0 -> a0 #

minimum :: Ord a0 => FreeF f a a0 -> a0 #

sum :: Num a0 => FreeF f a a0 -> a0 #

product :: Num a0 => FreeF f a a0 -> a0 #

(Eq1 f, Eq a) => Eq1 (FreeF f a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftEq :: (a0 -> b -> Bool) -> FreeF f a a0 -> FreeF f a b -> Bool #

(Ord1 f, Ord a) => Ord1 (FreeF f a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftCompare :: (a0 -> b -> Ordering) -> FreeF f a a0 -> FreeF f a b -> Ordering #

(Read1 f, Read a) => Read1 (FreeF f a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (FreeF f a a0) #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [FreeF f a a0] #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (FreeF f a a0) #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [FreeF f a a0] #

(Show1 f, Show a) => Show1 (FreeF f a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> FreeF f a a0 -> ShowS #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [FreeF f a a0] -> ShowS #

Traversable f => Traversable (FreeF f a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

traverse :: Applicative f0 => (a0 -> f0 b) -> FreeF f a a0 -> f0 (FreeF f a b) #

sequenceA :: Applicative f0 => FreeF f a (f0 a0) -> f0 (FreeF f a a0) #

mapM :: Monad m => (a0 -> m b) -> FreeF f a a0 -> m (FreeF f a b) #

sequence :: Monad m => FreeF f a (m a0) -> m (FreeF f a a0) #

Functor f => Functor (FreeF f a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fmap :: (a0 -> b) -> FreeF f a a0 -> FreeF f a b #

(<$) :: a0 -> FreeF f a b -> FreeF f a a0 #

Generic (FreeF f a b) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Associated Types

type Rep (FreeF f a b) :: Type -> Type #

Methods

from :: FreeF f a b -> Rep (FreeF f a b) x #

to :: Rep (FreeF f a b) x -> FreeF f a b #

(Read a, Read (f b)) => Read (FreeF f a b) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

readsPrec :: Int -> ReadS (FreeF f a b) #

readList :: ReadS [FreeF f a b] #

readPrec :: ReadPrec (FreeF f a b) #

readListPrec :: ReadPrec [FreeF f a b] #

(Show a, Show (f b)) => Show (FreeF f a b) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

showsPrec :: Int -> FreeF f a b -> ShowS #

show :: FreeF f a b -> String #

showList :: [FreeF f a b] -> ShowS #

(Eq a, Eq (f b)) => Eq (FreeF f a b) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

(==) :: FreeF f a b -> FreeF f a b -> Bool #

(/=) :: FreeF f a b -> FreeF f a b -> Bool #

(Ord a, Ord (f b)) => Ord (FreeF f a b) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

compare :: FreeF f a b -> FreeF f a b -> Ordering #

(<) :: FreeF f a b -> FreeF f a b -> Bool #

(<=) :: FreeF f a b -> FreeF f a b -> Bool #

(>) :: FreeF f a b -> FreeF f a b -> Bool #

(>=) :: FreeF f a b -> FreeF f a b -> Bool #

max :: FreeF f a b -> FreeF f a b -> FreeF f a b #

min :: FreeF f a b -> FreeF f a b -> FreeF f a b #

type Rep1 (FreeF f a :: Type -> Type) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

type Rep1 (FreeF f a :: Type -> Type) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free.Ap" "free-5.1.10-4qg3UmXiW795OTdc9sjAuF" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 f)))
type Rep (FreeF f a b) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

type Rep (FreeF f a b) = D1 ('MetaData "FreeF" "Control.Monad.Trans.Free.Ap" "free-5.1.10-4qg3UmXiW795OTdc9sjAuF" 'False) (C1 ('MetaCons "Pure" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)) :+: C1 ('MetaCons "Free" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (f b))))

The free monad transformer

newtype FreeT f m a Source #

The "free monad transformer" for an applicative f

Constructors

FreeT 

Fields

Instances

Instances details
(Applicative f, Applicative m, Monad m) => MonadFree f (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

wrap :: f (FreeT f m a) -> FreeT f m a Source #

(Applicative f, Applicative m, MonadError e m) => MonadError e (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

throwError :: e -> FreeT f m a #

catchError :: FreeT f m a -> (e -> FreeT f m a) -> FreeT f m a #

(Applicative f, Applicative m, MonadReader r m) => MonadReader r (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

ask :: FreeT f m r #

local :: (r -> r) -> FreeT f m a -> FreeT f m a #

reader :: (r -> a) -> FreeT f m a #

(Applicative f, Applicative m, MonadState s m) => MonadState s (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

get :: FreeT f m s #

put :: s -> FreeT f m () #

state :: (s -> (a, s)) -> FreeT f m a #

(Applicative f, Applicative m, MonadWriter w m) => MonadWriter w (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

writer :: (a, w) -> FreeT f m a #

tell :: w -> FreeT f m () #

listen :: FreeT f m a -> FreeT f m (a, w) #

pass :: FreeT f m (a, w -> w) -> FreeT f m a #

Applicative f => MonadTrans (FreeT f) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

lift :: Monad m => m a -> FreeT f m a #

(Applicative f, Applicative m, MonadFail m) => MonadFail (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fail :: String -> FreeT f m a #

(Applicative f, Applicative m, MonadIO m) => MonadIO (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftIO :: IO a -> FreeT f m a #

(Foldable m, Foldable f) => Foldable (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fold :: Monoid m0 => FreeT f m m0 -> m0 #

foldMap :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 #

foldMap' :: Monoid m0 => (a -> m0) -> FreeT f m a -> m0 #

foldr :: (a -> b -> b) -> b -> FreeT f m a -> b #

foldr' :: (a -> b -> b) -> b -> FreeT f m a -> b #

foldl :: (b -> a -> b) -> b -> FreeT f m a -> b #

foldl' :: (b -> a -> b) -> b -> FreeT f m a -> b #

foldr1 :: (a -> a -> a) -> FreeT f m a -> a #

foldl1 :: (a -> a -> a) -> FreeT f m a -> a #

toList :: FreeT f m a -> [a] #

null :: FreeT f m a -> Bool #

length :: FreeT f m a -> Int #

elem :: Eq a => a -> FreeT f m a -> Bool #

maximum :: Ord a => FreeT f m a -> a #

minimum :: Ord a => FreeT f m a -> a #

sum :: Num a => FreeT f m a -> a #

product :: Num a => FreeT f m a -> a #

(Eq1 f, Eq1 m) => Eq1 (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftEq :: (a -> b -> Bool) -> FreeT f m a -> FreeT f m b -> Bool #

(Ord1 f, Ord1 m) => Ord1 (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftCompare :: (a -> b -> Ordering) -> FreeT f m a -> FreeT f m b -> Ordering #

(Read1 f, Read1 m) => Read1 (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (FreeT f m a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [FreeT f m a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (FreeT f m a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [FreeT f m a] #

(Show1 f, Show1 m) => Show1 (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> FreeT f m a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [FreeT f m a] -> ShowS #

(Monad m, Traversable m, Traversable f) => Traversable (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

traverse :: Applicative f0 => (a -> f0 b) -> FreeT f m a -> f0 (FreeT f m b) #

sequenceA :: Applicative f0 => FreeT f m (f0 a) -> f0 (FreeT f m a) #

mapM :: Monad m0 => (a -> m0 b) -> FreeT f m a -> m0 (FreeT f m b) #

sequence :: Monad m0 => FreeT f m (m0 a) -> m0 (FreeT f m a) #

(Applicative f, Applicative m, MonadPlus m) => Alternative (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

empty :: FreeT f m a #

(<|>) :: FreeT f m a -> FreeT f m a -> FreeT f m a #

some :: FreeT f m a -> FreeT f m [a] #

many :: FreeT f m a -> FreeT f m [a] #

(Applicative f, Applicative m, Monad m) => Applicative (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

pure :: a -> FreeT f m a #

(<*>) :: FreeT f m (a -> b) -> FreeT f m a -> FreeT f m b #

liftA2 :: (a -> b -> c) -> FreeT f m a -> FreeT f m b -> FreeT f m c #

(*>) :: FreeT f m a -> FreeT f m b -> FreeT f m b #

(<*) :: FreeT f m a -> FreeT f m b -> FreeT f m a #

(Functor f, Monad m) => Functor (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

fmap :: (a -> b) -> FreeT f m a -> FreeT f m b #

(<$) :: a -> FreeT f m b -> FreeT f m a #

(Applicative f, Applicative m, Monad m) => Monad (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

(>>=) :: FreeT f m a -> (a -> FreeT f m b) -> FreeT f m b #

(>>) :: FreeT f m a -> FreeT f m b -> FreeT f m b #

return :: a -> FreeT f m a #

(Applicative f, Applicative m, MonadPlus m) => MonadPlus (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

mzero :: FreeT f m a #

mplus :: FreeT f m a -> FreeT f m a -> FreeT f m a #

(Applicative f, Applicative m, MonadCatch m) => MonadCatch (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

catch :: Exception e => FreeT f m a -> (e -> FreeT f m a) -> FreeT f m a #

(Applicative f, Applicative m, MonadThrow m) => MonadThrow (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

throwM :: Exception e => e -> FreeT f m a #

(Applicative f, Applicative m, MonadCont m) => MonadCont (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

callCC :: ((a -> FreeT f m b) -> FreeT f m a) -> FreeT f m a #

(Apply f, Apply m, Monad m) => Apply (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

(<.>) :: FreeT f m (a -> b) -> FreeT f m a -> FreeT f m b #

(.>) :: FreeT f m a -> FreeT f m b -> FreeT f m b #

(<.) :: FreeT f m a -> FreeT f m b -> FreeT f m a #

liftF2 :: (a -> b -> c) -> FreeT f m a -> FreeT f m b -> FreeT f m c #

(Apply f, Apply m, Monad m) => Bind (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

(>>-) :: FreeT f m a -> (a -> FreeT f m b) -> FreeT f m b #

join :: FreeT f m (FreeT f m a) -> FreeT f m a #

(Read1 f, Read1 m, Read a) => Read (FreeT f m a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

readsPrec :: Int -> ReadS (FreeT f m a) #

readList :: ReadS [FreeT f m a] #

readPrec :: ReadPrec (FreeT f m a) #

readListPrec :: ReadPrec [FreeT f m a] #

(Show1 f, Show1 m, Show a) => Show (FreeT f m a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

showsPrec :: Int -> FreeT f m a -> ShowS #

show :: FreeT f m a -> String #

showList :: [FreeT f m a] -> ShowS #

(Eq1 f, Eq1 m, Eq a) => Eq (FreeT f m a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

(==) :: FreeT f m a -> FreeT f m a -> Bool #

(/=) :: FreeT f m a -> FreeT f m a -> Bool #

(Ord1 f, Ord1 m, Ord a) => Ord (FreeT f m a) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

compare :: FreeT f m a -> FreeT f m a -> Ordering #

(<) :: FreeT f m a -> FreeT f m a -> Bool #

(<=) :: FreeT f m a -> FreeT f m a -> Bool #

(>) :: FreeT f m a -> FreeT f m a -> Bool #

(>=) :: FreeT f m a -> FreeT f m a -> Bool #

max :: FreeT f m a -> FreeT f m a -> FreeT f m a #

min :: FreeT f m a -> FreeT f m a -> FreeT f m a #

The free monad

type Free f = FreeT f Identity Source #

The "free monad" for an applicative f.

free :: FreeF f a (Free f a) -> Free f a Source #

Pushes a layer into a free monad value.

runFree :: Free f a -> FreeF f a (Free f a) Source #

Evaluates the first layer out of a free monad value.

Operations

liftF :: (Functor f, MonadFree f m) => f a -> m a Source #

A version of lift that can be used with just a Functor for f.

iterT :: (Applicative f, Monad m) => (f (m a) -> m a) -> FreeT f m a -> m a Source #

Given an applicative homomorphism from f (m a) to m a, tear down a free monad transformer using iteration.

iterTM :: (Applicative f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FreeT f m a -> t m a Source #

Given an applicative homomorphism from f (t m a) to t m a, tear down a free monad transformer using iteration over a transformer.

hoistFreeT :: (Functor m, Applicative f) => (forall a. m a -> n a) -> FreeT f m b -> FreeT f n b Source #

Lift a monad homomorphism from m to n into a monad homomorphism from FreeT f m to FreeT f n

hoistFreeT :: (Functor m, Applicative f) => (m ~> n) -> FreeT f m ~> FreeT f n

transFreeT :: (Monad m, Applicative g) => (forall a. f a -> g a) -> FreeT f m b -> FreeT g m b Source #

Lift an applicative homomorphism from f to g into a monad homomorphism from FreeT f m to FreeT g m

joinFreeT :: (Monad m, Traversable f, Applicative f) => FreeT f m a -> m (Free f a) Source #

Pull out and join m layers of FreeT f m a.

cutoff :: (Applicative f, Applicative m, Monad m) => Integer -> FreeT f m a -> FreeT f m (Maybe a) Source #

Cuts off a tree of computations at a given depth. If the depth is 0 or less, no computation nor monadic effects will take place.

Some examples (n ≥ 0):

cutoff 0     _        ≡ return Nothing
cutoff (n+1) . returnreturn . Just
cutoff (n+1) . liftlift . liftM Just
cutoff (n+1) . wrapwrap . fmap (cutoff n)

Calling retract . cutoff n is always terminating, provided each of the steps in the iteration is terminating.

partialIterT :: Monad m => Integer -> (forall a. f a -> m a) -> FreeT f m b -> FreeT f m b Source #

partialIterT n phi m interprets first n layers of m using phi. This is sort of the opposite for cutoff.

Some examples (n ≥ 0):

partialIterT 0 _ m              ≡ m
partialIterT (n+1) phi . returnreturn
partialIterT (n+1) phi . liftlift
partialIterT (n+1) phi . wrapjoin . lift . phi

intersperseT :: (Monad m, Applicative m, Applicative f) => f a -> FreeT f m b -> FreeT f m b Source #

intersperseT f m inserts a layer f between every two layers in m.

intersperseT f . returnreturn
intersperseT f . liftlift
intersperseT f . wrapwrap . fmap (iterTM (wrap . (<$ f) . wrap))

intercalateT :: (Monad m, MonadTrans t, Monad (t m)) => t m a -> FreeT (t m) m b -> t m b Source #

intercalateT f m inserts a layer f between every two layers in m and then retracts the result.

intercalateT f ≡ retractT . intersperseT f

retractT :: (MonadTrans t, Monad (t m), Monad m) => FreeT (t m) m a -> t m a Source #

Tear down a free monad transformer using Monad instance for t m.

Operations of free monad

retract :: Monad f => Free f a -> f a Source #

retract is the left inverse of liftF

retract . liftF = id

iter :: Applicative f => (f a -> a) -> Free f a -> a Source #

Given an applicative homomorphism from f to Identity, tear down a FreeF Monad using iteration.

iterM :: (Applicative f, Monad m) => (f (m a) -> m a) -> Free f a -> m a Source #

Like iter for monadic values.

Free Monads With Class

class Monad m => MonadFree f m | m -> f where Source #

Monads provide substitution (fmap) and renormalization (join):

m >>= f = join (fmap f m)

A free Monad is one that does no work during the normalization step beyond simply grafting the two monadic values together.

[] is not a free Monad (in this sense) because join [[a]] smashes the lists flat.

On the other hand, consider:

data Tree a = Bin (Tree a) (Tree a) | Tip a
instance Monad Tree where
  return = Tip
  Tip a >>= f = f a
  Bin l r >>= f = Bin (l >>= f) (r >>= f)

This Monad is the free Monad of Pair:

data Pair a = Pair a a

And we could make an instance of MonadFree for it directly:

instance MonadFree Pair Tree where
   wrap (Pair l r) = Bin l r

Or we could choose to program with Free Pair instead of Tree and thereby avoid having to define our own Monad instance.

Moreover, Control.Monad.Free.Church provides a MonadFree instance that can improve the asymptotic complexity of code that constructs free monads by effectively reassociating the use of (>>=). You may also want to take a look at the kan-extensions package (http://hackage.haskell.org/package/kan-extensions).

See Free for a more formal definition of the free Monad for a Functor.

Minimal complete definition

Nothing

Methods

wrap :: f (m a) -> m a Source #

Add a layer.

wrap (fmap f x) ≡ wrap (fmap return x) >>= f

default wrap :: (m ~ t n, MonadTrans t, MonadFree f n, Functor f) => f (m a) -> m a Source #

Instances

Instances details
Monad m => MonadFree Identity (IterT m) Source # 
Instance details

Defined in Control.Monad.Trans.Iter

Methods

wrap :: Identity (IterT m a) -> IterT m a Source #

Functor f => MonadFree f (Free f) Source # 
Instance details

Defined in Control.Monad.Free

Methods

wrap :: f (Free f a) -> Free f a Source #

Applicative f => MonadFree f (Free f) Source # 
Instance details

Defined in Control.Monad.Free.Ap

Methods

wrap :: f (Free f a) -> Free f a Source #

Functor f => MonadFree f (F f) Source # 
Instance details

Defined in Control.Monad.Free.Church

Methods

wrap :: f (F f a) -> F f a Source #

(Functor f, MonadFree f m) => MonadFree f (ListT m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (ListT m a) -> ListT m a Source #

(Functor f, MonadFree f m) => MonadFree f (MaybeT m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (MaybeT m a) -> MaybeT m a Source #

(Functor f, Monad m) => MonadFree f (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free

Methods

wrap :: f (FreeT f m a) -> FreeT f m a Source #

(Applicative f, Applicative m, Monad m) => MonadFree f (FreeT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Ap

Methods

wrap :: f (FreeT f m a) -> FreeT f m a Source #

MonadFree f (FT f m) Source # 
Instance details

Defined in Control.Monad.Trans.Free.Church

Methods

wrap :: f (FT f m a) -> FT f m a Source #

(Functor f, MonadFree f m, Error e) => MonadFree f (ErrorT e m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (ErrorT e m a) -> ErrorT e m a Source #

(Functor f, MonadFree f m) => MonadFree f (ExceptT e m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (ExceptT e m a) -> ExceptT e m a Source #

(Functor f, MonadFree f m) => MonadFree f (IdentityT m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (IdentityT m a) -> IdentityT m a Source #

(Functor f, MonadFree f m) => MonadFree f (ReaderT e m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (ReaderT e m a) -> ReaderT e m a Source #

(Functor f, MonadFree f m) => MonadFree f (StateT s m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (StateT s m a) -> StateT s m a Source #

(Functor f, MonadFree f m) => MonadFree f (StateT s m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (StateT s m a) -> StateT s m a Source #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (WriterT w m a) -> WriterT w m a Source #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (WriterT w m a) -> WriterT w m a Source #

(Functor f, MonadFree f m) => MonadFree f (ContT r m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (ContT r m a) -> ContT r m a Source #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (RWST r w s m a) -> RWST r w s m a Source #

(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) Source # 
Instance details

Defined in Control.Monad.Free.Class

Methods

wrap :: f (RWST r w s m a) -> RWST r w s m a Source #