{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE DeriveDataTypeable #-}
#include "free-common.h"
module Control.Monad.Trans.Iter
(
IterT(..)
, Iter, iter, runIter
, delay
, hoistIterT
, liftIter
, cutoff
, never
, untilJust
, interleave, interleave_
, retract
, fold
, foldM
, MonadFree(..)
) where
import Control.Applicative
import Control.Monad.Catch (MonadCatch(..), MonadThrow(..))
import Control.Monad (ap, liftM, MonadPlus(..), join)
import Control.Monad.Fix
import Control.Monad.Trans.Class
import qualified Control.Monad.Fail as Fail
import Control.Monad.Free.Class
import Control.Monad.State.Class
import Control.Monad.Error.Class
import Control.Monad.Reader.Class
import Control.Monad.Writer.Class
import Control.Monad.Cont.Class
import Control.Monad.IO.Class
import Data.Bifunctor
import Data.Bitraversable
import Data.Either
import Data.Functor.Bind hiding (join)
import Data.Functor.Classes.Compat
import Data.Functor.Identity
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Data.Typeable
import Data.Data
#if !(MIN_VERSION_base(4,8,0))
import Data.Foldable hiding (fold)
import Data.Traversable hiding (mapM)
#endif
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup
#endif
newtype IterT m a = IterT { runIterT :: m (Either a (IterT m a)) }
#if __GLASGOW_HASKELL__ >= 707
deriving (Typeable)
#endif
type Iter = IterT Identity
iter :: Either a (Iter a) -> Iter a
iter = IterT . Identity
{-# INLINE iter #-}
runIter :: Iter a -> Either a (Iter a)
runIter = runIdentity . runIterT
{-# INLINE runIter #-}
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Eq1 m) => Eq1 (IterT m) where
liftEq eq = go
where
go (IterT x) (IterT y) = liftEq (liftEq2 eq go) x y
#else
instance (Functor m, Eq1 m) => Eq1 (IterT m) where
eq1 = on eq1 (fmap (fmap Lift1) . runIterT)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Eq1 m, Eq a) => Eq (IterT m a) where
#else
instance (Functor m, Eq1 m, Eq a) => Eq (IterT m a) where
#endif
(==) = eq1
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Ord1 m) => Ord1 (IterT m) where
liftCompare cmp = go
where
go (IterT x) (IterT y) = liftCompare (liftCompare2 cmp go) x y
#else
instance (Functor m, Ord1 m) => Ord1 (IterT m) where
compare1 = on compare1 (fmap (fmap Lift1) . runIterT)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Ord1 m, Ord a) => Ord (IterT m a) where
#else
instance (Functor m, Ord1 m, Ord a) => Ord (IterT m a) where
#endif
compare = compare1
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Show1 m) => Show1 (IterT m) where
liftShowsPrec sp sl = go
where
goList = liftShowList sp sl
go d (IterT x) = showsUnaryWith
(liftShowsPrec (liftShowsPrec2 sp sl go goList) (liftShowList2 sp sl go goList))
"IterT" d x
#else
instance (Functor m, Show1 m) => Show1 (IterT m) where
showsPrec1 d (IterT m) = showParen (d > 10) $
showString "IterT " . showsPrec1 11 (fmap (fmap Lift1) m)
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Show1 m, Show a) => Show (IterT m a) where
#else
instance (Functor m, Show1 m, Show a) => Show (IterT m a) where
#endif
showsPrec = showsPrec1
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Read1 m) => Read1 (IterT m) where
liftReadsPrec rp rl = go
where
goList = liftReadList rp rl
go = readsData $ readsUnaryWith
(liftReadsPrec (liftReadsPrec2 rp rl go goList) (liftReadList2 rp rl go goList))
"IterT" IterT
#else
instance (Functor m, Read1 m) => Read1 (IterT m) where
readsPrec1 d = readParen (d > 10) $ \r ->
[ (IterT (fmap (fmap lower1) m),t) | ("IterT",s) <- lex r, (m,t) <- readsPrec1 11 s]
#endif
#ifdef LIFTED_FUNCTOR_CLASSES
instance (Read1 m, Read a) => Read (IterT m a) where
#else
instance (Functor m, Read1 m, Read a) => Read (IterT m a) where
#endif
readsPrec = readsPrec1
instance Monad m => Functor (IterT m) where
fmap f = IterT . liftM (bimap f (fmap f)) . runIterT
{-# INLINE fmap #-}
instance Monad m => Applicative (IterT m) where
pure = IterT . return . Left
{-# INLINE pure #-}
(<*>) = ap
{-# INLINE (<*>) #-}
instance Monad m => Monad (IterT m) where
return = pure
{-# INLINE return #-}
IterT m >>= k = IterT $ m >>= either (runIterT . k) (return . Right . (>>= k))
{-# INLINE (>>=) #-}
fail = Fail.fail
{-# INLINE fail #-}
instance Monad m => Fail.MonadFail (IterT m) where
fail _ = never
{-# INLINE fail #-}
instance Monad m => Apply (IterT m) where
(<.>) = ap
{-# INLINE (<.>) #-}
instance Monad m => Bind (IterT m) where
(>>-) = (>>=)
{-# INLINE (>>-) #-}
instance MonadFix m => MonadFix (IterT m) where
mfix f = IterT $ mfix $ runIterT . f . either id (error "mfix (IterT m): Right")
{-# INLINE mfix #-}
instance Monad m => Alternative (IterT m) where
empty = mzero
{-# INLINE empty #-}
(<|>) = mplus
{-# INLINE (<|>) #-}
instance Monad m => MonadPlus (IterT m) where
mzero = never
{-# INLINE mzero #-}
(IterT x) `mplus` (IterT y) = IterT $ x >>= either
(return . Left)
(flip liftM y . second . mplus)
{-# INLINE mplus #-}
instance MonadTrans IterT where
lift = IterT . liftM Left
{-# INLINE lift #-}
instance Foldable m => Foldable (IterT m) where
foldMap f = foldMap (either f (foldMap f)) . runIterT
{-# INLINE foldMap #-}
instance Foldable1 m => Foldable1 (IterT m) where
foldMap1 f = foldMap1 (either f (foldMap1 f)) . runIterT
{-# INLINE foldMap1 #-}
instance (Monad m, Traversable m) => Traversable (IterT m) where
traverse f (IterT m) = IterT <$> traverse (bitraverse f (traverse f)) m
{-# INLINE traverse #-}
instance (Monad m, Traversable1 m) => Traversable1 (IterT m) where
traverse1 f (IterT m) = IterT <$> traverse1 go m where
go (Left a) = Left <$> f a
go (Right a) = Right <$> traverse1 f a
{-# INLINE traverse1 #-}
instance MonadReader e m => MonadReader e (IterT m) where
ask = lift ask
{-# INLINE ask #-}
local f = hoistIterT (local f)
{-# INLINE local #-}
instance MonadWriter w m => MonadWriter w (IterT m) where
tell = lift . tell
{-# INLINE tell #-}
listen (IterT m) = IterT $ liftM concat' $ listen (fmap listen `liftM` m)
where
concat' (Left x, w) = Left (x, w)
concat' (Right y, w) = Right $ second (w `mappend`) <$> y
pass m = IterT . pass' . runIterT . hoistIterT clean $ listen m
where
clean = pass . liftM (\x -> (x, const mempty))
pass' = join . liftM g
g (Left ((x, f), w)) = tell (f w) >> return (Left x)
g (Right f) = return . Right . IterT . pass' . runIterT $ f
#if MIN_VERSION_mtl(2,1,1)
writer w = lift (writer w)
{-# INLINE writer #-}
#endif
instance MonadState s m => MonadState s (IterT m) where
get = lift get
{-# INLINE get #-}
put s = lift (put s)
{-# INLINE put #-}
#if MIN_VERSION_mtl(2,1,1)
state f = lift (state f)
{-# INLINE state #-}
#endif
instance MonadError e m => MonadError e (IterT m) where
throwError = lift . throwError
{-# INLINE throwError #-}
IterT m `catchError` f = IterT $ liftM (fmap (`catchError` f)) m `catchError` (runIterT . f)
instance MonadIO m => MonadIO (IterT m) where
liftIO = lift . liftIO
instance MonadCont m => MonadCont (IterT m) where
callCC f = IterT $ callCC (\k -> runIterT $ f (lift . k . Left))
instance Monad m => MonadFree Identity (IterT m) where
wrap = IterT . return . Right . runIdentity
{-# INLINE wrap #-}
instance MonadThrow m => MonadThrow (IterT m) where
throwM = lift . throwM
{-# INLINE throwM #-}
instance MonadCatch m => MonadCatch (IterT m) where
catch (IterT m) f = IterT $ liftM (fmap (`Control.Monad.Catch.catch` f)) m `Control.Monad.Catch.catch` (runIterT . f)
{-# INLINE catch #-}
delay :: (Monad f, MonadFree f m) => m a -> m a
delay = wrap . return
{-# INLINE delay #-}
retract :: Monad m => IterT m a -> m a
retract m = runIterT m >>= either return retract
fold :: Monad m => (m a -> a) -> IterT m a -> a
fold phi (IterT m) = phi (either id (fold phi) `liftM` m)
foldM :: (Monad m, Monad n) => (m (n a) -> n a) -> IterT m a -> n a
foldM phi (IterT m) = phi (either return (foldM phi) `liftM` m)
hoistIterT :: Monad n => (forall a. m a -> n a) -> IterT m b -> IterT n b
hoistIterT f (IterT as) = IterT (fmap (hoistIterT f) `liftM` f as)
liftIter :: (Monad m) => Iter a -> IterT m a
liftIter = hoistIterT (return . runIdentity)
never :: (Monad f, MonadFree f m) => m a
never = delay never
untilJust :: (Monad m) => m (Maybe a) -> IterT m a
untilJust f = maybe (delay (untilJust f)) return =<< lift f
{-# INLINE untilJust #-}
cutoff :: (Monad m) => Integer -> IterT m a -> IterT m (Maybe a)
cutoff n | n <= 0 = const $ return Nothing
cutoff n = IterT . liftM (either (Left . Just)
(Right . cutoff (n - 1))) . runIterT
interleave :: Monad m => [IterT m a] -> IterT m [a]
interleave ms = IterT $ do
xs <- mapM runIterT ms
if null (rights xs)
then return . Left $ lefts xs
else return . Right . interleave $ map (either return id) xs
{-# INLINE interleave #-}
interleave_ :: (Monad m) => [IterT m a] -> IterT m ()
interleave_ [] = return ()
interleave_ xs = IterT $ liftM (Right . interleave_ . rights) $ mapM runIterT xs
{-# INLINE interleave_ #-}
instance (Monad m, Semigroup a, Monoid a) => Monoid (IterT m a) where
mempty = return mempty
mappend = (<>)
mconcat = mconcat' . map Right
where
mconcat' :: (Monad m, Monoid a) => [Either a (IterT m a)] -> IterT m a
mconcat' ms = IterT $ do
xs <- mapM (either (return . Left) runIterT) ms
case compact xs of
[l@(Left _)] -> return l
xs' -> return . Right $ mconcat' xs'
{-# INLINE mconcat' #-}
compact :: (Monoid a) => [Either a b] -> [Either a b]
compact [] = []
compact (r@(Right _):xs) = r:(compact xs)
compact ( Left a :xs) = compact' a xs
compact' a [] = [Left a]
compact' a (r@(Right _):xs) = (Left a):(r:(compact xs))
compact' a ( (Left a'):xs) = compact' (a `mappend` a') xs
instance (Monad m, Semigroup a) => Semigroup (IterT m a) where
x <> y = IterT $ do
x' <- runIterT x
y' <- runIterT y
case (x', y') of
( Left a, Left b) -> return . Left $ a <> b
( Left a, Right b) -> return . Right $ liftM (a <>) b
(Right a, Left b) -> return . Right $ liftM (<> b) a
(Right a, Right b) -> return . Right $ a <> b
#if __GLASGOW_HASKELL__ < 707
instance Typeable1 m => Typeable1 (IterT m) where
typeOf1 t = mkTyConApp freeTyCon [typeOf1 (f t)] where
f :: IterT m a -> m a
f = undefined
freeTyCon :: TyCon
#if __GLASGOW_HASKELL__ < 704
freeTyCon = mkTyCon "Control.Monad.Iter.IterT"
#else
freeTyCon = mkTyCon3 "free" "Control.Monad.Iter" "IterT"
#endif
{-# NOINLINE freeTyCon #-}
#else
#define Typeable1 Typeable
#endif
instance
( Typeable1 m, Typeable a
, Data (m (Either a (IterT m a)))
, Data a
) => Data (IterT m a) where
gfoldl f z (IterT as) = z IterT `f` as
toConstr IterT{} = iterConstr
gunfold k z c = case constrIndex c of
1 -> k (z IterT)
_ -> error "gunfold"
dataTypeOf _ = iterDataType
dataCast1 f = gcast1 f
iterConstr :: Constr
iterConstr = mkConstr iterDataType "IterT" [] Prefix
{-# NOINLINE iterConstr #-}
iterDataType :: DataType
iterDataType = mkDataType "Control.Monad.Iter.IterT" [iterConstr]
{-# NOINLINE iterDataType #-}