{-# LANGUAGE CPP #-}
module Data.Monoid.Abelian
( FreeAbelianMonoid (..)
) where
import Data.Map.Strict (Map)
import qualified Data.Map.Strict as Map
import Data.Semigroup (Semigroup (..), stimes)
import Data.Natural (Natural)
import Data.Algebra.Free (AlgebraType, AlgebraType0, FreeAlgebra (..), proof)
import Data.Semigroup.Abelian (AbelianSemigroup)
newtype FreeAbelianMonoid a = FreeAbelianMonoid (Map a Natural)
deriving (Eq, Ord, Show)
instance Ord a => Semigroup (FreeAbelianMonoid a) where
(FreeAbelianMonoid a) <> (FreeAbelianMonoid b) = FreeAbelianMonoid $ Map.unionWith (+) a b
instance Ord a => AbelianSemigroup (FreeAbelianMonoid a)
instance Ord a => Monoid (FreeAbelianMonoid a) where
mempty = FreeAbelianMonoid Map.empty
#if __GLASGOW_HASKELL__ <= 802
mappend = (<>)
#endif
type instance AlgebraType0 FreeAbelianMonoid a = Ord a
type instance AlgebraType FreeAbelianMonoid m = (Ord m, Monoid m, AbelianSemigroup m)
instance FreeAlgebra FreeAbelianMonoid where
returnFree a = FreeAbelianMonoid (Map.singleton a 1)
foldMapFree g (FreeAbelianMonoid as) = Map.foldMapWithKey (\a n -> stimes n $ g a) as
codom = proof
forget = proof