{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE InstanceSigs #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wno-deprecations #-}
module Control.Algebra.Free
(
FreeAlgebra1 (..)
, Proof (..)
, AlgebraType0
, AlgebraType
, wrapFree
, foldFree1
, unFoldNatFree
, hoistFree1
, hoistFreeH
, joinFree1
, bindFree1
, assocFree1
, iterFree1
, cataFree1
, DayF (..)
, dayToAp
, apToDay
, Free1 (..)
, MonadList (..)
, MonadMaybe (..)
) where
import Control.Applicative ( Alternative (..)
, liftA2
)
import Control.Applicative.Free (Ap)
import qualified Control.Applicative.Free as Ap
import qualified Control.Applicative.Free.Fast as Fast
import qualified Control.Applicative.Free.Final as Final
import Control.Alternative.Free (Alt (..))
import qualified Control.Alternative.Free as Alt
import Control.Monad ( MonadPlus (..), foldM, join)
import Control.Monad.Except (ExceptT (..), MonadError (..))
import Control.Monad.Free (Free)
import qualified Control.Monad.Free as Free
import qualified Control.Monad.Free.Church as Church
import Control.Monad.List (ListT (..))
import Control.Monad.Reader (MonadReader (..), ReaderT (..))
import Control.Monad.RWS.Class (MonadRWS)
import Control.Monad.RWS.Lazy as L (RWST (..))
import Control.Monad.RWS.Strict as S (RWST (..))
import Control.Monad.State.Class (MonadState (..))
import qualified Control.Monad.State.Lazy as L (StateT (..))
import qualified Control.Monad.State.Strict as S (StateT (..))
import Control.Monad.Trans.Class (MonadTrans (..))
import Control.Monad.Trans.Maybe (MaybeT (..))
import Control.Monad.Writer.Class (MonadWriter (..))
import qualified Control.Monad.Writer.Lazy as L (WriterT (..))
import qualified Control.Monad.Writer.Strict as S (WriterT (..))
import Control.Monad.Zip (MonadZip (..))
import Data.Kind (Constraint, Type)
import Data.Fix (Fix, cataM)
import Data.Functor.Coyoneda (Coyoneda (..), liftCoyoneda)
import Data.Functor.Day (Day (..))
import qualified Data.Functor.Day as Day
import Data.Functor.Identity (Identity (..))
import Data.Algebra.Free (AlgebraType, AlgebraType0, Proof (..))
class FreeAlgebra1 (m :: (k -> Type) -> k -> Type) where
{-# MINIMAL liftFree, foldNatFree #-}
liftFree :: AlgebraType0 m f => f a -> m f a
foldNatFree
:: forall d f a .
( AlgebraType m d
, AlgebraType0 m f
)
=> (forall x. f x -> d x)
-> (m f a -> d a)
codom1 :: forall f. AlgebraType0 m f => Proof (AlgebraType m (m f)) (m f)
default codom1 :: forall a. AlgebraType m (m a)
=> Proof (AlgebraType m (m a)) (m a)
codom1 = forall {l} (c :: Constraint) (a :: l). c => Proof c a
Proof
forget1 :: forall f. AlgebraType m f => Proof (AlgebraType0 m f) (m f)
default forget1 :: forall a. AlgebraType0 m a
=> Proof (AlgebraType0 m a) (m a)
forget1 = forall {l} (c :: Constraint) (a :: l). c => Proof c a
Proof
wrapFree
:: forall (m :: (Type -> Type) -> Type -> Type)
(f :: Type -> Type)
a .
( FreeAlgebra1 m
, AlgebraType0 m f
, Monad (m f)
)
=> f (m f a)
-> m f a
wrapFree :: forall (m :: (* -> *) -> * -> *) (f :: * -> *) a.
(FreeAlgebra1 m, AlgebraType0 m f, Monad (m f)) =>
f (m f a) -> m f a
wrapFree = forall (m :: * -> *) a. Monad m => m (m a) -> m a
join forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
f a -> m f a
liftFree
{-# INLINABLE wrapFree #-}
foldFree1 :: forall m f a .
( FreeAlgebra1 m
, AlgebraType m f
)
=> m f a
-> f a
foldFree1 :: forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType m f) =>
m f a -> f a
foldFree1 = case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType m f) =>
Proof (AlgebraType0 m f) (m f)
forget1 :: Proof (AlgebraType0 m f) (m f) of
Proof (AlgebraType0 m f) (m f)
Proof -> forall k (m :: (k -> *) -> k -> *) (d :: k -> *) (f :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType m d, AlgebraType0 m f) =>
(forall (x :: k). f x -> d x) -> m f a -> d a
foldNatFree forall a. a -> a
id
{-# INLINABLE foldFree1 #-}
unFoldNatFree
:: ( FreeAlgebra1 m
, AlgebraType0 m f
)
=> (forall x . m f x -> d x)
-> f a -> d a
unFoldNatFree :: forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (d :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
(forall (x :: k). m f x -> d x) -> f a -> d a
unFoldNatFree forall (x :: k). m f x -> d x
nat = forall (x :: k). m f x -> d x
nat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
f a -> m f a
liftFree
hoistFree1 :: forall m f g a .
( FreeAlgebra1 m
, AlgebraType0 m g
, AlgebraType0 m f
)
=> (forall x. f x -> g x)
-> m f a
-> m g a
hoistFree1 :: forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (g :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType0 m g, AlgebraType0 m f) =>
(forall (x :: k). f x -> g x) -> m f a -> m g a
hoistFree1 forall (x :: k). f x -> g x
nat = case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType0 m f) =>
Proof (AlgebraType m (m f)) (m f)
codom1 :: Proof (AlgebraType m (m g)) (m g) of
Proof (AlgebraType m (m g)) (m g)
Proof -> forall k (m :: (k -> *) -> k -> *) (d :: k -> *) (f :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType m d, AlgebraType0 m f) =>
(forall (x :: k). f x -> d x) -> m f a -> d a
foldNatFree (forall k (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
f a -> m f a
liftFree forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (x :: k). f x -> g x
nat)
{-# INLINABLE [1] hoistFree1 #-}
{-# RULES
"hositFree1/foldNatFree"
forall (nat :: forall (x :: k). g x -> c x)
(nat0 :: forall (x :: k). f x -> g x)
(f :: m f a).
foldNatFree nat (hoistFree1 nat0 f) = foldNatFree (nat . nat0) f
#-}
hoistFreeH :: forall m n f a .
( FreeAlgebra1 m
, FreeAlgebra1 n
, AlgebraType0 m f
, AlgebraType0 n f
, AlgebraType m (n f)
)
=> m f a
-> n f a
hoistFreeH :: forall {k} (m :: (k -> *) -> k -> *) (n :: (k -> *) -> k -> *)
(f :: k -> *) (a :: k).
(FreeAlgebra1 m, FreeAlgebra1 n, AlgebraType0 m f,
AlgebraType0 n f, AlgebraType m (n f)) =>
m f a -> n f a
hoistFreeH = forall k (m :: (k -> *) -> k -> *) (d :: k -> *) (f :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType m d, AlgebraType0 m f) =>
(forall (x :: k). f x -> d x) -> m f a -> d a
foldNatFree forall k (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
f a -> m f a
liftFree
{-# INLINABLE [1] hoistFreeH #-}
{-# RULES
"hoistFreeH/foldNatFree" forall (nat :: forall (x :: k). f x -> c x)
(f :: AlgebraType m c => m f a).
foldNatFree nat (hoistFreeH f) = foldNatFree nat f
#-}
joinFree1 :: forall m f a .
( FreeAlgebra1 m
, AlgebraType0 m f
)
=> m (m f) a
-> m f a
joinFree1 :: forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
m (m f) a -> m f a
joinFree1 = case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType0 m f) =>
Proof (AlgebraType m (m f)) (m f)
codom1 :: Proof (AlgebraType m (m f)) (m f) of
Proof (AlgebraType m (m f)) (m f)
Proof -> case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType m f) =>
Proof (AlgebraType0 m f) (m f)
forget1 :: Proof (AlgebraType0 m (m f)) (m (m f)) of
Proof (AlgebraType0 m (m f)) (m (m f))
Proof -> forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType m f) =>
m f a -> f a
foldFree1
{-# INLINABLE joinFree1 #-}
bindFree1 :: forall m f g a .
( FreeAlgebra1 m
, AlgebraType0 m g
, AlgebraType0 m f
)
=> m f a
-> (forall x . f x -> m g x)
-> m g a
bindFree1 :: forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (g :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType0 m g, AlgebraType0 m f) =>
m f a -> (forall (x :: k). f x -> m g x) -> m g a
bindFree1 m f a
mfa forall (x :: k). f x -> m g x
nat = case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType0 m f) =>
Proof (AlgebraType m (m f)) (m f)
codom1 :: Proof (AlgebraType m (m g)) (m g) of
Proof (AlgebraType m (m g)) (m g)
Proof -> forall k (m :: (k -> *) -> k -> *) (d :: k -> *) (f :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType m d, AlgebraType0 m f) =>
(forall (x :: k). f x -> d x) -> m f a -> d a
foldNatFree forall (x :: k). f x -> m g x
nat m f a
mfa
{-# INLINABLE bindFree1 #-}
assocFree1 :: forall m f a .
( FreeAlgebra1 m
, AlgebraType m f
, Functor (m (m f))
)
=> m f (m f a)
-> m (m f) (f a)
assocFree1 :: forall (m :: (* -> *) -> * -> *) (f :: * -> *) a.
(FreeAlgebra1 m, AlgebraType m f, Functor (m (m f))) =>
m f (m f a) -> m (m f) (f a)
assocFree1 = case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType m f) =>
Proof (AlgebraType0 m f) (m f)
forget1 :: Proof (AlgebraType0 m f) (m f) of
Proof (AlgebraType0 m f) (m f)
Proof -> case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType0 m f) =>
Proof (AlgebraType m (m f)) (m f)
codom1 :: Proof (AlgebraType m (m f)) (m f) of
Proof (AlgebraType m (m f)) (m f)
Proof -> case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType m f) =>
Proof (AlgebraType0 m f) (m f)
forget1 :: Proof (AlgebraType0 m (m f)) (m (m f)) of
Proof (AlgebraType0 m (m f)) (m (m f))
Proof -> case forall k (m :: (k -> *) -> k -> *) (f :: k -> *).
(FreeAlgebra1 m, AlgebraType0 m f) =>
Proof (AlgebraType m (m f)) (m f)
codom1 :: Proof (AlgebraType m (m (m f))) (m (m f)) of
Proof (AlgebraType m (m (m f))) (m (m f))
Proof -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType m f) =>
m f a -> f a
foldFree1 forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (m :: (k -> *) -> k -> *) (d :: k -> *) (f :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType m d, AlgebraType0 m f) =>
(forall (x :: k). f x -> d x) -> m f a -> d a
foldNatFree (forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (g :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType0 m g, AlgebraType0 m f) =>
(forall (x :: k). f x -> g x) -> m f a -> m g a
hoistFree1 forall k (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
f a -> m f a
liftFree forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType0 m f) =>
f a -> m f a
liftFree)
{-# INLINABLE assocFree1 #-}
cataFree1 :: forall m f a .
( FreeAlgebra1 m
, AlgebraType m f
, Monad f
, Traversable (m f)
)
=> Fix (m f)
-> f a
cataFree1 :: forall (m :: (* -> *) -> * -> *) (f :: * -> *) a.
(FreeAlgebra1 m, AlgebraType m f, Monad f, Traversable (m f)) =>
Fix (m f) -> f a
cataFree1 = forall (m :: * -> *) (t :: * -> *) a.
(Monad m, Traversable t) =>
(t a -> m a) -> Fix t -> m a
cataM forall {k} (m :: (k -> *) -> k -> *) (f :: k -> *) (a :: k).
(FreeAlgebra1 m, AlgebraType m f) =>
m f a -> f a
foldFree1
iterFree1 :: forall m f a .
( FreeAlgebra1 m
, AlgebraType0 m f
, AlgebraType m Identity
)
=> (forall x . f x -> x)
-> m f a
-> a
iterFree1 :: forall (m :: (* -> *) -> * -> *) (f :: * -> *) a.
(FreeAlgebra1 m, AlgebraType0 m f, AlgebraType m Identity) =>
(forall x. f x -> x) -> m f a -> a
iterFree1 forall x. f x -> x
f = forall a. Identity a -> a
runIdentity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k (m :: (k -> *) -> k -> *) (d :: k -> *) (f :: k -> *)
(a :: k).
(FreeAlgebra1 m, AlgebraType m d, AlgebraType0 m f) =>
(forall (x :: k). f x -> d x) -> m f a -> d a
foldNatFree (forall a. a -> Identity a
Identity forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall x. f x -> x
f)
{-# INLINABLE iterFree1 #-}
type instance AlgebraType0 Coyoneda g = ()
type instance AlgebraType Coyoneda g = Functor g
instance FreeAlgebra1 Coyoneda where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 Coyoneda f =>
f a -> Coyoneda f a
liftFree = forall (f :: * -> *) a. f a -> Coyoneda f a
liftCoyoneda
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType Coyoneda d, AlgebraType0 Coyoneda f) =>
(forall x. f x -> d x) -> Coyoneda f a -> d a
foldNatFree forall x. f x -> d x
nat (Coyoneda b -> a
ba f b
fx) = b -> a
ba forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall x. f x -> d x
nat f b
fx
type instance AlgebraType0 Ap g = Functor g
type instance AlgebraType Ap g = Applicative g
instance FreeAlgebra1 Ap where
liftFree :: forall (f :: * -> *) a. AlgebraType0 Ap f => f a -> Ap f a
liftFree = forall (f :: * -> *) a. f a -> Ap f a
Ap.liftAp
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType Ap d, AlgebraType0 Ap f) =>
(forall x. f x -> d x) -> Ap f a -> d a
foldNatFree = forall (g :: * -> *) (f :: * -> *) a.
Applicative g =>
(forall x. f x -> g x) -> Ap f a -> g a
Ap.runAp
type instance AlgebraType0 Fast.Ap g = Functor g
type instance AlgebraType Fast.Ap g = Applicative g
instance FreeAlgebra1 Fast.Ap where
liftFree :: forall (f :: * -> *) a. AlgebraType0 Ap f => f a -> Ap f a
liftFree = forall (f :: * -> *) a. f a -> Ap f a
Fast.liftAp
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType Ap d, AlgebraType0 Ap f) =>
(forall x. f x -> d x) -> Ap f a -> d a
foldNatFree = forall (g :: * -> *) (f :: * -> *) a.
Applicative g =>
(forall x. f x -> g x) -> Ap f a -> g a
Fast.runAp
type instance AlgebraType0 Final.Ap g = Functor g
type instance AlgebraType Final.Ap g = Applicative g
instance FreeAlgebra1 Final.Ap where
liftFree :: forall (f :: * -> *) a. AlgebraType0 Ap f => f a -> Ap f a
liftFree = forall (f :: * -> *) a. f a -> Ap f a
Final.liftAp
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType Ap d, AlgebraType0 Ap f) =>
(forall x. f x -> d x) -> Ap f a -> d a
foldNatFree = forall (g :: * -> *) (f :: * -> *) a.
Applicative g =>
(forall x. f x -> g x) -> Ap f a -> g a
Final.runAp
newtype DayF f a = DayF { forall (f :: * -> *) a. DayF f a -> Day f f a
runDayF :: Day f f a}
deriving (forall a b. a -> DayF f b -> DayF f a
forall a b. (a -> b) -> DayF f a -> DayF f b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
forall (f :: * -> *) a b. a -> DayF f b -> DayF f a
forall (f :: * -> *) a b. (a -> b) -> DayF f a -> DayF f b
<$ :: forall a b. a -> DayF f b -> DayF f a
$c<$ :: forall (f :: * -> *) a b. a -> DayF f b -> DayF f a
fmap :: forall a b. (a -> b) -> DayF f a -> DayF f b
$cfmap :: forall (f :: * -> *) a b. (a -> b) -> DayF f a -> DayF f b
Functor, forall a. a -> DayF f a
forall a b. DayF f a -> DayF f b -> DayF f a
forall a b. DayF f a -> DayF f b -> DayF f b
forall a b. DayF f (a -> b) -> DayF f a -> DayF f b
forall a b c. (a -> b -> c) -> DayF f a -> DayF f b -> DayF f c
forall (f :: * -> *).
Functor f
-> (forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
forall {f :: * -> *}. Applicative f => Functor (DayF f)
forall (f :: * -> *) a. Applicative f => a -> DayF f a
forall (f :: * -> *) a b.
Applicative f =>
DayF f a -> DayF f b -> DayF f a
forall (f :: * -> *) a b.
Applicative f =>
DayF f a -> DayF f b -> DayF f b
forall (f :: * -> *) a b.
Applicative f =>
DayF f (a -> b) -> DayF f a -> DayF f b
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> DayF f a -> DayF f b -> DayF f c
<* :: forall a b. DayF f a -> DayF f b -> DayF f a
$c<* :: forall (f :: * -> *) a b.
Applicative f =>
DayF f a -> DayF f b -> DayF f a
*> :: forall a b. DayF f a -> DayF f b -> DayF f b
$c*> :: forall (f :: * -> *) a b.
Applicative f =>
DayF f a -> DayF f b -> DayF f b
liftA2 :: forall a b c. (a -> b -> c) -> DayF f a -> DayF f b -> DayF f c
$cliftA2 :: forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> DayF f a -> DayF f b -> DayF f c
<*> :: forall a b. DayF f (a -> b) -> DayF f a -> DayF f b
$c<*> :: forall (f :: * -> *) a b.
Applicative f =>
DayF f (a -> b) -> DayF f a -> DayF f b
pure :: forall a. a -> DayF f a
$cpure :: forall (f :: * -> *) a. Applicative f => a -> DayF f a
Applicative)
dayToAp :: Applicative f => Day f f a -> Ap f a
dayToAp :: forall (f :: * -> *) a. Applicative f => Day f f a -> Ap f a
dayToAp = forall {k} (m :: (k -> *) -> k -> *) (n :: (k -> *) -> k -> *)
(f :: k -> *) (a :: k).
(FreeAlgebra1 m, FreeAlgebra1 n, AlgebraType0 m f,
AlgebraType0 n f, AlgebraType m (n f)) =>
m f a -> n f a
hoistFreeH forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) a. Day f f a -> DayF f a
DayF
apToDay :: Applicative f => Ap f a -> Day f f a
apToDay :: forall (f :: * -> *) a. Applicative f => Ap f a -> Day f f a
apToDay = forall (f :: * -> *) a. DayF f a -> Day f f a
runDayF forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} (m :: (k -> *) -> k -> *) (n :: (k -> *) -> k -> *)
(f :: k -> *) (a :: k).
(FreeAlgebra1 m, FreeAlgebra1 n, AlgebraType0 m f,
AlgebraType0 n f, AlgebraType m (n f)) =>
m f a -> n f a
hoistFreeH
type instance AlgebraType0 DayF g = Applicative g
type instance AlgebraType DayF g = Applicative g
instance FreeAlgebra1 DayF where
liftFree :: forall (f :: * -> *) a. AlgebraType0 DayF f => f a -> DayF f a
liftFree f a
fa = forall (f :: * -> *) a. Day f f a -> DayF f a
DayF forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *) (g :: * -> *) a b c.
f b -> g c -> (b -> c -> a) -> Day f g a
Day f a
fa f a
fa forall a b. a -> b -> a
const
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType DayF d, AlgebraType0 DayF f) =>
(forall x. f x -> d x) -> DayF f a -> d a
foldNatFree forall x. f x -> d x
nat (DayF Day f f a
day)
= forall (f :: * -> *) a. Applicative f => Day f f a -> f a
Day.dap forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (g :: * -> *) (h :: * -> *) (f :: * -> *) a.
(forall x. g x -> h x) -> Day f g a -> Day f h a
Day.trans2 forall x. f x -> d x
nat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall (f :: * -> *) (g :: * -> *) (h :: * -> *) a.
(forall x. f x -> g x) -> Day f h a -> Day g h a
Day.trans1 forall x. f x -> d x
nat forall a b. (a -> b) -> a -> b
$ Day f f a
day
type instance AlgebraType0 Free f = Functor f
type instance AlgebraType Free m = Monad m
instance FreeAlgebra1 Free where
liftFree :: forall (f :: * -> *) a. AlgebraType0 Free f => f a -> Free f a
liftFree = forall (f :: * -> *) (m :: * -> *) a.
(Functor f, MonadFree f m) =>
f a -> m a
Free.liftF
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType Free d, AlgebraType0 Free f) =>
(forall x. f x -> d x) -> Free f a -> d a
foldNatFree = forall (m :: * -> *) (f :: * -> *) a.
Monad m =>
(forall x. f x -> m x) -> Free f a -> m a
Free.foldFree
type instance AlgebraType0 Church.F f = Functor f
type instance AlgebraType Church.F m = Monad m
instance FreeAlgebra1 Church.F where
liftFree :: forall (f :: * -> *) a. AlgebraType0 F f => f a -> F f a
liftFree = forall (f :: * -> *) (m :: * -> *) a.
(Functor f, MonadFree f m) =>
f a -> m a
Church.liftF
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType F d, AlgebraType0 F f) =>
(forall x. f x -> d x) -> F f a -> d a
foldNatFree = forall (m :: * -> *) (f :: * -> *) a.
Monad m =>
(forall x. f x -> m x) -> F f a -> m a
Church.foldF
type instance AlgebraType0 Alt f = Functor f
type instance AlgebraType Alt m = Alternative m
instance FreeAlgebra1 Alt where
liftFree :: forall (f :: * -> *) a. AlgebraType0 Alt f => f a -> Alt f a
liftFree = forall (f :: * -> *) a. f a -> Alt f a
Alt.liftAlt
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType Alt d, AlgebraType0 Alt f) =>
(forall x. f x -> d x) -> Alt f a -> d a
foldNatFree = forall (f :: * -> *) (g :: * -> *) a.
Alternative g =>
(forall x. f x -> g x) -> Alt f a -> g a
Alt.runAlt
type instance AlgebraType0 (L.StateT s) m = Monad m
type instance AlgebraType (L.StateT s) m = ( MonadState s m )
instance FreeAlgebra1 (L.StateT s) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (StateT s) f =>
f a -> StateT s f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (StateT s) d, AlgebraType0 (StateT s) f) =>
(forall x. f x -> d x) -> StateT s f a -> d a
foldNatFree forall x. f x -> d x
nat StateT s f a
ma = do
(a
a, s
s) <- forall s (m :: * -> *). MonadState s m => m s
get forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall x. f x -> d x
nat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
L.runStateT StateT s f a
ma
forall s (m :: * -> *). MonadState s m => s -> m ()
put s
s
forall (m :: * -> *) a. Monad m => a -> m a
return a
a
type instance AlgebraType0 (S.StateT s) m = Monad m
type instance AlgebraType (S.StateT s) m = ( MonadState s m )
instance FreeAlgebra1 (S.StateT s) where
liftFree :: Monad m => m a -> S.StateT s m a
liftFree :: forall (m :: * -> *) a. Monad m => m a -> StateT s m a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (StateT s) d, AlgebraType0 (StateT s) f) =>
(forall x. f x -> d x) -> StateT s f a -> d a
foldNatFree forall x. f x -> d x
nat StateT s f a
ma = do
(a
a, s
s) <- forall s (m :: * -> *). MonadState s m => m s
get forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall x. f x -> d x
nat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
S.runStateT StateT s f a
ma
forall s (m :: * -> *). MonadState s m => s -> m ()
put s
s
forall (m :: * -> *) a. Monad m => a -> m a
return a
a
type instance AlgebraType0 (L.WriterT w) m = ( Monad m, Monoid w )
type instance AlgebraType (L.WriterT w) m = ( MonadWriter w m )
instance FreeAlgebra1 (L.WriterT w) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (WriterT w) f =>
f a -> WriterT w f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (WriterT w) d, AlgebraType0 (WriterT w) f) =>
(forall x. f x -> d x) -> WriterT w f a -> d a
foldNatFree forall x. f x -> d x
nat (L.WriterT f (a, w)
m) = forall a b. (a, b) -> a
fst forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall x. f x -> d x
nat f (a, w)
m
type instance AlgebraType0 (S.WriterT w) m = ( Monad m, Monoid w )
type instance AlgebraType (S.WriterT w) m = ( MonadWriter w m )
instance FreeAlgebra1 (S.WriterT w) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (WriterT w) f =>
f a -> WriterT w f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (WriterT w) d, AlgebraType0 (WriterT w) f) =>
(forall x. f x -> d x) -> WriterT w f a -> d a
foldNatFree forall x. f x -> d x
nat (S.WriterT f (a, w)
m) = forall a b. (a, b) -> a
fst forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall x. f x -> d x
nat f (a, w)
m
type instance AlgebraType0 (ReaderT r) m = ( Monad m )
type instance AlgebraType (ReaderT r) m = ( MonadReader r m )
instance FreeAlgebra1 (ReaderT r :: (Type -> Type) -> Type -> Type) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (ReaderT r) f =>
f a -> ReaderT r f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (ReaderT r) d, AlgebraType0 (ReaderT r) f) =>
(forall x. f x -> d x) -> ReaderT r f a -> d a
foldNatFree forall x. f x -> d x
nat (ReaderT r -> f a
g) =
forall r (m :: * -> *). MonadReader r m => m r
ask forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= forall x. f x -> d x
nat forall b c a. (b -> c) -> (a -> b) -> a -> c
. r -> f a
g
type instance AlgebraType0 (ExceptT e) m = ( Monad m )
type instance AlgebraType (ExceptT e) m = ( MonadError e m )
instance FreeAlgebra1 (ExceptT e) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (ExceptT e) f =>
f a -> ExceptT e f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (ExceptT e) d, AlgebraType0 (ExceptT e) f) =>
(forall x. f x -> d x) -> ExceptT e f a -> d a
foldNatFree forall x. f x -> d x
nat (ExceptT f (Either e a)
m) = do
Either e a
ea <- forall x. f x -> d x
nat f (Either e a)
m
case Either e a
ea of
Left e
e -> forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError e
e
Right a
a -> forall (m :: * -> *) a. Monad m => a -> m a
return a
a
type instance AlgebraType0 (L.RWST r w s) m = ( Monad m, Monoid w )
type instance AlgebraType (L.RWST r w s) m = MonadRWS r w s m
instance FreeAlgebra1 (L.RWST r w s) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (RWST r w s) f =>
f a -> RWST r w s f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (RWST r w s) d, AlgebraType0 (RWST r w s) f) =>
(forall x. f x -> d x) -> RWST r w s f a -> d a
foldNatFree forall x. f x -> d x
nat (L.RWST r -> s -> f (a, s, w)
fn) = do
r
r <- forall r (m :: * -> *). MonadReader r m => m r
ask
s
s <- forall s (m :: * -> *). MonadState s m => m s
get
(a
a, s
s', w
w) <- forall x. f x -> d x
nat forall a b. (a -> b) -> a -> b
$ r -> s -> f (a, s, w)
fn r
r s
s
forall s (m :: * -> *). MonadState s m => s -> m ()
put s
s'
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell w
w
forall (m :: * -> *) a. Monad m => a -> m a
return a
a
type instance AlgebraType0 (S.RWST r w s) m = ( Monad m, Monoid w )
type instance AlgebraType (S.RWST r w s) m = MonadRWS r w s m
instance FreeAlgebra1 (S.RWST r w s) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (RWST r w s) f =>
f a -> RWST r w s f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (RWST r w s) d, AlgebraType0 (RWST r w s) f) =>
(forall x. f x -> d x) -> RWST r w s f a -> d a
foldNatFree forall x. f x -> d x
nat (S.RWST r -> s -> f (a, s, w)
fn) = do
r
r <- forall r (m :: * -> *). MonadReader r m => m r
ask
s
s <- forall s (m :: * -> *). MonadState s m => m s
get
(a
a, s
s', w
w) <- forall x. f x -> d x
nat forall a b. (a -> b) -> a -> b
$ r -> s -> f (a, s, w)
fn r
r s
s
forall s (m :: * -> *). MonadState s m => s -> m ()
put s
s'
forall w (m :: * -> *). MonadWriter w m => w -> m ()
tell w
w
forall (m :: * -> *) a. Monad m => a -> m a
return a
a
class Monad m => MonadList m where
mempty1 :: m a
mappend1 :: m a -> m a -> m a
mappend1_ :: MonadList m => a -> a -> m a
mappend1_ :: forall (m :: * -> *) a. MonadList m => a -> a -> m a
mappend1_ a
a a
b = forall (m :: * -> *) a. Monad m => a -> m a
return a
a forall (m :: * -> *) a. MonadList m => m a -> m a -> m a
`mappend1` forall (m :: * -> *) a. Monad m => a -> m a
return a
b
{-# INLINABLE mappend1_ #-}
instance Monad m => MonadList (ListT m) where
mempty1 :: forall a. ListT m a
mempty1 = forall (m :: * -> *) a. m [a] -> ListT m a
ListT (forall (m :: * -> *) a. Monad m => a -> m a
return [])
mappend1 :: forall a. ListT m a -> ListT m a -> ListT m a
mappend1 (ListT m [a]
ma) (ListT m [a]
mb) = forall (m :: * -> *) a. m [a] -> ListT m a
ListT forall a b. (a -> b) -> a -> b
$ forall a. Monoid a => a -> a -> a
mappend forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m [a]
ma forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> m [a]
mb
type instance AlgebraType0 ListT f = ( Monad f )
type instance AlgebraType ListT m = ( MonadList m )
instance FreeAlgebra1 ListT where
liftFree :: forall (f :: * -> *) a. AlgebraType0 ListT f => f a -> ListT f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType ListT d, AlgebraType0 ListT f) =>
(forall x. f x -> d x) -> ListT f a -> d a
foldNatFree forall x. f x -> d x
nat (ListT f [a]
mas) = do
[a]
as <- forall x. f x -> d x
nat f [a]
mas
a
empty1 <- forall (m :: * -> *) a. MonadList m => m a
mempty1
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM (\a
x a
y -> a
x forall (m :: * -> *) a. MonadList m => a -> a -> m a
`mappend1_` a
y) a
empty1 [a]
as
newtype Free1 (c :: (Type -> Type) -> Constraint)
(f :: Type -> Type)
a
= Free1 {
forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
Free1 c f a
-> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
runFree1 :: forall g. c g => (forall x. f x -> g x) -> g a
}
instance (forall h. c h => Functor h)
=> Functor (Free1 c f) where
fmap :: forall a b. (a -> b) -> Free1 c f a -> Free1 c f b
fmap :: forall a b. (a -> b) -> Free1 c f a -> Free1 c f b
fmap a -> b
f (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g) = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g forall x. f x -> g x
h)
a
a <$ :: forall a b. a -> Free1 c f b -> Free1 c f a
<$ Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> a
a forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g forall x. f x -> g x
h
instance (forall h. c h => Applicative h, c (Free1 c f))
=> Applicative (Free1 c f) where
pure :: forall a. a -> Free1 c f a
pure a
a = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
_ -> forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a
Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g (a -> b)
f <*> :: forall a b. Free1 c f (a -> b) -> Free1 c f a -> Free1 c f b
<*> Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g (a -> b)
f forall x. f x -> g x
h forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g forall x. f x -> g x
h
liftA2 :: forall a b c.
(a -> b -> c) -> Free1 c f a -> Free1 c f b -> Free1 c f c
liftA2 a -> b -> c
f (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
x) (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
y) = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
f (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
x forall x. f x -> g x
h) (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
y forall x. f x -> g x
h)
Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f *> :: forall a b. Free1 c f a -> Free1 c f b -> Free1 c f b
*> Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h forall (f :: * -> *) a b. Applicative f => f a -> f b -> f b
*> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g forall x. f x -> g x
h
Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f <* :: forall a b. Free1 c f a -> Free1 c f b -> Free1 c f a
<* Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h forall (f :: * -> *) a b. Applicative f => f a -> f b -> f a
<* forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g forall x. f x -> g x
h
instance (forall h. c h => Monad h, c (Free1 c f))
=> Monad (Free1 c f) where
return :: forall a. a -> Free1 c f a
return = forall (f :: * -> *) a. Applicative f => a -> f a
pure
Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f >>= :: forall a b. Free1 c f a -> (a -> Free1 c f b) -> Free1 c f b
>>= a -> Free1 c f b
k = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h ->
forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (\a
a -> case a -> Free1 c f b
k a
a of Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
l -> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
l forall x. f x -> g x
h)
instance (forall h. c h => Alternative h, c (Free1 c f))
=> Alternative (Free1 c f) where
empty :: forall a. Free1 c f a
empty = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
_ -> forall (f :: * -> *) a. Alternative f => f a
empty
Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f <|> :: forall a. Free1 c f a -> Free1 c f a -> Free1 c f a
<|> Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h forall (f :: * -> *) a. Alternative f => f a -> f a -> f a
<|> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g forall x. f x -> g x
h
some :: forall a. Free1 c f a -> Free1 c f [a]
some (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f) = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (f :: * -> *) a. Alternative f => f a -> f [a]
some (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h)
many :: forall a. Free1 c f a -> Free1 c f [a]
many (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f) = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (f :: * -> *) a. Alternative f => f a -> f [a]
many (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h)
instance (forall h. c h => MonadPlus h, c (Free1 c f))
=> MonadPlus (Free1 c f) where
mzero :: forall a. Free1 c f a
mzero = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
_ -> forall (m :: * -> *) a. MonadPlus m => m a
mzero
Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f mplus :: forall a. Free1 c f a -> Free1 c f a -> Free1 c f a
`mplus` Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus` forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
g forall x. f x -> g x
h
instance (forall h. c h => MonadZip h, c (Free1 c f))
=> MonadZip (Free1 c f) where
Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f mzip :: forall a b. Free1 c f a -> Free1 c f b -> Free1 c f (a, b)
`mzip` Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h forall (m :: * -> *) a b. MonadZip m => m a -> m b -> m (a, b)
`mzip` forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g forall x. f x -> g x
h
mzipWith :: forall a b c.
(a -> b -> c) -> Free1 c f a -> Free1 c f b -> Free1 c f c
mzipWith a -> b -> c
k (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f) (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g) = forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall (m :: * -> *) a b c.
MonadZip m =>
(a -> b -> c) -> m a -> m b -> m c
mzipWith a -> b -> c
k (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> g x
h) (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g b
g forall x. f x -> g x
h)
munzip :: forall a b. Free1 c f (a, b) -> (Free1 c f a, Free1 c f b)
munzip (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g (a, b)
f) = (forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall a b. (a, b) -> a
fst (forall (m :: * -> *) a b. MonadZip m => m (a, b) -> (m a, m b)
munzip (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g (a, b)
f forall x. f x -> g x
h)), forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
h -> forall a b. (a, b) -> b
snd (forall (m :: * -> *) a b. MonadZip m => m (a, b) -> (m a, m b)
munzip (forall (g :: * -> *). c g => (forall x. f x -> g x) -> g (a, b)
f forall x. f x -> g x
h)))
type instance AlgebraType0 (Free1 c) f = ()
type instance AlgebraType (Free1 c) f = (c f)
instance (forall f. c (Free1 c f)) => FreeAlgebra1 (Free1 c) where
liftFree :: forall (f :: * -> *) a.
AlgebraType0 (Free1 c) f =>
f a -> Free1 c f a
liftFree = \f a
fa -> forall (c :: (* -> *) -> Constraint) (f :: * -> *) a.
(forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a)
-> Free1 c f a
Free1 forall a b. (a -> b) -> a -> b
$ \forall x. f x -> g x
g -> forall x. f x -> g x
g f a
fa
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType (Free1 c) d, AlgebraType0 (Free1 c) f) =>
(forall x. f x -> d x) -> Free1 c f a -> d a
foldNatFree forall x. f x -> d x
nat (Free1 forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f) = forall (g :: * -> *). c g => (forall x. f x -> g x) -> g a
f forall x. f x -> d x
nat
class MonadMaybe m where
point :: forall a. m a
instance Monad m => MonadMaybe (MaybeT m) where
point :: forall a. MaybeT m a
point = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
MaybeT (forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing)
type instance AlgebraType0 MaybeT m = ( Monad m )
type instance AlgebraType MaybeT m = ( Monad m, MonadMaybe m )
instance FreeAlgebra1 MaybeT where
liftFree :: forall (f :: * -> *) a. AlgebraType0 MaybeT f => f a -> MaybeT f a
liftFree = forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
foldNatFree :: forall (d :: * -> *) (f :: * -> *) a.
(AlgebraType MaybeT d, AlgebraType0 MaybeT f) =>
(forall x. f x -> d x) -> MaybeT f a -> d a
foldNatFree forall x. f x -> d x
nat (MaybeT f (Maybe a)
mma) =
forall x. f x -> d x
nat f (Maybe a)
mma forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe a
ma -> case Maybe a
ma of
Maybe a
Nothing -> forall {k} (m :: k -> *) (a :: k). MonadMaybe m => m a
point
Just a
a -> forall (m :: * -> *) a. Monad m => a -> m a
return a
a