{-# LANGUAGE CPP #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE PatternSynonyms #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# OPTIONS_HADDOCK show-extensions #-}
#if __GLASGOW_HASKELL__ <= 802
{-# OPTIONS_GHC -Wno-unused-top-binds #-}
{-# OPTIONS_GHC -Wno-incomplete-patterns #-}
#endif
module Control.Category.Free.Internal
( Op (..)
, ListTr (..)
, Queue (NilQ, ConsQ)
, emptyQ
, cons
, uncons
, snoc
, foldQ
, zipWithQ
) where
import Prelude hiding (id, (.))
import Control.Arrow
import Control.Category (Category (..))
#if __GLASGOW_HASKELL__ < 804
import Data.Monoid (Monoid (..))
import Data.Semigroup (Semigroup (..))
#endif
import Control.Algebra.Free2 ( AlgebraType0
, AlgebraType
, FreeAlgebra2 (..)
, proof
)
newtype Op (f :: k -> k -> *) (a :: k) (b :: k) = Op { runOp :: f b a }
instance Category f => Category (Op f) where
id = Op id
Op f . Op g = Op (g . f)
instance Category f => Semigroup (Op f o o) where
(<>) = (.)
instance Category f => Monoid (Op f o o) where
mempty = id
#if __GLASGOW_HASKELL__ < 804
mappend = (<>)
#endif
data ListTr :: (k -> k -> *) -> k -> k -> * where
NilTr :: ListTr f a a
ConsTr :: f b c -> ListTr f a b -> ListTr f a c
instance Category (ListTr f) where
id = NilTr
NilTr . ys = ys
(ConsTr x xs) . ys = ConsTr x (xs . ys)
instance Arrow f => Arrow (ListTr f) where
arr ab = arr ab `ConsTr` NilTr
(ConsTr fxb cax) *** (ConsTr fyb cay)
= (fxb *** fyb) `ConsTr` (cax *** cay)
(ConsTr fxb cax) *** NilTr = (fxb *** arr id) `ConsTr` (cax *** NilTr)
NilTr *** (ConsTr fxb cax) = (arr id *** fxb) `ConsTr` (NilTr *** cax)
NilTr *** NilTr = NilTr
instance ArrowZero f => ArrowZero (ListTr f) where
zeroArrow = zeroArrow `ConsTr` NilTr
instance ArrowChoice f => ArrowChoice (ListTr f) where
(ConsTr fxb cax) +++ (ConsTr fyb cay)
= (fxb +++ fyb) `ConsTr` (cax +++ cay)
(ConsTr fxb cax) +++ NilTr = (fxb +++ arr id) `ConsTr` (cax +++ NilTr)
NilTr +++ (ConsTr fxb cax) = (arr id +++ fxb) `ConsTr` (NilTr +++ cax)
NilTr +++ NilTr = NilTr
instance Semigroup (ListTr f o o) where
f <> g = g . f
instance Monoid (ListTr f o o) where
mempty = NilTr
#if __GLASGOW_HASKELL__ < 804
mappend = (<>)
#endif
type instance AlgebraType0 ListTr f = ()
type instance AlgebraType ListTr c = Category c
instance FreeAlgebra2 ListTr where
liftFree2 = \fab -> ConsTr fab NilTr
{-# INLINE liftFree2 #-}
foldNatFree2 _ NilTr = id
foldNatFree2 fun (ConsTr bc ab) = fun bc . foldNatFree2 fun ab
{-# INLINE foldNatFree2 #-}
codom2 = proof
forget2 = proof
data Queue (f :: k -> k -> *) (a :: k) (b :: k) where
Queue :: forall f a c b x.
!(ListTr f b c)
-> !(ListTr (Op f) b a)
-> !(ListTr f b x)
-> Queue f a c
emptyQ :: Queue (f :: k -> k -> *) a a
emptyQ = Queue NilTr NilTr NilTr
cons :: forall (f :: k -> k -> *) a b c.
f b c
-> Queue f a b
-> Queue f a c
cons fbc (Queue f r s) = Queue (ConsTr fbc f) r (ConsTr undefined s)
data ViewL f a b where
EmptyL :: ViewL f a a
(:<) :: f b c -> Queue f a b -> ViewL f a c
uncons :: Queue f a b
-> ViewL f a b
uncons (Queue NilTr NilTr _) = EmptyL
uncons (Queue (ConsTr tr f) r (ConsTr _ s)) = tr :< exec f r s
uncons _ = error "Queue.uncons: invariant violation"
snoc :: forall (f :: k -> k -> *) a b c.
Queue f b c
-> f a b
-> Queue f a c
snoc (Queue f r s) g = exec f (ConsTr (Op g) r) s
pattern ConsQ :: f b c -> Queue f a b -> Queue f a c
pattern ConsQ a as <- (uncons -> a :< as) where
ConsQ = cons
pattern NilQ :: () => a ~ b => Queue f a b
pattern NilQ <- (uncons -> EmptyL) where
NilQ = emptyQ
#if __GLASGOW_HASKELL__ > 802
{-# complete NilQ, ConsQ #-}
#endif
foldQ :: forall (f :: k -> k -> *) c a b.
Category c
=> (forall x y. f x y -> c x y)
-> Queue f a b
-> c a b
foldQ nat queue = case queue of
NilQ -> id
ConsQ tr queue' -> nat tr . foldQ nat queue'
zipWithQ :: forall f g a b a' b'.
Arrow f
=> (forall x y x' y'. f x y -> f x' y' -> f (g x x') (g y y'))
-> Queue f a b
-> Queue f a' b'
-> Queue f (g a a') (g b b')
zipWithQ fn queueA queueB = case (queueA, queueB) of
(NilQ, NilQ) -> NilQ
(NilQ, ConsQ trB' queueB') -> ConsQ (id `fn` trB') (zipWithQ fn NilQ queueB')
(ConsQ trA' queueA', NilQ) -> ConsQ (trA' `fn` id) (zipWithQ fn queueA' NilQ)
(ConsQ trA' queueA', ConsQ trB' queueB')
-> ConsQ (trA' `fn` trB') (zipWithQ fn queueA' queueB')
exec :: ListTr f b c -> ListTr (Op f) b a -> ListTr f b x -> Queue f a c
exec xs ys (ConsTr _ t) = Queue xs ys t
exec xs ys NilTr = Queue xs' NilTr xs'
where
xs' = rotate xs ys NilTr
rotate :: ListTr f c d -> ListTr (Op f) c b -> ListTr f a b -> ListTr f a d
rotate NilTr (ConsTr (Op f) NilTr) a = ConsTr f a
rotate (ConsTr f fs) (ConsTr (Op g) gs) a = ConsTr f (rotate fs gs (ConsTr g a))
rotate _ _ _ = error "Queue.rotate: impossible happend"