{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeFamilies #-}
module Fresnel.Ixed
(
Ixed(..)
, ixSet
, ixMap
, ixList
) where
import Control.Monad (guard)
import qualified Data.HashMap.Internal as HashMap
import qualified Data.HashSet as HashSet
import Data.Hashable (Hashable)
import qualified Data.IntMap as IntMap
import qualified Data.IntSet as IntSet
import qualified Data.List.NonEmpty as NonEmpty
import qualified Data.Map as Map
import qualified Data.Set as Set
import Fresnel.List.NonEmpty (head_, tail_)
import Fresnel.Optional (Optional', optional')
class Ixed c where
type Index c
type IxValue c
ix :: Index c -> Optional' c (IxValue c)
instance Ixed IntSet.IntSet where
type Index IntSet.IntSet = IntSet.Key
type IxValue IntSet.IntSet = ()
ix :: Index IntSet -> Optional' IntSet (IxValue IntSet)
ix = (Index IntSet -> IntSet -> Bool)
-> (Index IntSet -> IntSet -> IntSet)
-> Index IntSet
-> Optional' IntSet ()
forall c.
(Index c -> c -> Bool)
-> (Index c -> c -> c) -> Index c -> Optional' c ()
ixSet Key -> IntSet -> Bool
Index IntSet -> IntSet -> Bool
IntSet.member Key -> IntSet -> IntSet
Index IntSet -> IntSet -> IntSet
IntSet.insert
instance Ixed (IntMap.IntMap v) where
type Index (IntMap.IntMap v) = IntMap.Key
type IxValue (IntMap.IntMap v) = v
ix :: Index (IntMap v) -> Optional' (IntMap v) (IxValue (IntMap v))
ix = (Index (IntMap v) -> IntMap v -> Maybe (IxValue (IntMap v)))
-> (Index (IntMap v) -> IxValue (IntMap v) -> IntMap v -> IntMap v)
-> Index (IntMap v)
-> Optional' (IntMap v) (IxValue (IntMap v))
forall c.
(Index c -> c -> Maybe (IxValue c))
-> (Index c -> IxValue c -> c -> c)
-> Index c
-> Optional' c (IxValue c)
ixMap Key -> IntMap v -> Maybe v
Index (IntMap v) -> IntMap v -> Maybe (IxValue (IntMap v))
forall a. Key -> IntMap a -> Maybe a
IntMap.lookup Key -> v -> IntMap v -> IntMap v
Index (IntMap v) -> IxValue (IntMap v) -> IntMap v -> IntMap v
forall a. Key -> a -> IntMap a -> IntMap a
IntMap.insert
instance Ord k => Ixed (Set.Set k) where
type Index (Set.Set k) = k
type IxValue (Set.Set k) = ()
ix :: Index (Set k) -> Optional' (Set k) (IxValue (Set k))
ix = (Index (Set k) -> Set k -> Bool)
-> (Index (Set k) -> Set k -> Set k)
-> Index (Set k)
-> Optional' (Set k) ()
forall c.
(Index c -> c -> Bool)
-> (Index c -> c -> c) -> Index c -> Optional' c ()
ixSet k -> Set k -> Bool
Index (Set k) -> Set k -> Bool
forall a. Ord a => a -> Set a -> Bool
Set.member k -> Set k -> Set k
Index (Set k) -> Set k -> Set k
forall a. Ord a => a -> Set a -> Set a
Set.insert
instance Ord k => Ixed (Map.Map k v) where
type Index (Map.Map k v) = k
type IxValue (Map.Map k v) = v
ix :: Index (Map k v) -> Optional' (Map k v) (IxValue (Map k v))
ix = (Index (Map k v) -> Map k v -> Maybe (IxValue (Map k v)))
-> (Index (Map k v) -> IxValue (Map k v) -> Map k v -> Map k v)
-> Index (Map k v)
-> Optional' (Map k v) (IxValue (Map k v))
forall c.
(Index c -> c -> Maybe (IxValue c))
-> (Index c -> IxValue c -> c -> c)
-> Index c
-> Optional' c (IxValue c)
ixMap k -> Map k v -> Maybe v
Index (Map k v) -> Map k v -> Maybe (IxValue (Map k v))
forall k a. Ord k => k -> Map k a -> Maybe a
Map.lookup k -> v -> Map k v -> Map k v
Index (Map k v) -> IxValue (Map k v) -> Map k v -> Map k v
forall k a. Ord k => k -> a -> Map k a -> Map k a
Map.insert
instance (Eq k, Hashable k) => Ixed (HashSet.HashSet k) where
type Index (HashSet.HashSet k) = k
type IxValue (HashSet.HashSet k) = ()
ix :: Index (HashSet k) -> Optional' (HashSet k) (IxValue (HashSet k))
ix = (Index (HashSet k) -> HashSet k -> Bool)
-> (Index (HashSet k) -> HashSet k -> HashSet k)
-> Index (HashSet k)
-> Optional' (HashSet k) ()
forall c.
(Index c -> c -> Bool)
-> (Index c -> c -> c) -> Index c -> Optional' c ()
ixSet k -> HashSet k -> Bool
Index (HashSet k) -> HashSet k -> Bool
forall a. (Eq a, Hashable a) => a -> HashSet a -> Bool
HashSet.member k -> HashSet k -> HashSet k
Index (HashSet k) -> HashSet k -> HashSet k
forall a. (Eq a, Hashable a) => a -> HashSet a -> HashSet a
HashSet.insert
instance (Eq k, Hashable k) => Ixed (HashMap.HashMap k v) where
type Index (HashMap.HashMap k v) = k
type IxValue (HashMap.HashMap k v) = v
ix :: Index (HashMap k v)
-> Optional' (HashMap k v) (IxValue (HashMap k v))
ix = (Index (HashMap k v)
-> HashMap k v -> Maybe (IxValue (HashMap k v)))
-> (Index (HashMap k v)
-> IxValue (HashMap k v) -> HashMap k v -> HashMap k v)
-> Index (HashMap k v)
-> Optional' (HashMap k v) (IxValue (HashMap k v))
forall c.
(Index c -> c -> Maybe (IxValue c))
-> (Index c -> IxValue c -> c -> c)
-> Index c
-> Optional' c (IxValue c)
ixMap k -> HashMap k v -> Maybe v
Index (HashMap k v) -> HashMap k v -> Maybe (IxValue (HashMap k v))
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup k -> v -> HashMap k v -> HashMap k v
Index (HashMap k v)
-> IxValue (HashMap k v) -> HashMap k v -> HashMap k v
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
HashMap.insert
instance Ixed (Maybe a) where
type Index (Maybe a) = ()
type IxValue (Maybe a) = a
ix :: Index (Maybe a) -> Optional' (Maybe a) (IxValue (Maybe a))
ix Index (Maybe a)
_ = (Maybe a -> Maybe a)
-> (Maybe a -> a -> Maybe a) -> Optional (Maybe a) (Maybe a) a a
forall s a b. (s -> Maybe a) -> (s -> b -> s) -> Optional s s a b
optional' Maybe a -> Maybe a
forall a. a -> a
id (\ Maybe a
_ a
a -> a -> Maybe a
forall a. a -> Maybe a
Just a
a)
instance Ixed [v] where
type Index [v] = Int
type IxValue [v] = v
ix :: Index [v] -> Optional' [v] (IxValue [v])
ix Index [v]
k = Key -> Optional' [v] v
forall a. Key -> Optional' [a] a
ixList Key
Index [v]
k
instance Ixed (NonEmpty.NonEmpty v) where
type Index (NonEmpty.NonEmpty v) = Int
type IxValue (NonEmpty.NonEmpty v) = v
ix :: Index (NonEmpty v) -> Optional' (NonEmpty v) (IxValue (NonEmpty v))
ix Index (NonEmpty v)
k
| Key
Index (NonEmpty v)
k Key -> Key -> Bool
forall a. Ord a => a -> a -> Bool
<= Key
0 = Optic p (NonEmpty v) (NonEmpty v) v v
p (IxValue (NonEmpty v)) (IxValue (NonEmpty v))
-> p (NonEmpty v) (NonEmpty v)
forall a (p :: * -> * -> *).
IsLens p =>
Optic p (NonEmpty a) (NonEmpty a) a a
head_
| Bool
otherwise = Optic p (NonEmpty v) (NonEmpty v) [v] [v]
forall a (p :: * -> * -> *).
IsLens p =>
Optic p (NonEmpty a) (NonEmpty a) [a] [a]
tail_Optic p (NonEmpty v) (NonEmpty v) [v] [v]
-> (p v v -> p [v] [v]) -> Optic p (NonEmpty v) (NonEmpty v) v v
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Key -> Optional' [v] v
forall a. Key -> Optional' [a] a
ixList (Key
Index (NonEmpty v)
k Key -> Key -> Key
forall a. Num a => a -> a -> a
- Key
1)
ixSet :: (Index c -> c -> Bool) -> (Index c -> c -> c) -> Index c -> Optional' c ()
ixSet :: forall c.
(Index c -> c -> Bool)
-> (Index c -> c -> c) -> Index c -> Optional' c ()
ixSet Index c -> c -> Bool
member Index c -> c -> c
insert Index c
k = (c -> Maybe ()) -> (c -> () -> c) -> Optional c c () ()
forall s a b. (s -> Maybe a) -> (s -> b -> s) -> Optional s s a b
optional' (Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard (Bool -> Maybe ()) -> (c -> Bool) -> c -> Maybe ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Index c -> c -> Bool
member Index c
k) (c -> () -> c
forall a b. a -> b -> a
const (c -> () -> c) -> (c -> c) -> c -> () -> c
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Index c -> c -> c
insert Index c
k)
ixMap :: (Index c -> c -> Maybe (IxValue c)) -> (Index c -> IxValue c -> c -> c) -> Index c -> Optional' c (IxValue c)
ixMap :: forall c.
(Index c -> c -> Maybe (IxValue c))
-> (Index c -> IxValue c -> c -> c)
-> Index c
-> Optional' c (IxValue c)
ixMap Index c -> c -> Maybe (IxValue c)
lookup Index c -> IxValue c -> c -> c
insert Index c
k = (c -> Maybe (IxValue c))
-> (c -> IxValue c -> c) -> Optional c c (IxValue c) (IxValue c)
forall s a b. (s -> Maybe a) -> (s -> b -> s) -> Optional s s a b
optional' (Index c -> c -> Maybe (IxValue c)
lookup Index c
k) ((IxValue c -> c -> c) -> c -> IxValue c -> c
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Index c -> IxValue c -> c -> c
insert Index c
k))
ixList :: Int -> Optional' [a] a
ixList :: forall a. Key -> Optional' [a] a
ixList Key
i = ([a] -> Maybe a) -> ([a] -> a -> [a]) -> Optional [a] [a] a a
forall s a b. (s -> Maybe a) -> (s -> b -> s) -> Optional s s a b
optional' (Key -> [a] -> Maybe a
forall {t} {a}. (Ord t, Num t) => t -> [a] -> Maybe a
get Key
i) (Key -> [a] -> a -> [a]
forall {t} {t}. (Ord t, Num t) => t -> [t] -> t -> [t]
set Key
i)
where
get :: t -> [a] -> Maybe a
get t
i [a]
as = case [a]
as of
[] -> Maybe a
forall a. Maybe a
Nothing
a
a:[a]
as -> if t
i t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<= t
0 then a -> Maybe a
forall a. a -> Maybe a
Just a
a else t -> [a] -> Maybe a
get (t
i t -> t -> t
forall a. Num a => a -> a -> a
- t
1) [a]
as
set :: t -> [t] -> t -> [t]
set t
i [t]
as t
a' = case [t]
as of
[] -> [t]
as
t
a:[t]
as -> if t
i t -> t -> Bool
forall a. Ord a => a -> a -> Bool
<= t
0 then t
a't -> [t] -> [t]
forall a. a -> [a] -> [a]
:[t]
as else t
a t -> [t] -> [t]
forall a. a -> [a] -> [a]
: t -> [t] -> t -> [t]
set (t
i t -> t -> t
forall a. Num a => a -> a -> a
- t
1) [t]
as t
a'