Safe Haskell | None |
---|---|
Language | Haskell2010 |
Generic combinators to derive type class instances.
base classes that GHC can not derive instances for, as of version 8.2:
Semigroup
,Monoid
,Applicative
,Alternative
,Eq1
,Ord1
,Show1
.
On base < 4.12 (i.e., GHC < 8.6), import Generic.Data.Orphans to obtain instances needed internally to derive those.
GHC can derive instances for other classes here, although there may be types supported by one method but not the other or vice versa.
Synopsis
- gmappend :: (Generic a, Semigroup (Rep a ())) => a -> a -> a
- gmempty :: (Generic a, Monoid (Rep a ())) => a
- gmappend' :: (Generic a, Monoid (Rep a ())) => a -> a -> a
- geq :: (Generic a, Eq (Rep a ())) => a -> a -> Bool
- gcompare :: (Generic a, Ord (Rep a ())) => a -> a -> Ordering
- gshowsPrec :: (Generic a, GShow0 (Rep a)) => Int -> a -> ShowS
- type GShow0 = GShow Proxy
- class GEnum opts f
- data StandardEnum
- gtoEnum :: (Generic a, GEnum StandardEnum (Rep a)) => Int -> a
- gfromEnum :: (Generic a, GEnum StandardEnum (Rep a)) => a -> Int
- genumFrom :: (Generic a, GEnum StandardEnum (Rep a)) => a -> [a]
- genumFromThen :: (Generic a, GEnum StandardEnum (Rep a)) => a -> a -> [a]
- genumFromTo :: (Generic a, GEnum StandardEnum (Rep a)) => a -> a -> [a]
- genumFromThenTo :: (Generic a, GEnum StandardEnum (Rep a)) => a -> a -> a -> [a]
- data FiniteEnum
- gtoFiniteEnum :: (Generic a, GEnum FiniteEnum (Rep a)) => Int -> a
- gfromFiniteEnum :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> Int
- gfiniteEnumFrom :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> [a]
- gfiniteEnumFromThen :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> a -> [a]
- gfiniteEnumFromTo :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> a -> [a]
- gfiniteEnumFromThenTo :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> a -> a -> [a]
- gminBound :: (Generic a, GBounded (Rep a)) => a
- gmaxBound :: (Generic a, GBounded (Rep a)) => a
- class GBounded f
- grange :: (Generic a, GIx (Rep a)) => (a, a) -> [a]
- gindex :: (Generic a, GIx (Rep a)) => (a, a) -> a -> Int
- ginRange :: (Generic a, GIx (Rep a)) => (a, a) -> a -> Bool
- class GIx f
- gunsafeIndex :: (Generic a, GIx (Rep a)) => (a, a) -> a -> Int
- gfmap :: (Generic1 f, Functor (Rep1 f)) => (a -> b) -> f a -> f b
- gconstmap :: (Generic1 f, Functor (Rep1 f)) => a -> f b -> f a
- gfoldMap :: (Generic1 f, Foldable (Rep1 f), Monoid m) => (a -> m) -> f a -> m
- gfoldr :: (Generic1 f, Foldable (Rep1 f)) => (a -> b -> b) -> b -> f a -> b
- gtraverse :: (Generic1 f, Traversable (Rep1 f), Applicative m) => (a -> m b) -> f a -> m (f b)
- gsequenceA :: (Generic1 f, Traversable (Rep1 f), Applicative m) => f (m a) -> m (f a)
- gpure :: (Generic1 f, Applicative (Rep1 f)) => a -> f a
- gap :: (Generic1 f, Applicative (Rep1 f)) => f (a -> b) -> f a -> f b
- gliftA2 :: (Generic1 f, Applicative (Rep1 f)) => (a -> b -> c) -> f a -> f b -> f c
- gempty :: (Generic1 f, Alternative (Rep1 f)) => f a
- galt :: (Generic1 f, Alternative (Rep1 f)) => f a -> f a -> f a
- gliftEq :: (Generic1 f, Eq1 (Rep1 f)) => (a -> b -> Bool) -> f a -> f b -> Bool
- gliftCompare :: (Generic1 f, Ord1 (Rep1 f)) => (a -> b -> Ordering) -> f a -> f b -> Ordering
- gliftShowsPrec :: (Generic1 f, GShow1 (Rep1 f)) => (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS
- type GShow1 = GShow Identity
- newtype Id1 f a = Id1 {
- unId1 :: f a
- newtype Opaque a = Opaque {
- unOpaque :: a
- newtype Opaque1 f a = Opaque1 {
- unOpaque1 :: f a
- newtype Generically a = Generically {
- unGenerically :: a
- newtype GenericProduct a = GenericProduct {
- unGenericProduct :: a
- newtype FiniteEnumeration a = FiniteEnumeration {
- unFiniteEnumeration :: a
- newtype Generically1 f a = Generically1 {
- unGenerically1 :: f a
- class (Generic a, Coercible a (Old a), Newtype' a) => Newtype a
- type Old a = GOld (Rep a)
- pack :: Newtype a => Old a -> a
- unpack :: Newtype a => a -> Old a
- gcoerce :: (Generic a, Generic b, Coercible (Rep a) (Rep b)) => a -> b
- gcoerceBinop :: (Generic a, Generic b, Coercible (Rep a) (Rep b)) => (a -> a -> a) -> b -> b -> b
- gdatatypeName :: forall a. (Generic a, GDatatype (Rep a)) => String
- gmoduleName :: forall a. (Generic a, GDatatype (Rep a)) => String
- gpackageName :: forall a. (Generic a, GDatatype (Rep a)) => String
- gisNewtype :: forall a. (Generic a, GDatatype (Rep a)) => Bool
- class GDatatype f
- gconName :: forall a. Constructors a => a -> String
- gconFixity :: forall a. Constructors a => a -> Fixity
- gconIsRecord :: forall a. Constructors a => a -> Bool
- gconNum :: forall a. Constructors a => Int
- gconIndex :: forall a. Constructors a => a -> Int
- class (Generic a, GConstructors (Rep a)) => Constructors a
- class GConstructors r
- data ConId a
- conId :: forall a. Constructors a => a -> ConId a
- conIdToInt :: forall a. ConId a -> Int
- conIdToString :: forall a. Constructors a => ConId a -> String
- conIdEnum :: forall a. Constructors a => [ConId a]
- conIdNamed :: forall s a. ConIdNamed s a => ConId a
- class (Generic a, KnownNat (ConIdNamed' n a)) => ConIdNamed n a
- type family MetaOf (f :: * -> *) :: Meta where ...
- type family MetaDataName (m :: Meta) :: Symbol where ...
- type family MetaDataModule (m :: Meta) :: Symbol where ...
- type family MetaDataPackage (m :: Meta) :: Symbol where ...
- type family MetaDataNewtype (m :: Meta) :: Bool where ...
- type family MetaConsName (m :: Meta) :: Symbol where ...
- type family MetaConsFixity (m :: Meta) :: FixityI where ...
- type family MetaConsRecord (m :: Meta) :: Bool where ...
- type family MetaSelNameM (m :: Meta) :: Maybe Symbol where ...
- type family MetaSelName (m :: Meta) :: Symbol where ...
- type family MetaSelUnpack (m :: Meta) :: SourceUnpackedness where ...
- type family MetaSelSourceStrictness (m :: Meta) :: SourceStrictness where ...
- type family MetaSelStrictness (m :: Meta) :: DecidedStrictness where ...
Regular classes
Semigroup
Monoid
Eq
Can also be derived by GHC as part of the standard.
Ord
Can also be derived by GHC as part of the standard.
Show
Can also be derived by GHC as part of the standard.
gshowsPrec :: (Generic a, GShow0 (Rep a)) => Int -> a -> ShowS Source #
Generic showsPrec
.
instanceShow
MyType whereshowsPrec
=gshowsPrec
Enum
Generic representation of Enum
types.
The opts
parameter is a type-level option to select different
implementations.
Instances
GEnum opts (U1 :: Type -> Type) Source # | |
(GEnum opts f, GEnum opts g) => GEnum opts (f :+: g) Source # | |
(Bounded c, Enum c) => GEnum FiniteEnum (K1 i c :: Type -> Type) Source # | |
(GEnum FiniteEnum f, GEnum FiniteEnum g) => GEnum FiniteEnum (f :*: g) Source # | |
GEnum opts f => GEnum opts (M1 i c f) Source # | |
StandardEnum option
Can also be derived by GHC as part of the standard.
data StandardEnum Source #
Standard option for GEnum
: derive Enum
for types with only nullary
constructors (the same restrictions as in the Haskell 2010
report).
gtoEnum :: (Generic a, GEnum StandardEnum (Rep a)) => Int -> a Source #
Generic toEnum
generated with the StandardEnum
option.
instanceEnum
MyType wheretoEnum
=gtoEnum
fromEnum
=gfromEnum
enumFrom
=genumFrom
enumFromThen
=genumFromThen
enumFromTo
=genumFromTo
enumFromThenTo
=genumFromThenTo
gfromEnum :: (Generic a, GEnum StandardEnum (Rep a)) => a -> Int Source #
Generic fromEnum
generated with the StandardEnum
option.
See also gtoEnum
.
genumFrom :: (Generic a, GEnum StandardEnum (Rep a)) => a -> [a] Source #
Generic enumFrom
generated with the StandardEnum
option.
See also gtoEnum
.
genumFromThen :: (Generic a, GEnum StandardEnum (Rep a)) => a -> a -> [a] Source #
Generic enumFromThen
generated with the StandardEnum
option.
See also gtoEnum
.
genumFromTo :: (Generic a, GEnum StandardEnum (Rep a)) => a -> a -> [a] Source #
Generic enumFromTo
generated with the StandardEnum
option.
See also gtoEnum
.
genumFromThenTo :: (Generic a, GEnum StandardEnum (Rep a)) => a -> a -> a -> [a] Source #
Generic enumFromThenTo
generated with the StandardEnum
option.
See also gtoEnum
.
FiniteEnum option
data FiniteEnum Source #
Extends the StandardEnum
option for GEnum
to allow all constructors to
have arbitrary many fields. Each field type must be an instance of
both Enum
and Bounded
.
Details
Two restrictions require the user's caution:
- The
Enum
instances of the field types need to start enumerating from 0. ParticularlyInt
is an unfit field type, because the enumeration of the negative values starts before 0. - There can only be up to
values (because the implementation represents the cardinality explicitly as anmaxBound
::Int
Int
). This restriction makesWord
an invalid field type. Notably, it is insufficient for each individual field types to stay below this limit. Instead it applies to the generic type as a whole.
The resulting GEnum
instance starts enumerating from 0
up to
(cardinality - 1)
and respects the generic Ord
instance (defined by
gcompare
). The values from different constructors are enumerated
sequentially; they are not interleaved.
data Example = C0 Bool Bool | C1 Bool deriving (Eq
,Ord
,Show
,Generic
) cardinality = 6 -- 2 * 2 + 2 -- Bool * Bool | Bool enumeration = [ C0 False False , C0 False True , C0 True False , C0 True True , C1 False , C1 True ] enumeration == mapgtoFiniteEnum
[0 .. 5] [0 .. 5] == mapgfromFiniteEnum
enumeration
Instances
(Bounded c, Enum c) => GEnum FiniteEnum (K1 i c :: Type -> Type) Source # | |
(GEnum FiniteEnum f, GEnum FiniteEnum g) => GEnum FiniteEnum (f :*: g) Source # | |
gtoFiniteEnum :: (Generic a, GEnum FiniteEnum (Rep a)) => Int -> a Source #
Generic toEnum
generated with the FiniteEnum
option.
instanceEnum
MyType wheretoEnum
=gtoFiniteEnum
fromEnum
=gfromFiniteEnum
enumFrom
=gfiniteEnumFrom
enumFromThen
=gfiniteEnumFromThen
enumFromTo
=gfiniteEnumFromTo
enumFromThenTo
=gfiniteEnumFromThenTo
gfromFiniteEnum :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> Int Source #
Generic fromEnum
generated with the FiniteEnum
option.
See also gtoFiniteEnum
.
gfiniteEnumFrom :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> [a] Source #
Generic enumFrom
generated with the FiniteEnum
option.
See also gtoFiniteEnum
.
gfiniteEnumFromThen :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> a -> [a] Source #
Generic enumFromThen
generated with the FiniteEnum
option.
See also gtoFiniteEnum
.
gfiniteEnumFromTo :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> a -> [a] Source #
Generic enumFromTo
generated with the FiniteEnum
option.
See also gtoFiniteEnum
.
gfiniteEnumFromThenTo :: (Generic a, GEnum FiniteEnum (Rep a)) => a -> a -> a -> [a] Source #
Generic enumFromThenTo
generated with the FiniteEnum
option.
See also gtoFiniteEnum
.
Bounded
Can also be derived by GHC as part of the standard.
Generic representation of Bounded
types.
Ix
Can also be derived by GHC as part of the standard.
Generic representation of Ix
types.
gunsafeIndex :: (Generic a, GIx (Rep a)) => (a, a) -> a -> Int Source #
Generic unsafeIndex
.
Details
The functions unsafeIndex
and unsafeRangeSize
belong to Ix
but are
internal to GHC and hence not exported from the module Data.Ix. However they
are exported from the module GHC.Arr
.
See grange
for how to define an instance of Ix
such that it does not
depend on the stability of GHCs internal API. Unfortunately this results in
additional (unnecessary) bound checks.
With the danger of having no stability guarantees for GHC's internal API one
can alternatively define an instance of Ix
as
import GHC.Arr instanceIx
MyType whererange
=grange
unsafeIndex =gunsafeIndex
inRange
=ginRange
Higher-kinded classes
Functor
Can also be derived by GHC (DeriveFunctor
extension).
Foldable
Can also be derived by GHC (DeriveFoldable
extension).
Traversable
Can also be derived by GHC (DeriveTraversable
extension).
gtraverse :: (Generic1 f, Traversable (Rep1 f), Applicative m) => (a -> m b) -> f a -> m (f b) Source #
Generic traverse
.
instanceTraversable
MyTypeF wheretraverse
=gtraverse
gsequenceA :: (Generic1 f, Traversable (Rep1 f), Applicative m) => f (m a) -> m (f a) Source #
Applicative
Alternative
Eq1
gliftEq :: (Generic1 f, Eq1 (Rep1 f)) => (a -> b -> Bool) -> f a -> f b -> Bool Source #
Generic liftEq
.
Ord1
gliftCompare :: (Generic1 f, Ord1 (Rep1 f)) => (a -> b -> Ordering) -> f a -> f b -> Ordering Source #
Generic liftCompare
.
Show1
gliftShowsPrec :: (Generic1 f, GShow1 (Rep1 f)) => (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> f a -> ShowS Source #
Generic liftShowsPrec
.
Fields wrappers for deriving
A newtype whose instances for simple classes (Eq
, Ord
, Read
, Show
)
use higher-kinded class instances for f
(Eq1
, Ord1
, Read1
, Show1
).
Instances
Eq1 f => Eq1 (Id1 f) Source # | |
Ord1 f => Ord1 (Id1 f) Source # | |
Defined in Generic.Data.Internal.Resolvers | |
Read1 f => Read1 (Id1 f) Source # | |
Defined in Generic.Data.Internal.Resolvers | |
Show1 f => Show1 (Id1 f) Source # | |
(Eq1 f, Eq a) => Eq (Id1 f a) Source # | |
(Ord1 f, Ord a) => Ord (Id1 f a) Source # | |
Defined in Generic.Data.Internal.Resolvers | |
(Read1 f, Read a) => Read (Id1 f a) Source # | |
(Show1 f, Show a) => Show (Id1 f a) Source # | |
A newtype with trivial instances, that considers
every value equivalent to every other one,
and shows as just "_"
.
A higher-kinded version of Opaque
.
Instances
Eq1 (Opaque1 f) Source # | All equal. |
Ord1 (Opaque1 f) Source # | All equal. |
Defined in Generic.Data.Internal.Resolvers | |
Show1 (Opaque1 f) Source # | Shown as |
Eq (Opaque1 f a) Source # | All equal. |
Ord (Opaque1 f a) Source # | All equal. |
Defined in Generic.Data.Internal.Resolvers | |
Show (Opaque1 f a) Source # | Shown as |
Carriers of generic instances
newtype Generically a Source #
Type with instances derived via Generic
.
Generically | |
|
Instances
newtype GenericProduct a Source #
Product type with generic instances of Semigroup
and Monoid
.
This is similar to Generically
in most cases, but
GenericProduct
also works for types T
with deriving
via
, where GenericProduct
UU
is a generic product type coercible to,
but distinct from T
. In particular, U
may not have an instance of
Semigroup
, which Generically
requires.
Example
>>>
:set -XDeriveGeneric -XDerivingVia
>>>
data Point a = Point a a deriving Generic
>>>
:{
newtype Vector a = Vector (Point a) deriving (Semigroup, Monoid) via GenericProduct (Point (Sum a)) :}
If it were via
instead, then
Generically
(Point (Sum a))Vector
's mappend
(the Monoid
method) would be defined as Point
's
(
(the <>
)Semigroup
method), which might not exist, or might not be
equivalent to Vector
's generic Semigroup
instance, which would be
unlawful.
Instances
Generic a => Generic (GenericProduct a) Source # | |
Defined in Generic.Data.Internal.Generically type Rep (GenericProduct a) :: Type -> Type # from :: GenericProduct a -> Rep (GenericProduct a) x # to :: Rep (GenericProduct a) x -> GenericProduct a # | |
(AssertNoSum Semigroup a, Generic a, Semigroup (Rep a ())) => Semigroup (GenericProduct a) Source # | |
Defined in Generic.Data.Internal.Generically (<>) :: GenericProduct a -> GenericProduct a -> GenericProduct a # sconcat :: NonEmpty (GenericProduct a) -> GenericProduct a # stimes :: Integral b => b -> GenericProduct a -> GenericProduct a # | |
(AssertNoSum Semigroup a, Generic a, Monoid (Rep a ())) => Monoid (GenericProduct a) Source # | |
Defined in Generic.Data.Internal.Generically mempty :: GenericProduct a # mappend :: GenericProduct a -> GenericProduct a -> GenericProduct a # mconcat :: [GenericProduct a] -> GenericProduct a # | |
type Rep (GenericProduct a) Source # | |
Defined in Generic.Data.Internal.Generically |
newtype FiniteEnumeration a Source #
Type with Enum
instance derived via Generic
with FiniteEnum
option.
Instances
(Generic a, GEnum FiniteEnum (Rep a)) => Enum (FiniteEnumeration a) Source # | |
Defined in Generic.Data.Internal.Generically succ :: FiniteEnumeration a -> FiniteEnumeration a # pred :: FiniteEnumeration a -> FiniteEnumeration a # toEnum :: Int -> FiniteEnumeration a # fromEnum :: FiniteEnumeration a -> Int # enumFrom :: FiniteEnumeration a -> [FiniteEnumeration a] # enumFromThen :: FiniteEnumeration a -> FiniteEnumeration a -> [FiniteEnumeration a] # enumFromTo :: FiniteEnumeration a -> FiniteEnumeration a -> [FiniteEnumeration a] # enumFromThenTo :: FiniteEnumeration a -> FiniteEnumeration a -> FiniteEnumeration a -> [FiniteEnumeration a] # | |
Generic a => Generic (FiniteEnumeration a) Source # | |
Defined in Generic.Data.Internal.Generically type Rep (FiniteEnumeration a) :: Type -> Type # from :: FiniteEnumeration a -> Rep (FiniteEnumeration a) x # to :: Rep (FiniteEnumeration a) x -> FiniteEnumeration a # | |
type Rep (FiniteEnumeration a) Source # | |
Defined in Generic.Data.Internal.Generically |
newtype Generically1 f a Source #
Type with instances derived via Generic1
.
Generically1 | |
|
Instances
Newtype
Generic pack/unpack.
class (Generic a, Coercible a (Old a), Newtype' a) => Newtype a Source #
type Old a = GOld (Rep a) Source #
The type wrapped by a newtype.
newtype Foo = Foo { bar :: Bar } deriving Generic
-- Old Foo ~ Bar
Generic coercions
gcoerce :: (Generic a, Generic b, Coercible (Rep a) (Rep b)) => a -> b Source #
Convert between types with representationally equivalent generic representations.
gcoerceBinop :: (Generic a, Generic b, Coercible (Rep a) (Rep b)) => (a -> a -> a) -> b -> b -> b Source #
Compose gcoerce
with a binary operation.
Accessing metadata
Using TypeApplications
.
Datatype
gdatatypeName :: forall a. (Generic a, GDatatype (Rep a)) => String Source #
Name of the first data constructor in a type as a string.
>>>
gdatatypeName @(Maybe Int)
"Maybe"
gmoduleName :: forall a. (Generic a, GDatatype (Rep a)) => String Source #
Name of the module where the first type constructor is defined.
>>>
gmoduleName @(ZipList Int)
"Control.Applicative"
gpackageName :: forall a. (Generic a, GDatatype (Rep a)) => String Source #
Name of the package where the first type constructor is defined.
>>>
gpackageName @(Maybe Int)
"base"
gisNewtype :: forall a. (Generic a, GDatatype (Rep a)) => Bool Source #
True
if the first type constructor is a newtype.
>>>
gisNewtype @[Int]
False>>>
gisNewtype @(ZipList Int)
True
Generic representations that contain datatype metadata.
Instances
Datatype d => GDatatype (M1 D d f :: k -> Type) Source # | |
Defined in Generic.Data.Internal.Meta gDatatypeName :: String Source # gModuleName :: String Source # gPackageName :: String Source # gIsNewtype :: Bool Source # |
Constructor
gconName :: forall a. Constructors a => a -> String Source #
Name of the first constructor in a value.
>>>
gconName (Just 0)
"Just"
gconFixity :: forall a. Constructors a => a -> Fixity Source #
The fixity of the first constructor.
>>>
gconFixity (Just 0)
Prefix>>>
gconFixity ([] :*: id)
Infix RightAssociative 6
gconIsRecord :: forall a. Constructors a => a -> Bool Source #
True
if the constructor is a record.
>>>
gconIsRecord (Just 0)
False>>>
gconIsRecord (Sum 0) -- Note: newtype Sum a = Sum { getSum :: a }
True
gconNum :: forall a. Constructors a => Int Source #
Number of constructors.
>>>
gconNum @(Maybe Int)
2
gconIndex :: forall a. Constructors a => a -> Int Source #
Index of a constructor.
>>>
gconIndex Nothing
0>>>
gconIndex (Just "test")
1
class (Generic a, GConstructors (Rep a)) => Constructors a Source #
Constraint synonym for Generic
and GConstructors
.
Instances
(Generic a, GConstructors (Rep a)) => Constructors a Source # | |
Defined in Generic.Data.Internal.Meta |
class GConstructors r Source #
Generic representations that contain constructor metadata.
Instances
(GConstructors f, GConstructors g) => GConstructors (f :+: g :: k -> Type) Source # | |
Constructor c => GConstructors (M1 C c f :: k -> Type) Source # | |
GConstructors f => GConstructors (M1 D c f :: k -> Type) Source # | |
Constructor tags
An opaque identifier for a constructor.
conId :: forall a. Constructors a => a -> ConId a Source #
Identifier of a constructor.
conIdToInt :: forall a. ConId a -> Int Source #
Index of a constructor, given its identifier.
See also gconIndex
.
conIdToString :: forall a. Constructors a => ConId a -> String Source #
Name of a constructor. See also gconName
.
conIdEnum :: forall a. Constructors a => [ConId a] Source #
conIdNamed :: forall s a. ConIdNamed s a => ConId a Source #
Get a ConId
by name.
>>>
conIdNamed @"Nothing" :: ConId (Maybe Int)
ConId 0>>>
conIdNamed @"Just" :: ConId (Maybe Int)
ConId 1
class (Generic a, KnownNat (ConIdNamed' n a)) => ConIdNamed n a Source #
Constraint synonym for generic types a
with a constructor named n
.
Instances
(Generic a, KnownNat (ConIdNamed' n a)) => ConIdNamed n a Source # | |
Defined in Generic.Data.Internal.Meta |
Using type families
type family MetaDataName (m :: Meta) :: Symbol where ... Source #
Name of the data type (MetaData
).
MetaDataName (MetaData n _m _p _nt) = n |
type family MetaDataModule (m :: Meta) :: Symbol where ... Source #
Name of the module where the data type is defined (MetaData
)
MetaDataModule (MetaData _n m _p _nt) = m |
type family MetaDataPackage (m :: Meta) :: Symbol where ... Source #
Name of the package where the data type is defined (MetaData
)
MetaDataPackage (MetaData _n _m p _nt) = p |
type family MetaDataNewtype (m :: Meta) :: Bool where ... Source #
True
if the data type is a newtype (MetaData
).
MetaDataNewtype (MetaData _n _m _p nt) = nt |
type family MetaConsName (m :: Meta) :: Symbol where ... Source #
Name of the constructor (MetaCons
).
MetaConsName (MetaCons n _f _s) = n |
type family MetaConsFixity (m :: Meta) :: FixityI where ... Source #
Fixity of the constructor (MetaCons
).
MetaConsFixity (MetaCons _n f s) = f |
type family MetaConsRecord (m :: Meta) :: Bool where ... Source #
True
for a record constructor (MetaCons
).
MetaConsRecord (MetaCons _n _f s) = s |
type family MetaSelNameM (m :: Meta) :: Maybe Symbol where ... Source #
Just
the name of the record field, if it is one (MetaSel
).
MetaSelNameM (MetaSel mn _su _ss _ds) = mn |
type family MetaSelName (m :: Meta) :: Symbol where ... Source #
Name of the record field; undefined for non-record fields (MetaSel
).
MetaSelName (MetaSel (Just n) _su _ss _ds) = n |
type family MetaSelUnpack (m :: Meta) :: SourceUnpackedness where ... Source #
Unpackedness annotation of a field (MetaSel
).
MetaSelUnpack (MetaSel _mn su _ss _ds) = su |
type family MetaSelSourceStrictness (m :: Meta) :: SourceStrictness where ... Source #
Strictness annotation of a field (MetaSel
).
MetaSelSourceStrictness (MetaSel _mn _su ss _ds) = ss |
type family MetaSelStrictness (m :: Meta) :: DecidedStrictness where ... Source #
Inferred strictness of a field (MetaSel
).
MetaSelStrictness (MetaSel _mn _su _ss ds) = ds |