{-# OPTIONS_HADDOCK hide #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE TypeOperators #-}
module Data.Generics.Internal.Profunctor.Iso where
import Data.Profunctor (Profunctor(..))
import Data.Profunctor.Unsafe ((#.), (.#))
import GHC.Generics ((:*:)(..), (:+:)(..), Generic(..), M1(..), K1(..), Rep)
import Data.Coerce
import Data.Generics.Internal.GenericN (Rec (..))
import qualified Data.Generics.Internal.VL.Iso as VL
type Iso s t a b
= forall p. (Profunctor p) => p a b -> p s t
type Iso' s a = Iso s s a a
repIso :: (Generic a, Generic b) => Iso a b (Rep a x) (Rep b x)
repIso = iso from to
mIso :: Iso (M1 i c f p) (M1 i c g p) (f p) (g p)
mIso = iso unM1 M1
{-# INLINE mIso #-}
kIso :: Iso (K1 r a p) (K1 r b p) a b
kIso = iso unK1 K1
{-# INLINE kIso #-}
recIso :: Iso (Rec r a p) (Rec r b p) a b
recIso = iso (unK1 . unRec) (Rec . K1)
{-# INLINE recIso #-}
sumIso :: Iso ((a :+: b) x) ((a' :+: b') x) (Either (a x) (b x)) (Either (a' x) (b' x))
sumIso = iso back forth
where forth (Left l) = L1 l
forth (Right r) = R1 r
back (L1 l) = Left l
back (R1 r) = Right r
{-# INLINE sumIso #-}
prodIso :: Iso ((a :*: b) x) ((a' :*: b') x) (a x, b x) (a' x, b' x)
prodIso = iso (\(a :*: b) -> (a, b)) (\(a, b) -> (a :*: b))
assoc3 :: Iso ((a, b), c) ((a', b'), c') (a, (b, c)) (a', (b', c'))
assoc3 = iso (\((a, b), c) -> (a, (b, c))) (\(a, (b, c)) -> ((a, b), c))
fromIso :: Iso s t a b -> Iso b a t s
fromIso l = withIso l $ \ sa bt -> iso bt sa
{-# INLINE fromIso #-}
iso :: (s -> a) -> (b -> t) -> Iso s t a b
iso = dimap
{-# INLINE iso #-}
iso2isovl :: Iso s t a b -> VL.Iso s t a b
iso2isovl _iso = withIso _iso VL.iso
{-# INLINE iso2isovl #-}
withIso :: Iso s t a b -> ((s -> a) -> (b -> t) -> r) -> r
withIso ai k = case ai (Exchange id id) of
Exchange sa bt -> k sa bt
pairing :: Iso s t a b -> Iso s' t' a' b' -> Iso (s, s') (t, t') (a, a') (b, b')
pairing f g = withIso f $ \ sa bt -> withIso g $ \s'a' b't' ->
iso (bmap sa s'a') (bmap bt b't')
where bmap f' g' (a, b) = (f' a, g' b)
data Exchange a b s t = Exchange (s -> a) (b -> t)
instance Functor (Exchange a b s) where
fmap f (Exchange sa bt) = Exchange sa (f . bt)
{-# INLINE fmap #-}
instance Profunctor (Exchange a b) where
dimap f g (Exchange sa bt) = Exchange (sa . f) (g . bt)
{-# INLINE dimap #-}
lmap f (Exchange sa bt) = Exchange (sa . f) bt
{-# INLINE lmap #-}
rmap f (Exchange sa bt) = Exchange sa (f . bt)
{-# INLINE rmap #-}
( #. ) _ = coerce
{-# INLINE ( #. ) #-}
( .# ) p _ = coerce p
{-# INLINE ( .# ) #-}