{-# OPTIONS_HADDOCK hide #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE NoMonomorphismRestriction #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE TypeOperators #-}
module Data.Generics.Internal.VL.Prism where
import Data.Functor.Identity (Identity(..))
import Data.Profunctor (Choice(..), Profunctor(..))
import Data.Coerce
import Data.Generics.Internal.Profunctor.Prism (Market (..), plus, idPrism)
import Data.Tagged
import Data.Profunctor.Unsafe ((#.), (.#))
import Data.Monoid (First (..))
import Control.Applicative (Const(..))
type Prism s t a b
= forall p f. (Choice p, Applicative f) => p a (f b) -> p s (f t)
type Prism' s a
= Prism s s a a
infixl 8 ^?
(^?) :: s -> ((a -> Const (First a) a) -> s -> Const (First a) s) -> Maybe a
s ^? l = getFirst (fmof l (First #. Just) s)
where fmof l' f = getConst #. l' (Const #. f)
match :: Prism s t a b -> s -> Either t a
match k = withPrism k $ \_ _match -> _match
{-# INLINE match #-}
(#) :: (Tagged b (Identity b) -> Tagged t (Identity t)) -> b -> t
(#) = build
{-# INLINE (#) #-}
prism :: (b -> t) -> (s -> Either t a) -> Prism s t a b
prism bt seta eta = dimap (\x -> plus pure id (seta x)) (either id (\x -> fmap bt x)) (right' eta)
{-# INLINE prism #-}
prismRavel :: (Market a b a b -> Market a b s t) -> Prism s t a b
prismRavel l pab = (prism2prismvl $ l idPrism) pab
{-# INLINE prismRavel #-}
type APrismVL s t a b = Market a b a (Identity b) -> Market a b s (Identity t)
withPrism :: APrismVL s t a b -> ((b -> t) -> (s -> Either t a) -> r) -> r
withPrism k f = case coerce (k (Market Identity Right)) of
Market bt seta -> f bt seta
prism2prismvl :: Market a b s t -> Prism s t a b
prism2prismvl (Market bt seta) = prism bt seta
{-# INLINE prism2prismvl #-}
build :: (Tagged b (Identity b) -> Tagged t (Identity t)) -> b -> t
build p = runIdentity #. unTagged #. p .# Tagged .# Identity
{-# INLINE build #-}