{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


GHC.Hs.Types: Abstract syntax: user-defined types
-}

{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE UndecidableInstances #-} -- Note [Pass sensitive types]
                                      -- in module GHC.Hs.PlaceHolder
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeFamilies #-}

module GHC.Hs.Types (
        HsType(..), NewHsTypeX(..), LHsType, HsKind, LHsKind,
        HsTyVarBndr(..), LHsTyVarBndr, ForallVisFlag(..),
        LHsQTyVars(..),
        HsImplicitBndrs(..),
        HsWildCardBndrs(..),
        LHsSigType, LHsSigWcType, LHsWcType,
        HsTupleSort(..),
        HsContext, LHsContext, noLHsContext,
        HsTyLit(..),
        HsIPName(..), hsIPNameFS,
        HsArg(..), numVisibleArgs,
        LHsTypeArg,

        LBangType, BangType,
        HsSrcBang(..), HsImplBang(..),
        SrcStrictness(..), SrcUnpackedness(..),
        getBangType, getBangStrictness,

        ConDeclField(..), LConDeclField, pprConDeclFields,

        HsConDetails(..),

        FieldOcc(..), LFieldOcc, mkFieldOcc,
        AmbiguousFieldOcc(..), mkAmbiguousFieldOcc,
        rdrNameAmbiguousFieldOcc, selectorAmbiguousFieldOcc,
        unambiguousFieldOcc, ambiguousFieldOcc,

        mkAnonWildCardTy, pprAnonWildCard,

        mkHsImplicitBndrs, mkHsWildCardBndrs, hsImplicitBody,
        mkEmptyImplicitBndrs, mkEmptyWildCardBndrs,
        mkHsQTvs, hsQTvExplicit, emptyLHsQTvs, isEmptyLHsQTvs,
        isHsKindedTyVar, hsTvbAllKinded, isLHsForAllTy,
        hsScopedTvs, hsWcScopedTvs, dropWildCards,
        hsTyVarName, hsAllLTyVarNames, hsLTyVarLocNames,
        hsLTyVarName, hsLTyVarNames, hsLTyVarLocName, hsExplicitLTyVarNames,
        splitLHsInstDeclTy, getLHsInstDeclHead, getLHsInstDeclClass_maybe,
        splitLHsPatSynTy,
        splitLHsForAllTyInvis, splitLHsQualTy, splitLHsSigmaTyInvis,
        splitHsFunType, hsTyGetAppHead_maybe,
        mkHsOpTy, mkHsAppTy, mkHsAppTys, mkHsAppKindTy,
        ignoreParens, hsSigType, hsSigWcType,
        hsLTyVarBndrToType, hsLTyVarBndrsToTypes,
        hsTyKindSig,
        hsConDetailsArgs,

        -- Printing
        pprHsType, pprHsForAll, pprHsForAllExtra, pprHsExplicitForAll,
        pprLHsContext,
        hsTypeNeedsParens, parenthesizeHsType, parenthesizeHsContext
    ) where

#include "HsVersions.h"

import GhcPrelude

import {-# SOURCE #-} GHC.Hs.Expr ( HsSplice, pprSplice )

import GHC.Hs.Extension

import Id ( Id )
import Name( Name, NamedThing(getName) )
import RdrName ( RdrName )
import DataCon( HsSrcBang(..), HsImplBang(..),
                SrcStrictness(..), SrcUnpackedness(..) )
import TysPrim( funTyConName )
import TysWiredIn( mkTupleStr )
import Type
import GHC.Hs.Doc
import BasicTypes
import SrcLoc
import Outputable
import FastString
import Maybes( isJust )
import Util ( count, debugIsOn )

import Data.Data hiding ( Fixity, Prefix, Infix )

{-
************************************************************************
*                                                                      *
\subsection{Bang annotations}
*                                                                      *
************************************************************************
-}

-- | Located Bang Type
type LBangType pass = Located (BangType pass)

-- | Bang Type
--
-- In the parser, strictness and packedness annotations bind more tightly
-- than docstrings. This means that when consuming a 'BangType' (and looking
-- for 'HsBangTy') we must be ready to peer behind a potential layer of
-- 'HsDocTy'. See #15206 for motivation and 'getBangType' for an example.
type BangType pass  = HsType pass       -- Bangs are in the HsType data type

getBangType :: LHsType a -> LHsType a
getBangType :: LHsType a -> LHsType a
getBangType                 (L SrcSpan
_ (HsBangTy XBangTy a
_ HsSrcBang
_ LHsType a
lty))       = LHsType a
lty
getBangType (L SrcSpan
_ (HsDocTy XDocTy a
x (L SrcSpan
_ (HsBangTy XBangTy a
_ HsSrcBang
_ LHsType a
lty)) LHsDocString
lds)) =
  LHsType a -> LHsDocString -> SrcSpanLess (LHsType a) -> LHsType a
forall a b c.
(HasSrcSpan a, HasSrcSpan b, HasSrcSpan c) =>
a -> b -> SrcSpanLess c -> c
addCLoc LHsType a
lty LHsDocString
lds (XDocTy a -> LHsType a -> LHsDocString -> HsType a
forall pass.
XDocTy pass -> LHsType pass -> LHsDocString -> HsType pass
HsDocTy XDocTy a
x LHsType a
lty LHsDocString
lds)
getBangType LHsType a
lty                                            = LHsType a
lty

getBangStrictness :: LHsType a -> HsSrcBang
getBangStrictness :: LHsType a -> HsSrcBang
getBangStrictness                 (L SrcSpan
_ (HsBangTy XBangTy a
_ HsSrcBang
s LHsType a
_))     = HsSrcBang
s
getBangStrictness (L SrcSpan
_ (HsDocTy XDocTy a
_ (L SrcSpan
_ (HsBangTy XBangTy a
_ HsSrcBang
s LHsType a
_)) LHsDocString
_)) = HsSrcBang
s
getBangStrictness LHsType a
_ = (SourceText -> SrcUnpackedness -> SrcStrictness -> HsSrcBang
HsSrcBang SourceText
NoSourceText SrcUnpackedness
NoSrcUnpack SrcStrictness
NoSrcStrict)

{-
************************************************************************
*                                                                      *
\subsection{Data types}
*                                                                      *
************************************************************************

This is the syntax for types as seen in type signatures.

Note [HsBSig binder lists]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider a binder (or pattern) decorated with a type or kind,
   \ (x :: a -> a). blah
   forall (a :: k -> *) (b :: k). blah
Then we use a LHsBndrSig on the binder, so that the
renamer can decorate it with the variables bound
by the pattern ('a' in the first example, 'k' in the second),
assuming that neither of them is in scope already
See also Note [Kind and type-variable binders] in RnTypes

Note [HsType binders]
~~~~~~~~~~~~~~~~~~~~~
The system for recording type and kind-variable binders in HsTypes
is a bit complicated.  Here's how it works.

* In a HsType,
     HsForAllTy   represents an /explicit, user-written/ 'forall'
                   e.g.   forall a b.   {...} or
                          forall a b -> {...}
     HsQualTy     represents an /explicit, user-written/ context
                   e.g.   (Eq a, Show a) => ...
                  The context can be empty if that's what the user wrote
  These constructors represent what the user wrote, no more
  and no less.

* The ForallVisFlag field of HsForAllTy represents whether a forall is
  invisible (e.g., forall a b. {...}, with a dot) or visible
  (e.g., forall a b -> {...}, with an arrow).

* HsTyVarBndr describes a quantified type variable written by the
  user.  For example
     f :: forall a (b :: *).  blah
  here 'a' and '(b::*)' are each a HsTyVarBndr.  A HsForAllTy has
  a list of LHsTyVarBndrs.

* HsImplicitBndrs is a wrapper that gives the implicitly-quantified
  kind and type variables of the wrapped thing.  It is filled in by
  the renamer. For example, if the user writes
     f :: a -> a
  the HsImplicitBinders binds the 'a' (not a HsForAllTy!).
  NB: this implicit quantification is purely lexical: we bind any
      type or kind variables that are not in scope. The type checker
      may subsequently quantify over further kind variables.

* HsWildCardBndrs is a wrapper that binds the wildcard variables
  of the wrapped thing.  It is filled in by the renamer
     f :: _a -> _
  The enclosing HsWildCardBndrs binds the wildcards _a and _.

* The explicit presence of these wrappers specifies, in the HsSyn,
  exactly where implicit quantification is allowed, and where
  wildcards are allowed.

* LHsQTyVars is used in data/class declarations, where the user gives
  explicit *type* variable bindings, but we need to implicitly bind
  *kind* variables.  For example
      class C (a :: k -> *) where ...
  The 'k' is implicitly bound in the hsq_tvs field of LHsQTyVars

Note [The wildcard story for types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Types can have wildcards in them, to support partial type signatures,
like       f :: Int -> (_ , _a) -> _a

A wildcard in a type can be

  * An anonymous wildcard,
        written '_'
    In HsType this is represented by HsWildCardTy.
    The renamer leaves it untouched, and it is later given fresh meta tyvars in
    the typechecker.

  * A named wildcard,
        written '_a', '_foo', etc
    In HsType this is represented by (HsTyVar "_a")
    i.e. a perfectly ordinary type variable that happens
         to start with an underscore

Note carefully:

* When NamedWildCards is off, type variables that start with an
  underscore really /are/ ordinary type variables.  And indeed, even
  when NamedWildCards is on you can bind _a explicitly as an ordinary
  type variable:
        data T _a _b = MkT _b _a
  Or even:
        f :: forall _a. _a -> _b
  Here _a is an ordinary forall'd binder, but (With NamedWildCards)
  _b is a named wildcard.  (See the comments in #10982)

* Named wildcards are bound by the HsWildCardBndrs construct, which wraps
  types that are allowed to have wildcards. Unnamed wildcards however are left
  unchanged until typechecking, where we give them fresh wild tyavrs and
  determine whether or not to emit hole constraints on each wildcard
  (we don't if it's a visible type/kind argument or a type family pattern).
  See related notes Note [Wildcards in visible kind application]
  and Note [Wildcards in visible type application] in TcHsType.hs

* After type checking is done, we report what types the wildcards
  got unified with.

Note [Ordering of implicit variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Since the advent of -XTypeApplications, GHC makes promises about the ordering
of implicit variable quantification. Specifically, we offer that implicitly
quantified variables (such as those in const :: a -> b -> a, without a `forall`)
will occur in left-to-right order of first occurrence. Here are a few examples:

  const :: a -> b -> a       -- forall a b. ...
  f :: Eq a => b -> a -> a   -- forall a b. ...  contexts are included

  type a <-< b = b -> a
  g :: a <-< b               -- forall a b. ...  type synonyms matter

  class Functor f where
    fmap :: (a -> b) -> f a -> f b   -- forall f a b. ...
    -- The f is quantified by the class, so only a and b are considered in fmap

This simple story is complicated by the possibility of dependency: all variables
must come after any variables mentioned in their kinds.

  typeRep :: Typeable a => TypeRep (a :: k)   -- forall k a. ...

The k comes first because a depends on k, even though the k appears later than
the a in the code. Thus, GHC does a *stable topological sort* on the variables.
By "stable", we mean that any two variables who do not depend on each other
preserve their existing left-to-right ordering.

Implicitly bound variables are collected by the extract- family of functions
(extractHsTysRdrTyVars, extractHsTyVarBndrsKVs, etc.) in RnTypes.
These functions thus promise to keep left-to-right ordering.
Look for pointers to this note to see the places where the action happens.

Note that we also maintain this ordering in kind signatures. Even though
there's no visible kind application (yet), having implicit variables be
quantified in left-to-right order in kind signatures is nice since:

* It's consistent with the treatment for type signatures.
* It can affect how types are displayed with -fprint-explicit-kinds (see
  #15568 for an example), which is a situation where knowing the order in
  which implicit variables are quantified can be useful.
* In the event that visible kind application is implemented, the order in
  which we would expect implicit variables to be ordered in kinds will have
  already been established.
-}

-- | Located Haskell Context
type LHsContext pass = Located (HsContext pass)
      -- ^ 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnUnit'
      -- For details on above see note [Api annotations] in ApiAnnotation

noLHsContext :: LHsContext pass
-- Use this when there is no context in the original program
-- It would really be more kosher to use a Maybe, to distinguish
--     class () => C a where ...
-- from
--     class C a where ...
noLHsContext :: LHsContext pass
noLHsContext = SrcSpanLess (LHsContext pass) -> LHsContext pass
forall a. HasSrcSpan a => SrcSpanLess a -> a
noLoc []

-- | Haskell Context
type HsContext pass = [LHsType pass]

-- | Located Haskell Type
type LHsType pass = Located (HsType pass)
      -- ^ May have 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnComma' when
      --   in a list

      -- For details on above see note [Api annotations] in ApiAnnotation

-- | Haskell Kind
type HsKind pass = HsType pass

-- | Located Haskell Kind
type LHsKind pass = Located (HsKind pass)
      -- ^ 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon'

      -- For details on above see note [Api annotations] in ApiAnnotation

--------------------------------------------------
--             LHsQTyVars
--  The explicitly-quantified binders in a data/type declaration

-- | Located Haskell Type Variable Binder
type LHsTyVarBndr pass = Located (HsTyVarBndr pass)
                         -- See Note [HsType binders]

-- | Located Haskell Quantified Type Variables
data LHsQTyVars pass   -- See Note [HsType binders]
  = HsQTvs { LHsQTyVars pass -> XHsQTvs pass
hsq_ext :: XHsQTvs pass

           , LHsQTyVars pass -> [LHsTyVarBndr pass]
hsq_explicit :: [LHsTyVarBndr pass]
                -- Explicit variables, written by the user
                -- See Note [HsForAllTy tyvar binders]
    }
  | XLHsQTyVars (XXLHsQTyVars pass)

type HsQTvsRn = [Name]  -- Implicit variables
  -- For example, in   data T (a :: k1 -> k2) = ...
  -- the 'a' is explicit while 'k1', 'k2' are implicit

type instance XHsQTvs GhcPs = NoExtField
type instance XHsQTvs GhcRn = HsQTvsRn
type instance XHsQTvs GhcTc = HsQTvsRn

type instance XXLHsQTyVars  (GhcPass _) = NoExtCon

mkHsQTvs :: [LHsTyVarBndr GhcPs] -> LHsQTyVars GhcPs
mkHsQTvs :: [LHsTyVarBndr GhcPs] -> LHsQTyVars GhcPs
mkHsQTvs [LHsTyVarBndr GhcPs]
tvs = HsQTvs :: forall pass. XHsQTvs pass -> [LHsTyVarBndr pass] -> LHsQTyVars pass
HsQTvs { hsq_ext :: XHsQTvs GhcPs
hsq_ext = XHsQTvs GhcPs
NoExtField
noExtField, hsq_explicit :: [LHsTyVarBndr GhcPs]
hsq_explicit = [LHsTyVarBndr GhcPs]
tvs }

hsQTvExplicit :: LHsQTyVars pass -> [LHsTyVarBndr pass]
hsQTvExplicit :: LHsQTyVars pass -> [LHsTyVarBndr pass]
hsQTvExplicit = LHsQTyVars pass -> [LHsTyVarBndr pass]
forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsq_explicit

emptyLHsQTvs :: LHsQTyVars GhcRn
emptyLHsQTvs :: LHsQTyVars GhcRn
emptyLHsQTvs = HsQTvs :: forall pass. XHsQTvs pass -> [LHsTyVarBndr pass] -> LHsQTyVars pass
HsQTvs { hsq_ext :: XHsQTvs GhcRn
hsq_ext = [], hsq_explicit :: [LHsTyVarBndr GhcRn]
hsq_explicit = [] }

isEmptyLHsQTvs :: LHsQTyVars GhcRn -> Bool
isEmptyLHsQTvs :: LHsQTyVars GhcRn -> Bool
isEmptyLHsQTvs (HsQTvs { hsq_ext :: forall pass. LHsQTyVars pass -> XHsQTvs pass
hsq_ext = XHsQTvs GhcRn
imp, hsq_explicit :: forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsq_explicit = [LHsTyVarBndr GhcRn]
exp })
  = [Name] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Name]
XHsQTvs GhcRn
imp Bool -> Bool -> Bool
&& [LHsTyVarBndr GhcRn] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LHsTyVarBndr GhcRn]
exp
isEmptyLHsQTvs LHsQTyVars GhcRn
_ = Bool
False

------------------------------------------------
--            HsImplicitBndrs
-- Used to quantify the implicit binders of a type
--    * Implicit binders of a type signature (LHsSigType/LHsSigWcType)
--    * Patterns in a type/data family instance (HsTyPats)

-- | Haskell Implicit Binders
data HsImplicitBndrs pass thing   -- See Note [HsType binders]
  = HsIB { HsImplicitBndrs pass thing -> XHsIB pass thing
hsib_ext  :: XHsIB pass thing -- after renamer: [Name]
                                         -- Implicitly-bound kind & type vars
                                         -- Order is important; see
                                         -- Note [Ordering of implicit variables]
                                         -- in RnTypes

         , HsImplicitBndrs pass thing -> thing
hsib_body :: thing            -- Main payload (type or list of types)
    }
  | XHsImplicitBndrs (XXHsImplicitBndrs pass thing)

type instance XHsIB              GhcPs _ = NoExtField
type instance XHsIB              GhcRn _ = [Name]
type instance XHsIB              GhcTc _ = [Name]

type instance XXHsImplicitBndrs  (GhcPass _) _ = NoExtCon

-- | Haskell Wildcard Binders
data HsWildCardBndrs pass thing
    -- See Note [HsType binders]
    -- See Note [The wildcard story for types]
  = HsWC { HsWildCardBndrs pass thing -> XHsWC pass thing
hswc_ext :: XHsWC pass thing
                -- after the renamer
                -- Wild cards, only named
                -- See Note [Wildcards in visible kind application]

         , HsWildCardBndrs pass thing -> thing
hswc_body :: thing
                -- Main payload (type or list of types)
                -- If there is an extra-constraints wildcard,
                -- it's still there in the hsc_body.
    }
  | XHsWildCardBndrs (XXHsWildCardBndrs pass thing)

type instance XHsWC              GhcPs b = NoExtField
type instance XHsWC              GhcRn b = [Name]
type instance XHsWC              GhcTc b = [Name]

type instance XXHsWildCardBndrs  (GhcPass _) b = NoExtCon

-- | Located Haskell Signature Type
type LHsSigType   pass = HsImplicitBndrs pass (LHsType pass)    -- Implicit only

-- | Located Haskell Wildcard Type
type LHsWcType    pass = HsWildCardBndrs pass (LHsType pass)    -- Wildcard only

-- | Located Haskell Signature Wildcard Type
type LHsSigWcType pass = HsWildCardBndrs pass (LHsSigType pass) -- Both

-- See Note [Representing type signatures]

hsImplicitBody :: HsImplicitBndrs (GhcPass p) thing -> thing
hsImplicitBody :: HsImplicitBndrs (GhcPass p) thing -> thing
hsImplicitBody (HsIB { hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = thing
body }) = thing
body
hsImplicitBody (XHsImplicitBndrs XXHsImplicitBndrs (GhcPass p) thing
nec) = NoExtCon -> thing
forall a. NoExtCon -> a
noExtCon XXHsImplicitBndrs (GhcPass p) thing
NoExtCon
nec

hsSigType :: LHsSigType (GhcPass p) -> LHsType (GhcPass p)
hsSigType :: LHsSigType (GhcPass p) -> LHsType (GhcPass p)
hsSigType = LHsSigType (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass) thing.
HsImplicitBndrs (GhcPass p) thing -> thing
hsImplicitBody

hsSigWcType :: LHsSigWcType pass -> LHsType pass
hsSigWcType :: LHsSigWcType pass -> LHsType pass
hsSigWcType LHsSigWcType pass
sig_ty = HsImplicitBndrs pass (LHsType pass) -> LHsType pass
forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body (LHsSigWcType pass -> HsImplicitBndrs pass (LHsType pass)
forall pass thing. HsWildCardBndrs pass thing -> thing
hswc_body LHsSigWcType pass
sig_ty)

dropWildCards :: LHsSigWcType pass -> LHsSigType pass
-- Drop the wildcard part of a LHsSigWcType
dropWildCards :: LHsSigWcType pass -> LHsSigType pass
dropWildCards LHsSigWcType pass
sig_ty = LHsSigWcType pass -> LHsSigType pass
forall pass thing. HsWildCardBndrs pass thing -> thing
hswc_body LHsSigWcType pass
sig_ty

{- Note [Representing type signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
HsSigType is used to represent an explicit user type signature
such as   f :: a -> a
     or   g (x :: a -> a) = x

A HsSigType is just a HsImplicitBndrs wrapping a LHsType.
 * The HsImplicitBndrs binds the /implicitly/ quantified tyvars
 * The LHsType binds the /explicitly/ quantified tyvars

E.g. For a signature like
   f :: forall (a::k). blah
we get
   HsIB { hsib_vars = [k]
        , hsib_body = HsForAllTy { hst_bndrs = [(a::*)]
                                 , hst_body = blah }
The implicit kind variable 'k' is bound by the HsIB;
the explicitly forall'd tyvar 'a' is bound by the HsForAllTy
-}

mkHsImplicitBndrs :: thing -> HsImplicitBndrs GhcPs thing
mkHsImplicitBndrs :: thing -> HsImplicitBndrs GhcPs thing
mkHsImplicitBndrs thing
x = HsIB :: forall pass thing.
XHsIB pass thing -> thing -> HsImplicitBndrs pass thing
HsIB { hsib_ext :: XHsIB GhcPs thing
hsib_ext  = XHsIB GhcPs thing
NoExtField
noExtField
                           , hsib_body :: thing
hsib_body = thing
x }

mkHsWildCardBndrs :: thing -> HsWildCardBndrs GhcPs thing
mkHsWildCardBndrs :: thing -> HsWildCardBndrs GhcPs thing
mkHsWildCardBndrs thing
x = HsWC :: forall pass thing.
XHsWC pass thing -> thing -> HsWildCardBndrs pass thing
HsWC { hswc_body :: thing
hswc_body = thing
x
                           , hswc_ext :: XHsWC GhcPs thing
hswc_ext  = XHsWC GhcPs thing
NoExtField
noExtField }

-- Add empty binders.  This is a bit suspicious; what if
-- the wrapped thing had free type variables?
mkEmptyImplicitBndrs :: thing -> HsImplicitBndrs GhcRn thing
mkEmptyImplicitBndrs :: thing -> HsImplicitBndrs GhcRn thing
mkEmptyImplicitBndrs thing
x = HsIB :: forall pass thing.
XHsIB pass thing -> thing -> HsImplicitBndrs pass thing
HsIB { hsib_ext :: XHsIB GhcRn thing
hsib_ext = []
                              , hsib_body :: thing
hsib_body = thing
x }

mkEmptyWildCardBndrs :: thing -> HsWildCardBndrs GhcRn thing
mkEmptyWildCardBndrs :: thing -> HsWildCardBndrs GhcRn thing
mkEmptyWildCardBndrs thing
x = HsWC :: forall pass thing.
XHsWC pass thing -> thing -> HsWildCardBndrs pass thing
HsWC { hswc_body :: thing
hswc_body = thing
x
                              , hswc_ext :: XHsWC GhcRn thing
hswc_ext  = [] }


--------------------------------------------------
-- | These names are used early on to store the names of implicit
-- parameters.  They completely disappear after type-checking.
newtype HsIPName = HsIPName FastString
  deriving( HsIPName -> HsIPName -> Bool
(HsIPName -> HsIPName -> Bool)
-> (HsIPName -> HsIPName -> Bool) -> Eq HsIPName
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: HsIPName -> HsIPName -> Bool
$c/= :: HsIPName -> HsIPName -> Bool
== :: HsIPName -> HsIPName -> Bool
$c== :: HsIPName -> HsIPName -> Bool
Eq, Typeable HsIPName
DataType
Constr
Typeable HsIPName
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> HsIPName -> c HsIPName)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c HsIPName)
-> (HsIPName -> Constr)
-> (HsIPName -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c HsIPName))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsIPName))
-> ((forall b. Data b => b -> b) -> HsIPName -> HsIPName)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> HsIPName -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> HsIPName -> r)
-> (forall u. (forall d. Data d => d -> u) -> HsIPName -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> HsIPName -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> HsIPName -> m HsIPName)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsIPName -> m HsIPName)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsIPName -> m HsIPName)
-> Data HsIPName
HsIPName -> DataType
HsIPName -> Constr
(forall b. Data b => b -> b) -> HsIPName -> HsIPName
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsIPName -> c HsIPName
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsIPName
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> HsIPName -> u
forall u. (forall d. Data d => d -> u) -> HsIPName -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsIPName -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsIPName -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsIPName
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsIPName -> c HsIPName
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsIPName)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsIPName)
$cHsIPName :: Constr
$tHsIPName :: DataType
gmapMo :: (forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
gmapMp :: (forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
gmapM :: (forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsIPName -> m HsIPName
gmapQi :: Int -> (forall d. Data d => d -> u) -> HsIPName -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> HsIPName -> u
gmapQ :: (forall d. Data d => d -> u) -> HsIPName -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> HsIPName -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsIPName -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsIPName -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsIPName -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsIPName -> r
gmapT :: (forall b. Data b => b -> b) -> HsIPName -> HsIPName
$cgmapT :: (forall b. Data b => b -> b) -> HsIPName -> HsIPName
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsIPName)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsIPName)
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c HsIPName)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsIPName)
dataTypeOf :: HsIPName -> DataType
$cdataTypeOf :: HsIPName -> DataType
toConstr :: HsIPName -> Constr
$ctoConstr :: HsIPName -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsIPName
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsIPName
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsIPName -> c HsIPName
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsIPName -> c HsIPName
$cp1Data :: Typeable HsIPName
Data )

hsIPNameFS :: HsIPName -> FastString
hsIPNameFS :: HsIPName -> FastString
hsIPNameFS (HsIPName FastString
n) = FastString
n

instance Outputable HsIPName where
    ppr :: HsIPName -> SDoc
ppr (HsIPName FastString
n) = Char -> SDoc
char Char
'?' SDoc -> SDoc -> SDoc
<> FastString -> SDoc
ftext FastString
n -- Ordinary implicit parameters

instance OutputableBndr HsIPName where
    pprBndr :: BindingSite -> HsIPName -> SDoc
pprBndr BindingSite
_ HsIPName
n   = HsIPName -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsIPName
n         -- Simple for now
    pprInfixOcc :: HsIPName -> SDoc
pprInfixOcc  HsIPName
n = HsIPName -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsIPName
n
    pprPrefixOcc :: HsIPName -> SDoc
pprPrefixOcc HsIPName
n = HsIPName -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsIPName
n

--------------------------------------------------

-- | Haskell Type Variable Binder
data HsTyVarBndr pass
  = UserTyVar        -- no explicit kinding
         (XUserTyVar pass)
         (Located (IdP pass))
        -- See Note [Located RdrNames] in GHC.Hs.Expr
  | KindedTyVar
         (XKindedTyVar pass)
         (Located (IdP pass))
         (LHsKind pass)  -- The user-supplied kind signature
        -- ^
        --  - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen',
        --          'ApiAnnotation.AnnDcolon', 'ApiAnnotation.AnnClose'

        -- For details on above see note [Api annotations] in ApiAnnotation

  | XTyVarBndr
      (XXTyVarBndr pass)

type instance XUserTyVar    (GhcPass _) = NoExtField
type instance XKindedTyVar  (GhcPass _) = NoExtField

type instance XXTyVarBndr   (GhcPass _) = NoExtCon

-- | Does this 'HsTyVarBndr' come with an explicit kind annotation?
isHsKindedTyVar :: HsTyVarBndr pass -> Bool
isHsKindedTyVar :: HsTyVarBndr pass -> Bool
isHsKindedTyVar (UserTyVar {})   = Bool
False
isHsKindedTyVar (KindedTyVar {}) = Bool
True
isHsKindedTyVar (XTyVarBndr {})  = Bool
False

-- | Do all type variables in this 'LHsQTyVars' come with kind annotations?
hsTvbAllKinded :: LHsQTyVars pass -> Bool
hsTvbAllKinded :: LHsQTyVars pass -> Bool
hsTvbAllKinded = (LHsTyVarBndr pass -> Bool) -> [LHsTyVarBndr pass] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (HsTyVarBndr pass -> Bool
forall pass. HsTyVarBndr pass -> Bool
isHsKindedTyVar (HsTyVarBndr pass -> Bool)
-> (LHsTyVarBndr pass -> HsTyVarBndr pass)
-> LHsTyVarBndr pass
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LHsTyVarBndr pass -> HsTyVarBndr pass
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc) ([LHsTyVarBndr pass] -> Bool)
-> (LHsQTyVars pass -> [LHsTyVarBndr pass])
-> LHsQTyVars pass
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LHsQTyVars pass -> [LHsTyVarBndr pass]
forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsQTvExplicit

instance NamedThing (HsTyVarBndr GhcRn) where
  getName :: HsTyVarBndr GhcRn -> Name
getName (UserTyVar XUserTyVar GhcRn
_ Located (IdP GhcRn)
v) = Located Name -> SrcSpanLess (Located Name)
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc Located Name
Located (IdP GhcRn)
v
  getName (KindedTyVar XKindedTyVar GhcRn
_ Located (IdP GhcRn)
v LHsKind GhcRn
_) = Located Name -> SrcSpanLess (Located Name)
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc Located Name
Located (IdP GhcRn)
v
  getName (XTyVarBndr XXTyVarBndr GhcRn
nec) = NoExtCon -> Name
forall a. NoExtCon -> a
noExtCon XXTyVarBndr GhcRn
NoExtCon
nec

-- | Haskell Type
data HsType pass
  = HsForAllTy   -- See Note [HsType binders]
      { HsType pass -> XForAllTy pass
hst_xforall :: XForAllTy pass
      , HsType pass -> ForallVisFlag
hst_fvf     :: ForallVisFlag -- Is this `forall a -> {...}` or
                                     --         `forall a. {...}`?
      , HsType pass -> [LHsTyVarBndr pass]
hst_bndrs   :: [LHsTyVarBndr pass]
                                       -- Explicit, user-supplied 'forall a b c'
      , HsType pass -> LHsType pass
hst_body    :: LHsType pass      -- body type
      }
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnForall',
      --         'ApiAnnotation.AnnDot','ApiAnnotation.AnnDarrow'
      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsQualTy   -- See Note [HsType binders]
      { HsType pass -> XQualTy pass
hst_xqual :: XQualTy pass
      , HsType pass -> LHsContext pass
hst_ctxt  :: LHsContext pass       -- Context C => blah
      , hst_body  :: LHsType pass }

  | HsTyVar  (XTyVar pass)
              PromotionFlag    -- Whether explicitly promoted,
                               -- for the pretty printer
             (Located (IdP pass))
                  -- Type variable, type constructor, or data constructor
                  -- see Note [Promotions (HsTyVar)]
                  -- See Note [Located RdrNames] in GHC.Hs.Expr
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsAppTy             (XAppTy pass)
                        (LHsType pass)
                        (LHsType pass)
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsAppKindTy         (XAppKindTy pass) -- type level type app
                        (LHsType pass)
                        (LHsKind pass)

  | HsFunTy             (XFunTy pass)
                        (LHsType pass)   -- function type
                        (LHsType pass)
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnRarrow',

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsListTy            (XListTy pass)
                        (LHsType pass)  -- Element type
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'['@,
      --         'ApiAnnotation.AnnClose' @']'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsTupleTy           (XTupleTy pass)
                        HsTupleSort
                        [LHsType pass]  -- Element types (length gives arity)
    -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'(' or '(#'@,
    --         'ApiAnnotation.AnnClose' @')' or '#)'@

    -- For details on above see note [Api annotations] in ApiAnnotation

  | HsSumTy             (XSumTy pass)
                        [LHsType pass]  -- Element types (length gives arity)
    -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'(#'@,
    --         'ApiAnnotation.AnnClose' '#)'@

    -- For details on above see note [Api annotations] in ApiAnnotation

  | HsOpTy              (XOpTy pass)
                        (LHsType pass) (Located (IdP pass)) (LHsType pass)
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsParTy             (XParTy pass)
                        (LHsType pass)   -- See Note [Parens in HsSyn] in GHC.Hs.Expr
        -- Parenthesis preserved for the precedence re-arrangement in RnTypes
        -- It's important that a * (b + c) doesn't get rearranged to (a*b) + c!
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'('@,
      --         'ApiAnnotation.AnnClose' @')'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsIParamTy          (XIParamTy pass)
                        (Located HsIPName) -- (?x :: ty)
                        (LHsType pass)   -- Implicit parameters as they occur in
                                         -- contexts
      -- ^
      -- > (?x :: ty)
      --
      -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon'

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsStarTy            (XStarTy pass)
                        Bool             -- Is this the Unicode variant?
                                         -- Note [HsStarTy]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

  | HsKindSig           (XKindSig pass)
                        (LHsType pass)  -- (ty :: kind)
                        (LHsKind pass)  -- A type with a kind signature
      -- ^
      -- > (ty :: kind)
      --
      -- - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'('@,
      --         'ApiAnnotation.AnnDcolon','ApiAnnotation.AnnClose' @')'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsSpliceTy          (XSpliceTy pass)
                        (HsSplice pass)   -- Includes quasi-quotes
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'$('@,
      --         'ApiAnnotation.AnnClose' @')'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsDocTy             (XDocTy pass)
                        (LHsType pass) LHsDocString -- A documented type
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsBangTy    (XBangTy pass)
                HsSrcBang (LHsType pass)   -- Bang-style type annotations
      -- ^ - 'ApiAnnotation.AnnKeywordId' :
      --         'ApiAnnotation.AnnOpen' @'{-\# UNPACK' or '{-\# NOUNPACK'@,
      --         'ApiAnnotation.AnnClose' @'#-}'@
      --         'ApiAnnotation.AnnBang' @\'!\'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsRecTy     (XRecTy pass)
                [LConDeclField pass]    -- Only in data type declarations
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @'{'@,
      --         'ApiAnnotation.AnnClose' @'}'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  -- | HsCoreTy (XCoreTy pass) Type -- An escape hatch for tunnelling a *closed*
  --                                -- Core Type through HsSyn.
  --     -- ^ - 'ApiAnnotation.AnnKeywordId' : None

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsExplicitListTy       -- A promoted explicit list
        (XExplicitListTy pass)
        PromotionFlag      -- whether explcitly promoted, for pretty printer
        [LHsType pass]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @"'["@,
      --         'ApiAnnotation.AnnClose' @']'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsExplicitTupleTy      -- A promoted explicit tuple
        (XExplicitTupleTy pass)
        [LHsType pass]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnOpen' @"'("@,
      --         'ApiAnnotation.AnnClose' @')'@

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsTyLit (XTyLit pass) HsTyLit      -- A promoted numeric literal.
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

      -- For details on above see note [Api annotations] in ApiAnnotation

  | HsWildCardTy (XWildCardTy pass)  -- A type wildcard
      -- See Note [The wildcard story for types]
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

      -- For details on above see note [Api annotations] in ApiAnnotation

  -- For adding new constructors via Trees that Grow
  | XHsType
      (XXType pass)

data NewHsTypeX
  = NHsCoreTy Type -- An escape hatch for tunnelling a *closed*
                   -- Core Type through HsSyn.
    deriving Data
      -- ^ - 'ApiAnnotation.AnnKeywordId' : None

instance Outputable NewHsTypeX where
  ppr :: NewHsTypeX -> SDoc
ppr (NHsCoreTy Type
ty) = Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty

type instance XForAllTy        (GhcPass _) = NoExtField
type instance XQualTy          (GhcPass _) = NoExtField
type instance XTyVar           (GhcPass _) = NoExtField
type instance XAppTy           (GhcPass _) = NoExtField
type instance XFunTy           (GhcPass _) = NoExtField
type instance XListTy          (GhcPass _) = NoExtField
type instance XTupleTy         (GhcPass _) = NoExtField
type instance XSumTy           (GhcPass _) = NoExtField
type instance XOpTy            (GhcPass _) = NoExtField
type instance XParTy           (GhcPass _) = NoExtField
type instance XIParamTy        (GhcPass _) = NoExtField
type instance XStarTy          (GhcPass _) = NoExtField
type instance XKindSig         (GhcPass _) = NoExtField

type instance XAppKindTy       (GhcPass _) = SrcSpan -- Where the `@` lives

type instance XSpliceTy        GhcPs = NoExtField
type instance XSpliceTy        GhcRn = NoExtField
type instance XSpliceTy        GhcTc = Kind

type instance XDocTy           (GhcPass _) = NoExtField
type instance XBangTy          (GhcPass _) = NoExtField
type instance XRecTy           (GhcPass _) = NoExtField

type instance XExplicitListTy  GhcPs = NoExtField
type instance XExplicitListTy  GhcRn = NoExtField
type instance XExplicitListTy  GhcTc = Kind

type instance XExplicitTupleTy GhcPs = NoExtField
type instance XExplicitTupleTy GhcRn = NoExtField
type instance XExplicitTupleTy GhcTc = [Kind]

type instance XTyLit           (GhcPass _) = NoExtField

type instance XWildCardTy      (GhcPass _) = NoExtField

type instance XXType         (GhcPass _) = NewHsTypeX


-- Note [Literal source text] in BasicTypes for SourceText fields in
-- the following
-- | Haskell Type Literal
data HsTyLit
  = HsNumTy SourceText Integer
  | HsStrTy SourceText FastString
    deriving Typeable HsTyLit
DataType
Constr
Typeable HsTyLit
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> HsTyLit -> c HsTyLit)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c HsTyLit)
-> (HsTyLit -> Constr)
-> (HsTyLit -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c HsTyLit))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsTyLit))
-> ((forall b. Data b => b -> b) -> HsTyLit -> HsTyLit)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> HsTyLit -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> HsTyLit -> r)
-> (forall u. (forall d. Data d => d -> u) -> HsTyLit -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> HsTyLit -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit)
-> Data HsTyLit
HsTyLit -> DataType
HsTyLit -> Constr
(forall b. Data b => b -> b) -> HsTyLit -> HsTyLit
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTyLit -> c HsTyLit
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTyLit
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> HsTyLit -> u
forall u. (forall d. Data d => d -> u) -> HsTyLit -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsTyLit -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsTyLit -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTyLit
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTyLit -> c HsTyLit
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsTyLit)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsTyLit)
$cHsStrTy :: Constr
$cHsNumTy :: Constr
$tHsTyLit :: DataType
gmapMo :: (forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
gmapMp :: (forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
gmapM :: (forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsTyLit -> m HsTyLit
gmapQi :: Int -> (forall d. Data d => d -> u) -> HsTyLit -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> HsTyLit -> u
gmapQ :: (forall d. Data d => d -> u) -> HsTyLit -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> HsTyLit -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsTyLit -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsTyLit -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsTyLit -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsTyLit -> r
gmapT :: (forall b. Data b => b -> b) -> HsTyLit -> HsTyLit
$cgmapT :: (forall b. Data b => b -> b) -> HsTyLit -> HsTyLit
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsTyLit)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsTyLit)
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c HsTyLit)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsTyLit)
dataTypeOf :: HsTyLit -> DataType
$cdataTypeOf :: HsTyLit -> DataType
toConstr :: HsTyLit -> Constr
$ctoConstr :: HsTyLit -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTyLit
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTyLit
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTyLit -> c HsTyLit
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTyLit -> c HsTyLit
$cp1Data :: Typeable HsTyLit
Data


{-
Note [HsForAllTy tyvar binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
After parsing:
  * Implicit => empty
    Explicit => the variables the user wrote

After renaming
  * Implicit => the *type* variables free in the type
    Explicit => the variables the user wrote (renamed)

Qualified currently behaves exactly as Implicit,
but it is deprecated to use it for implicit quantification.
In this case, GHC 7.10 gives a warning; see
Note [Context quantification] in RnTypes, and #4426.
In GHC 8.0, Qualified will no longer bind variables
and this will become an error.

The kind variables bound in the hsq_implicit field come both
  a) from the kind signatures on the kind vars (eg k1)
  b) from the scope of the forall (eg k2)
Example:   f :: forall (a::k1) b. T a (b::k2)


Note [Unit tuples]
~~~~~~~~~~~~~~~~~~
Consider the type
    type instance F Int = ()
We want to parse that "()"
    as HsTupleTy HsBoxedOrConstraintTuple [],
NOT as HsTyVar unitTyCon

Why? Because F might have kind (* -> Constraint), so we when parsing we
don't know if that tuple is going to be a constraint tuple or an ordinary
unit tuple.  The HsTupleSort flag is specifically designed to deal with
that, but it has to work for unit tuples too.

Note [Promotions (HsTyVar)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
HsTyVar: A name in a type or kind.
  Here are the allowed namespaces for the name.
    In a type:
      Var: not allowed
      Data: promoted data constructor
      Tv: type variable
      TcCls before renamer: type constructor, class constructor, or promoted data constructor
      TcCls after renamer: type constructor or class constructor
    In a kind:
      Var, Data: not allowed
      Tv: kind variable
      TcCls: kind constructor or promoted type constructor

  The 'Promoted' field in an HsTyVar captures whether the type was promoted in
  the source code by prefixing an apostrophe.

Note [HsStarTy]
~~~~~~~~~~~~~~~
When the StarIsType extension is enabled, we want to treat '*' and its Unicode
variant identically to 'Data.Kind.Type'. Unfortunately, doing so in the parser
would mean that when we pretty-print it back, we don't know whether the user
wrote '*' or 'Type', and lose the parse/ppr roundtrip property.

As a workaround, we parse '*' as HsStarTy (if it stands for 'Data.Kind.Type')
and then desugar it to 'Data.Kind.Type' in the typechecker (see tc_hs_type).
When '*' is a regular type operator (StarIsType is disabled), HsStarTy is not
involved.


Note [Promoted lists and tuples]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Notice the difference between
   HsListTy    HsExplicitListTy
   HsTupleTy   HsExplicitListTupleTy

E.g.    f :: [Int]                      HsListTy

        g3  :: T '[]                   All these use
        g2  :: T '[True]                  HsExplicitListTy
        g1  :: T '[True,False]
        g1a :: T [True,False]             (can omit ' where unambiguous)

  kind of T :: [Bool] -> *        This kind uses HsListTy!

E.g.    h :: (Int,Bool)                 HsTupleTy; f is a pair
        k :: S '(True,False)            HsExplicitTypleTy; S is indexed by
                                           a type-level pair of booleans
        kind of S :: (Bool,Bool) -> *   This kind uses HsExplicitTupleTy

Note [Distinguishing tuple kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Apart from promotion, tuples can have one of three different kinds:

        x :: (Int, Bool)                -- Regular boxed tuples
        f :: Int# -> (# Int#, Int# #)   -- Unboxed tuples
        g :: (Eq a, Ord a) => a         -- Constraint tuples

For convenience, internally we use a single constructor for all of these,
namely HsTupleTy, but keep track of the tuple kind (in the first argument to
HsTupleTy, a HsTupleSort). We can tell if a tuple is unboxed while parsing,
because of the #. However, with -XConstraintKinds we can only distinguish
between constraint and boxed tuples during type checking, in general. Hence the
four constructors of HsTupleSort:

        HsUnboxedTuple                  -> Produced by the parser
        HsBoxedTuple                    -> Certainly a boxed tuple
        HsConstraintTuple               -> Certainly a constraint tuple
        HsBoxedOrConstraintTuple        -> Could be a boxed or a constraint
                                        tuple. Produced by the parser only,
                                        disappears after type checking
-}

-- | Haskell Tuple Sort
data HsTupleSort = HsUnboxedTuple
                 | HsBoxedTuple
                 | HsConstraintTuple
                 | HsBoxedOrConstraintTuple
                 deriving Typeable HsTupleSort
DataType
Constr
Typeable HsTupleSort
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> HsTupleSort -> c HsTupleSort)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c HsTupleSort)
-> (HsTupleSort -> Constr)
-> (HsTupleSort -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c HsTupleSort))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c HsTupleSort))
-> ((forall b. Data b => b -> b) -> HsTupleSort -> HsTupleSort)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r)
-> (forall u. (forall d. Data d => d -> u) -> HsTupleSort -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> HsTupleSort -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort)
-> Data HsTupleSort
HsTupleSort -> DataType
HsTupleSort -> Constr
(forall b. Data b => b -> b) -> HsTupleSort -> HsTupleSort
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTupleSort -> c HsTupleSort
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTupleSort
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> HsTupleSort -> u
forall u. (forall d. Data d => d -> u) -> HsTupleSort -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTupleSort
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTupleSort -> c HsTupleSort
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsTupleSort)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c HsTupleSort)
$cHsBoxedOrConstraintTuple :: Constr
$cHsConstraintTuple :: Constr
$cHsBoxedTuple :: Constr
$cHsUnboxedTuple :: Constr
$tHsTupleSort :: DataType
gmapMo :: (forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
gmapMp :: (forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
gmapM :: (forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsTupleSort -> m HsTupleSort
gmapQi :: Int -> (forall d. Data d => d -> u) -> HsTupleSort -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> HsTupleSort -> u
gmapQ :: (forall d. Data d => d -> u) -> HsTupleSort -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> HsTupleSort -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsTupleSort -> r
gmapT :: (forall b. Data b => b -> b) -> HsTupleSort -> HsTupleSort
$cgmapT :: (forall b. Data b => b -> b) -> HsTupleSort -> HsTupleSort
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c HsTupleSort)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c HsTupleSort)
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c HsTupleSort)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsTupleSort)
dataTypeOf :: HsTupleSort -> DataType
$cdataTypeOf :: HsTupleSort -> DataType
toConstr :: HsTupleSort -> Constr
$ctoConstr :: HsTupleSort -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTupleSort
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsTupleSort
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTupleSort -> c HsTupleSort
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsTupleSort -> c HsTupleSort
$cp1Data :: Typeable HsTupleSort
Data

-- | Located Constructor Declaration Field
type LConDeclField pass = Located (ConDeclField pass)
      -- ^ May have 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnComma' when
      --   in a list

      -- For details on above see note [Api annotations] in ApiAnnotation

-- | Constructor Declaration Field
data ConDeclField pass  -- Record fields have Haddoc docs on them
  = ConDeclField { ConDeclField pass -> XConDeclField pass
cd_fld_ext  :: XConDeclField pass,
                   ConDeclField pass -> [LFieldOcc pass]
cd_fld_names :: [LFieldOcc pass],
                                   -- ^ See Note [ConDeclField passs]
                   ConDeclField pass -> LBangType pass
cd_fld_type :: LBangType pass,
                   ConDeclField pass -> Maybe LHsDocString
cd_fld_doc  :: Maybe LHsDocString }
      -- ^ - 'ApiAnnotation.AnnKeywordId' : 'ApiAnnotation.AnnDcolon'

      -- For details on above see note [Api annotations] in ApiAnnotation
  | XConDeclField (XXConDeclField pass)

type instance XConDeclField  (GhcPass _) = NoExtField
type instance XXConDeclField (GhcPass _) = NoExtCon

instance OutputableBndrId p
       => Outputable (ConDeclField (GhcPass p)) where
  ppr :: ConDeclField (GhcPass p) -> SDoc
ppr (ConDeclField XConDeclField (GhcPass p)
_ [LFieldOcc (GhcPass p)]
fld_n LBangType (GhcPass p)
fld_ty Maybe LHsDocString
_) = [LFieldOcc (GhcPass p)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LFieldOcc (GhcPass p)]
fld_n SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LBangType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LBangType (GhcPass p)
fld_ty
  ppr (XConDeclField XXConDeclField (GhcPass p)
x) = NoExtCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXConDeclField (GhcPass p)
NoExtCon
x

-- HsConDetails is used for patterns/expressions *and* for data type
-- declarations
-- | Haskell Constructor Details
data HsConDetails arg rec
  = PrefixCon [arg]             -- C p1 p2 p3
  | RecCon    rec               -- C { x = p1, y = p2 }
  | InfixCon  arg arg           -- p1 `C` p2
  deriving Typeable (HsConDetails arg rec)
DataType
Constr
Typeable (HsConDetails arg rec)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g)
    -> HsConDetails arg rec
    -> c (HsConDetails arg rec))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (HsConDetails arg rec))
-> (HsConDetails arg rec -> Constr)
-> (HsConDetails arg rec -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (HsConDetails arg rec)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (HsConDetails arg rec)))
-> ((forall b. Data b => b -> b)
    -> HsConDetails arg rec -> HsConDetails arg rec)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r)
-> (forall u.
    (forall d. Data d => d -> u) -> HsConDetails arg rec -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> HsConDetails arg rec -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d)
    -> HsConDetails arg rec -> m (HsConDetails arg rec))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d)
    -> HsConDetails arg rec -> m (HsConDetails arg rec))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d)
    -> HsConDetails arg rec -> m (HsConDetails arg rec))
-> Data (HsConDetails arg rec)
HsConDetails arg rec -> DataType
HsConDetails arg rec -> Constr
(forall b. Data b => b -> b)
-> HsConDetails arg rec -> HsConDetails arg rec
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> HsConDetails arg rec
-> c (HsConDetails arg rec)
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsConDetails arg rec)
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsConDetails arg rec))
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u.
Int -> (forall d. Data d => d -> u) -> HsConDetails arg rec -> u
forall u.
(forall d. Data d => d -> u) -> HsConDetails arg rec -> [u]
forall arg rec.
(Data arg, Data rec) =>
Typeable (HsConDetails arg rec)
forall arg rec.
(Data arg, Data rec) =>
HsConDetails arg rec -> DataType
forall arg rec.
(Data arg, Data rec) =>
HsConDetails arg rec -> Constr
forall arg rec.
(Data arg, Data rec) =>
(forall b. Data b => b -> b)
-> HsConDetails arg rec -> HsConDetails arg rec
forall arg rec u.
(Data arg, Data rec) =>
Int -> (forall d. Data d => d -> u) -> HsConDetails arg rec -> u
forall arg rec u.
(Data arg, Data rec) =>
(forall d. Data d => d -> u) -> HsConDetails arg rec -> [u]
forall arg rec r r'.
(Data arg, Data rec) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
forall arg rec r r'.
(Data arg, Data rec) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
forall arg rec (m :: * -> *).
(Data arg, Data rec, Monad m) =>
(forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
forall arg rec (m :: * -> *).
(Data arg, Data rec, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
forall arg rec (c :: * -> *).
(Data arg, Data rec) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsConDetails arg rec)
forall arg rec (c :: * -> *).
(Data arg, Data rec) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> HsConDetails arg rec
-> c (HsConDetails arg rec)
forall arg rec (t :: * -> *) (c :: * -> *).
(Data arg, Data rec, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (HsConDetails arg rec))
forall arg rec (t :: * -> * -> *) (c :: * -> *).
(Data arg, Data rec, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsConDetails arg rec))
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsConDetails arg rec)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> HsConDetails arg rec
-> c (HsConDetails arg rec)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (HsConDetails arg rec))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsConDetails arg rec))
$cInfixCon :: Constr
$cRecCon :: Constr
$cPrefixCon :: Constr
$tHsConDetails :: DataType
gmapMo :: (forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
$cgmapMo :: forall arg rec (m :: * -> *).
(Data arg, Data rec, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
gmapMp :: (forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
$cgmapMp :: forall arg rec (m :: * -> *).
(Data arg, Data rec, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
gmapM :: (forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
$cgmapM :: forall arg rec (m :: * -> *).
(Data arg, Data rec, Monad m) =>
(forall d. Data d => d -> m d)
-> HsConDetails arg rec -> m (HsConDetails arg rec)
gmapQi :: Int -> (forall d. Data d => d -> u) -> HsConDetails arg rec -> u
$cgmapQi :: forall arg rec u.
(Data arg, Data rec) =>
Int -> (forall d. Data d => d -> u) -> HsConDetails arg rec -> u
gmapQ :: (forall d. Data d => d -> u) -> HsConDetails arg rec -> [u]
$cgmapQ :: forall arg rec u.
(Data arg, Data rec) =>
(forall d. Data d => d -> u) -> HsConDetails arg rec -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
$cgmapQr :: forall arg rec r r'.
(Data arg, Data rec) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
$cgmapQl :: forall arg rec r r'.
(Data arg, Data rec) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsConDetails arg rec -> r
gmapT :: (forall b. Data b => b -> b)
-> HsConDetails arg rec -> HsConDetails arg rec
$cgmapT :: forall arg rec.
(Data arg, Data rec) =>
(forall b. Data b => b -> b)
-> HsConDetails arg rec -> HsConDetails arg rec
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsConDetails arg rec))
$cdataCast2 :: forall arg rec (t :: * -> * -> *) (c :: * -> *).
(Data arg, Data rec, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsConDetails arg rec))
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c (HsConDetails arg rec))
$cdataCast1 :: forall arg rec (t :: * -> *) (c :: * -> *).
(Data arg, Data rec, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (HsConDetails arg rec))
dataTypeOf :: HsConDetails arg rec -> DataType
$cdataTypeOf :: forall arg rec.
(Data arg, Data rec) =>
HsConDetails arg rec -> DataType
toConstr :: HsConDetails arg rec -> Constr
$ctoConstr :: forall arg rec.
(Data arg, Data rec) =>
HsConDetails arg rec -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsConDetails arg rec)
$cgunfold :: forall arg rec (c :: * -> *).
(Data arg, Data rec) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsConDetails arg rec)
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> HsConDetails arg rec
-> c (HsConDetails arg rec)
$cgfoldl :: forall arg rec (c :: * -> *).
(Data arg, Data rec) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g)
-> HsConDetails arg rec
-> c (HsConDetails arg rec)
$cp1Data :: forall arg rec.
(Data arg, Data rec) =>
Typeable (HsConDetails arg rec)
Data

instance (Outputable arg, Outputable rec)
         => Outputable (HsConDetails arg rec) where
  ppr :: HsConDetails arg rec -> SDoc
ppr (PrefixCon [arg]
args) = String -> SDoc
text String
"PrefixCon" SDoc -> SDoc -> SDoc
<+> [arg] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [arg]
args
  ppr (RecCon rec
rec)     = String -> SDoc
text String
"RecCon:" SDoc -> SDoc -> SDoc
<+> rec -> SDoc
forall a. Outputable a => a -> SDoc
ppr rec
rec
  ppr (InfixCon arg
l arg
r)   = String -> SDoc
text String
"InfixCon:" SDoc -> SDoc -> SDoc
<+> [arg] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [arg
l, arg
r]

hsConDetailsArgs ::
     HsConDetails (LHsType a) (Located [LConDeclField a])
  -> [LHsType a]
hsConDetailsArgs :: HsConDetails (LHsType a) (Located [LConDeclField a]) -> [LHsType a]
hsConDetailsArgs HsConDetails (LHsType a) (Located [LConDeclField a])
details = case HsConDetails (LHsType a) (Located [LConDeclField a])
details of
  InfixCon LHsType a
a LHsType a
b -> [LHsType a
a,LHsType a
b]
  PrefixCon [LHsType a]
xs -> [LHsType a]
xs
  RecCon Located [LConDeclField a]
r -> (LConDeclField a -> LHsType a) -> [LConDeclField a] -> [LHsType a]
forall a b. (a -> b) -> [a] -> [b]
map (ConDeclField a -> LHsType a
forall pass. ConDeclField pass -> LBangType pass
cd_fld_type (ConDeclField a -> LHsType a)
-> (LConDeclField a -> ConDeclField a)
-> LConDeclField a
-> LHsType a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LConDeclField a -> ConDeclField a
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc) (Located [LConDeclField a]
-> SrcSpanLess (Located [LConDeclField a])
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc Located [LConDeclField a]
r)

{-
Note [ConDeclField passs]
~~~~~~~~~~~~~~~~~~~~~~~~~

A ConDeclField contains a list of field occurrences: these always
include the field label as the user wrote it.  After the renamer, it
will additionally contain the identity of the selector function in the
second component.

Due to DuplicateRecordFields, the OccName of the selector function
may have been mangled, which is why we keep the original field label
separately.  For example, when DuplicateRecordFields is enabled

    data T = MkT { x :: Int }

gives

    ConDeclField { cd_fld_names = [L _ (FieldOcc "x" $sel:x:MkT)], ... }.
-}

-----------------------
-- A valid type must have a for-all at the top of the type, or of the fn arg
-- types

---------------------
hsWcScopedTvs :: LHsSigWcType GhcRn -> [Name]
-- Get the lexically-scoped type variables of a HsSigType
--  - the explicitly-given forall'd type variables
--  - the named wildcars; see Note [Scoping of named wildcards]
-- because they scope in the same way
hsWcScopedTvs :: LHsSigWcType GhcRn -> [Name]
hsWcScopedTvs LHsSigWcType GhcRn
sig_ty
  | HsWC { hswc_ext :: forall pass thing. HsWildCardBndrs pass thing -> XHsWC pass thing
hswc_ext = XHsWC GhcRn (LHsSigType GhcRn)
nwcs, hswc_body :: forall pass thing. HsWildCardBndrs pass thing -> thing
hswc_body = LHsSigType GhcRn
sig_ty1 }  <- LHsSigWcType GhcRn
sig_ty
  , HsIB { hsib_ext :: forall pass thing. HsImplicitBndrs pass thing -> XHsIB pass thing
hsib_ext = XHsIB GhcRn (LHsKind GhcRn)
vars
         , hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = LHsKind GhcRn
sig_ty2 } <- LHsSigType GhcRn
sig_ty1
  = case LHsKind GhcRn
sig_ty2 of
      L SrcSpan
_ (HsForAllTy { hst_fvf :: forall pass. HsType pass -> ForallVisFlag
hst_fvf = ForallVisFlag
vis_flag
                      , hst_bndrs :: forall pass. HsType pass -> [LHsTyVarBndr pass]
hst_bndrs = [LHsTyVarBndr GhcRn]
tvs }) ->
        ASSERT( vis_flag == ForallInvis ) -- See Note [hsScopedTvs vis_flag]
        [Name]
XHsIB GhcRn (LHsKind GhcRn)
vars [Name] -> [Name] -> [Name]
forall a. [a] -> [a] -> [a]
++ [Name]
XHsWC GhcRn (LHsSigType GhcRn)
nwcs [Name] -> [Name] -> [Name]
forall a. [a] -> [a] -> [a]
++ [LHsTyVarBndr GhcRn] -> [IdP GhcRn]
forall (p :: Pass). [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
hsLTyVarNames [LHsTyVarBndr GhcRn]
tvs
      LHsKind GhcRn
_                                    -> [Name]
XHsWC GhcRn (LHsSigType GhcRn)
nwcs
hsWcScopedTvs (HsWC XHsWC GhcRn (LHsSigType GhcRn)
_ (XHsImplicitBndrs XXHsImplicitBndrs GhcRn (LHsKind GhcRn)
nec)) = NoExtCon -> [Name]
forall a. NoExtCon -> a
noExtCon XXHsImplicitBndrs GhcRn (LHsKind GhcRn)
NoExtCon
nec
hsWcScopedTvs (XHsWildCardBndrs XXHsWildCardBndrs GhcRn (LHsSigType GhcRn)
nec) = NoExtCon -> [Name]
forall a. NoExtCon -> a
noExtCon XXHsWildCardBndrs GhcRn (LHsSigType GhcRn)
NoExtCon
nec

hsScopedTvs :: LHsSigType GhcRn -> [Name]
-- Same as hsWcScopedTvs, but for a LHsSigType
hsScopedTvs :: LHsSigType GhcRn -> [Name]
hsScopedTvs LHsSigType GhcRn
sig_ty
  | HsIB { hsib_ext :: forall pass thing. HsImplicitBndrs pass thing -> XHsIB pass thing
hsib_ext = XHsIB GhcRn (LHsKind GhcRn)
vars
         , hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = LHsKind GhcRn
sig_ty2 } <- LHsSigType GhcRn
sig_ty
  , L SrcSpan
_ (HsForAllTy { hst_fvf :: forall pass. HsType pass -> ForallVisFlag
hst_fvf = ForallVisFlag
vis_flag
                    , hst_bndrs :: forall pass. HsType pass -> [LHsTyVarBndr pass]
hst_bndrs = [LHsTyVarBndr GhcRn]
tvs }) <- LHsKind GhcRn
sig_ty2
  = ASSERT( vis_flag == ForallInvis ) -- See Note [hsScopedTvs vis_flag]
    [Name]
XHsIB GhcRn (LHsKind GhcRn)
vars [Name] -> [Name] -> [Name]
forall a. [a] -> [a] -> [a]
++ [LHsTyVarBndr GhcRn] -> [IdP GhcRn]
forall (p :: Pass). [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
hsLTyVarNames [LHsTyVarBndr GhcRn]
tvs
  | Bool
otherwise
  = []

{- Note [Scoping of named wildcards]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  f :: _a -> _a
  f x = let g :: _a -> _a
            g = ...
        in ...

Currently, for better or worse, the "_a" variables are all the same. So
although there is no explicit forall, the "_a" scopes over the definition.
I don't know if this is a good idea, but there it is.
-}

{- Note [hsScopedTvs vis_flag]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-XScopedTypeVariables can be defined in terms of a desugaring to
-XTypeAbstractions (GHC Proposal #50):

    fn :: forall a b c. tau(a,b,c)            fn :: forall a b c. tau(a,b,c)
    fn = defn(a,b,c)                   ==>    fn @x @y @z = defn(x,y,z)

That is, for every type variable of the leading 'forall' in the type signature,
we add an invisible binder at term level.

This model does not extend to visible forall, as discussed here:

* https://gitlab.haskell.org/ghc/ghc/issues/16734#note_203412
* https://github.com/ghc-proposals/ghc-proposals/pull/238

The conclusion of these discussions can be summarized as follows:

  > Assuming support for visible 'forall' in terms, consider this example:
  >
  >     vfn :: forall x y -> tau(x,y)
  >     vfn = \a b -> ...
  >
  > The user has written their own binders 'a' and 'b' to stand for 'x' and
  > 'y', and we definitely should not desugar this into:
  >
  >     vfn :: forall x y -> tau(x,y)
  >     vfn x y = \a b -> ...         -- bad!

At the moment, GHC does not support visible 'forall' in terms, so we simply cement
our assumptions with an assert:

    hsScopedTvs (HsForAllTy { hst_fvf = vis_flag, ... }) =
      ASSERT( vis_flag == ForallInvis )
      ...

In the future, this assert can be safely turned into a pattern match to support
visible forall in terms:

    hsScopedTvs (HsForAllTy { hst_fvf = ForallInvis, ... }) = ...
-}

---------------------
hsTyVarName :: HsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsTyVarName :: HsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsTyVarName (UserTyVar XUserTyVar (GhcPass p)
_ (L SrcSpan
_ IdP (GhcPass p)
n))     = IdP (GhcPass p)
n
hsTyVarName (KindedTyVar XKindedTyVar (GhcPass p)
_ (L SrcSpan
_ IdP (GhcPass p)
n) LHsKind (GhcPass p)
_) = IdP (GhcPass p)
n
hsTyVarName (XTyVarBndr XXTyVarBndr (GhcPass p)
nec) = NoExtCon -> IdP (GhcPass p)
forall a. NoExtCon -> a
noExtCon XXTyVarBndr (GhcPass p)
NoExtCon
nec

hsLTyVarName :: LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsLTyVarName :: LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsLTyVarName = HsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
forall (p :: Pass). HsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsTyVarName (HsTyVarBndr (GhcPass p) -> IdP (GhcPass p))
-> (LHsTyVarBndr (GhcPass p) -> HsTyVarBndr (GhcPass p))
-> LHsTyVarBndr (GhcPass p)
-> IdP (GhcPass p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LHsTyVarBndr (GhcPass p) -> HsTyVarBndr (GhcPass p)
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc

hsLTyVarNames :: [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
hsLTyVarNames :: [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
hsLTyVarNames = (LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p))
-> [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
forall a b. (a -> b) -> [a] -> [b]
map LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
forall (p :: Pass). LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsLTyVarName

hsExplicitLTyVarNames :: LHsQTyVars (GhcPass p) -> [IdP (GhcPass p)]
-- Explicit variables only
hsExplicitLTyVarNames :: LHsQTyVars (GhcPass p) -> [IdP (GhcPass p)]
hsExplicitLTyVarNames LHsQTyVars (GhcPass p)
qtvs = (LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p))
-> [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
forall a b. (a -> b) -> [a] -> [b]
map LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
forall (p :: Pass). LHsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsLTyVarName (LHsQTyVars (GhcPass p) -> [LHsTyVarBndr (GhcPass p)]
forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsQTvExplicit LHsQTyVars (GhcPass p)
qtvs)

hsAllLTyVarNames :: LHsQTyVars GhcRn -> [Name]
-- All variables
hsAllLTyVarNames :: LHsQTyVars GhcRn -> [Name]
hsAllLTyVarNames (HsQTvs { hsq_ext :: forall pass. LHsQTyVars pass -> XHsQTvs pass
hsq_ext = XHsQTvs GhcRn
kvs
                         , hsq_explicit :: forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsq_explicit = [LHsTyVarBndr GhcRn]
tvs })
  = [Name]
XHsQTvs GhcRn
kvs [Name] -> [Name] -> [Name]
forall a. [a] -> [a] -> [a]
++ [LHsTyVarBndr GhcRn] -> [IdP GhcRn]
forall (p :: Pass). [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
hsLTyVarNames [LHsTyVarBndr GhcRn]
tvs
hsAllLTyVarNames (XLHsQTyVars XXLHsQTyVars GhcRn
nec) = NoExtCon -> [Name]
forall a. NoExtCon -> a
noExtCon XXLHsQTyVars GhcRn
NoExtCon
nec

hsLTyVarLocName :: LHsTyVarBndr (GhcPass p) -> Located (IdP (GhcPass p))
hsLTyVarLocName :: LHsTyVarBndr (GhcPass p) -> Located (IdP (GhcPass p))
hsLTyVarLocName = (SrcSpanLess (LHsTyVarBndr (GhcPass p))
 -> SrcSpanLess (Located (IdP (GhcPass p))))
-> LHsTyVarBndr (GhcPass p) -> Located (IdP (GhcPass p))
forall a b.
(HasSrcSpan a, HasSrcSpan b) =>
(SrcSpanLess a -> SrcSpanLess b) -> a -> b
onHasSrcSpan SrcSpanLess (LHsTyVarBndr (GhcPass p))
-> SrcSpanLess (Located (IdP (GhcPass p)))
forall (p :: Pass). HsTyVarBndr (GhcPass p) -> IdP (GhcPass p)
hsTyVarName

hsLTyVarLocNames :: LHsQTyVars (GhcPass p) -> [Located (IdP (GhcPass p))]
hsLTyVarLocNames :: LHsQTyVars (GhcPass p) -> [Located (IdP (GhcPass p))]
hsLTyVarLocNames LHsQTyVars (GhcPass p)
qtvs = (LHsTyVarBndr (GhcPass p) -> Located (IdP (GhcPass p)))
-> [LHsTyVarBndr (GhcPass p)] -> [Located (IdP (GhcPass p))]
forall a b. (a -> b) -> [a] -> [b]
map LHsTyVarBndr (GhcPass p) -> Located (IdP (GhcPass p))
forall (p :: Pass).
LHsTyVarBndr (GhcPass p) -> Located (IdP (GhcPass p))
hsLTyVarLocName (LHsQTyVars (GhcPass p) -> [LHsTyVarBndr (GhcPass p)]
forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsQTvExplicit LHsQTyVars (GhcPass p)
qtvs)

-- | Convert a LHsTyVarBndr to an equivalent LHsType.
hsLTyVarBndrToType :: LHsTyVarBndr (GhcPass p) -> LHsType (GhcPass p)
hsLTyVarBndrToType :: LHsTyVarBndr (GhcPass p) -> LHsType (GhcPass p)
hsLTyVarBndrToType = (SrcSpanLess (LHsTyVarBndr (GhcPass p))
 -> SrcSpanLess (LHsType (GhcPass p)))
-> LHsTyVarBndr (GhcPass p) -> LHsType (GhcPass p)
forall a b.
(HasSrcSpan a, HasSrcSpan b) =>
(SrcSpanLess a -> SrcSpanLess b) -> a -> b
onHasSrcSpan SrcSpanLess (LHsTyVarBndr (GhcPass p))
-> SrcSpanLess (LHsType (GhcPass p))
forall pass.
(XKindSig pass ~ NoExtField, XTyVar pass ~ NoExtField,
 XXTyVarBndr pass ~ NoExtCon) =>
HsTyVarBndr pass -> HsType pass
cvt
  where cvt :: HsTyVarBndr pass -> HsType pass
cvt (UserTyVar XUserTyVar pass
_ Located (IdP pass)
n) = XTyVar pass -> PromotionFlag -> Located (IdP pass) -> HsType pass
forall pass.
XTyVar pass -> PromotionFlag -> Located (IdP pass) -> HsType pass
HsTyVar XTyVar pass
NoExtField
noExtField PromotionFlag
NotPromoted Located (IdP pass)
n
        cvt (KindedTyVar XKindedTyVar pass
_ (L SrcSpan
name_loc IdP pass
n) LHsKind pass
kind)
          = XKindSig pass -> LHsKind pass -> LHsKind pass -> HsType pass
forall pass.
XKindSig pass -> LHsType pass -> LHsType pass -> HsType pass
HsKindSig XKindSig pass
NoExtField
noExtField
                   (SrcSpan -> HsType pass -> LHsKind pass
forall l e. l -> e -> GenLocated l e
L SrcSpan
name_loc (XTyVar pass -> PromotionFlag -> Located (IdP pass) -> HsType pass
forall pass.
XTyVar pass -> PromotionFlag -> Located (IdP pass) -> HsType pass
HsTyVar XTyVar pass
NoExtField
noExtField PromotionFlag
NotPromoted (SrcSpan -> IdP pass -> Located (IdP pass)
forall l e. l -> e -> GenLocated l e
L SrcSpan
name_loc IdP pass
n))) LHsKind pass
kind
        cvt (XTyVarBndr XXTyVarBndr pass
nec) = NoExtCon -> HsType pass
forall a. NoExtCon -> a
noExtCon XXTyVarBndr pass
NoExtCon
nec

-- | Convert a LHsTyVarBndrs to a list of types.
-- Works on *type* variable only, no kind vars.
hsLTyVarBndrsToTypes :: LHsQTyVars (GhcPass p) -> [LHsType (GhcPass p)]
hsLTyVarBndrsToTypes :: LHsQTyVars (GhcPass p) -> [LHsType (GhcPass p)]
hsLTyVarBndrsToTypes (HsQTvs { hsq_explicit :: forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsq_explicit = [LHsTyVarBndr (GhcPass p)]
tvbs }) = (LHsTyVarBndr (GhcPass p) -> LHsType (GhcPass p))
-> [LHsTyVarBndr (GhcPass p)] -> [LHsType (GhcPass p)]
forall a b. (a -> b) -> [a] -> [b]
map LHsTyVarBndr (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass). LHsTyVarBndr (GhcPass p) -> LHsType (GhcPass p)
hsLTyVarBndrToType [LHsTyVarBndr (GhcPass p)]
tvbs
hsLTyVarBndrsToTypes (XLHsQTyVars XXLHsQTyVars (GhcPass p)
nec) = NoExtCon -> [LHsType (GhcPass p)]
forall a. NoExtCon -> a
noExtCon XXLHsQTyVars (GhcPass p)
NoExtCon
nec

-- | Get the kind signature of a type, ignoring parentheses:
--
--   hsTyKindSig   `Maybe                    `   =   Nothing
--   hsTyKindSig   `Maybe ::   Type -> Type  `   =   Just  `Type -> Type`
--   hsTyKindSig   `Maybe :: ((Type -> Type))`   =   Just  `Type -> Type`
--
-- This is used to extract the result kind of type synonyms with a CUSK:
--
--  type S = (F :: res_kind)
--                 ^^^^^^^^
--
hsTyKindSig :: LHsType pass -> Maybe (LHsKind pass)
hsTyKindSig :: LHsType pass -> Maybe (LHsType pass)
hsTyKindSig LHsType pass
lty =
  case LHsType pass -> SrcSpanLess (LHsType pass)
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc LHsType pass
lty of
    HsParTy _ lty'    -> LHsType pass -> Maybe (LHsType pass)
forall pass. LHsType pass -> Maybe (LHsType pass)
hsTyKindSig LHsType pass
lty'
    HsKindSig _ _ k   -> LHsType pass -> Maybe (LHsType pass)
forall a. a -> Maybe a
Just LHsType pass
k
    SrcSpanLess (LHsType pass)
_                 -> Maybe (LHsType pass)
forall a. Maybe a
Nothing

---------------------
ignoreParens :: LHsType pass -> LHsType pass
ignoreParens :: LHsType pass -> LHsType pass
ignoreParens (L SrcSpan
_ (HsParTy XParTy pass
_ LHsType pass
ty)) = LHsType pass -> LHsType pass
forall pass. LHsType pass -> LHsType pass
ignoreParens LHsType pass
ty
ignoreParens LHsType pass
ty                   = LHsType pass
ty

isLHsForAllTy :: LHsType p -> Bool
isLHsForAllTy :: LHsType p -> Bool
isLHsForAllTy (L SrcSpan
_ (HsForAllTy {})) = Bool
True
isLHsForAllTy LHsType p
_                     = Bool
False

{-
************************************************************************
*                                                                      *
                Building types
*                                                                      *
************************************************************************
-}

mkAnonWildCardTy :: HsType GhcPs
mkAnonWildCardTy :: HsType GhcPs
mkAnonWildCardTy = XWildCardTy GhcPs -> HsType GhcPs
forall pass. XWildCardTy pass -> HsType pass
HsWildCardTy XWildCardTy GhcPs
NoExtField
noExtField

mkHsOpTy :: LHsType (GhcPass p) -> Located (IdP (GhcPass p))
         -> LHsType (GhcPass p) -> HsType (GhcPass p)
mkHsOpTy :: LHsType (GhcPass p)
-> Located (IdP (GhcPass p))
-> LHsType (GhcPass p)
-> HsType (GhcPass p)
mkHsOpTy LHsType (GhcPass p)
ty1 Located (IdP (GhcPass p))
op LHsType (GhcPass p)
ty2 = XOpTy (GhcPass p)
-> LHsType (GhcPass p)
-> Located (IdP (GhcPass p))
-> LHsType (GhcPass p)
-> HsType (GhcPass p)
forall pass.
XOpTy pass
-> LHsType pass
-> Located (IdP pass)
-> LHsType pass
-> HsType pass
HsOpTy XOpTy (GhcPass p)
NoExtField
noExtField LHsType (GhcPass p)
ty1 Located (IdP (GhcPass p))
op LHsType (GhcPass p)
ty2

mkHsAppTy :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
mkHsAppTy :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
mkHsAppTy LHsType (GhcPass p)
t1 LHsType (GhcPass p)
t2
  = LHsType (GhcPass p)
-> LHsType (GhcPass p)
-> SrcSpanLess (LHsType (GhcPass p))
-> LHsType (GhcPass p)
forall a b c.
(HasSrcSpan a, HasSrcSpan b, HasSrcSpan c) =>
a -> b -> SrcSpanLess c -> c
addCLoc LHsType (GhcPass p)
t1 LHsType (GhcPass p)
t2 (XAppTy (GhcPass p)
-> LHsType (GhcPass p) -> LHsType (GhcPass p) -> HsType (GhcPass p)
forall pass.
XAppTy pass -> LHsType pass -> LHsType pass -> HsType pass
HsAppTy XAppTy (GhcPass p)
NoExtField
noExtField LHsType (GhcPass p)
t1 (PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass).
PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
parenthesizeHsType PprPrec
appPrec LHsType (GhcPass p)
t2))

mkHsAppTys :: LHsType (GhcPass p) -> [LHsType (GhcPass p)]
           -> LHsType (GhcPass p)
mkHsAppTys :: LHsType (GhcPass p) -> [LHsType (GhcPass p)] -> LHsType (GhcPass p)
mkHsAppTys = (LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p))
-> LHsType (GhcPass p)
-> [LHsType (GhcPass p)]
-> LHsType (GhcPass p)
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass).
LHsType (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
mkHsAppTy

mkHsAppKindTy :: XAppKindTy (GhcPass p) -> LHsType (GhcPass p) -> LHsType (GhcPass p)
              -> LHsType (GhcPass p)
mkHsAppKindTy :: XAppKindTy (GhcPass p)
-> LHsType (GhcPass p)
-> LHsType (GhcPass p)
-> LHsType (GhcPass p)
mkHsAppKindTy XAppKindTy (GhcPass p)
ext LHsType (GhcPass p)
ty LHsType (GhcPass p)
k
  = LHsType (GhcPass p)
-> LHsType (GhcPass p)
-> SrcSpanLess (LHsType (GhcPass p))
-> LHsType (GhcPass p)
forall a b c.
(HasSrcSpan a, HasSrcSpan b, HasSrcSpan c) =>
a -> b -> SrcSpanLess c -> c
addCLoc LHsType (GhcPass p)
ty LHsType (GhcPass p)
k (XAppKindTy (GhcPass p)
-> LHsType (GhcPass p) -> LHsType (GhcPass p) -> HsType (GhcPass p)
forall pass.
XAppKindTy pass -> LHsType pass -> LHsType pass -> HsType pass
HsAppKindTy XAppKindTy (GhcPass p)
ext LHsType (GhcPass p)
ty LHsType (GhcPass p)
k)

{-
************************************************************************
*                                                                      *
                Decomposing HsTypes
*                                                                      *
************************************************************************
-}

---------------------------------
-- splitHsFunType decomposes a type (t1 -> t2 ... -> tn)
-- Breaks up any parens in the result type:
--      splitHsFunType (a -> (b -> c)) = ([a,b], c)
-- Also deals with (->) t1 t2; that is why it only works on LHsType Name
--   (see #9096)
splitHsFunType :: LHsType GhcRn -> ([LHsType GhcRn], LHsType GhcRn)
splitHsFunType :: LHsKind GhcRn -> ([LHsKind GhcRn], LHsKind GhcRn)
splitHsFunType (L SrcSpan
_ (HsParTy XParTy GhcRn
_ LHsKind GhcRn
ty))
  = LHsKind GhcRn -> ([LHsKind GhcRn], LHsKind GhcRn)
splitHsFunType LHsKind GhcRn
ty

splitHsFunType (L SrcSpan
_ (HsFunTy XFunTy GhcRn
_ LHsKind GhcRn
x LHsKind GhcRn
y))
  | ([LHsKind GhcRn]
args, LHsKind GhcRn
res) <- LHsKind GhcRn -> ([LHsKind GhcRn], LHsKind GhcRn)
splitHsFunType LHsKind GhcRn
y
  = (LHsKind GhcRn
xLHsKind GhcRn -> [LHsKind GhcRn] -> [LHsKind GhcRn]
forall a. a -> [a] -> [a]
:[LHsKind GhcRn]
args, LHsKind GhcRn
res)
{- This is not so correct, because it won't work with visible kind app, in case
  someone wants to write '(->) @k1 @k2 t1 t2'. Fixing this would require changing
  ConDeclGADT abstract syntax -}
splitHsFunType orig_ty :: LHsKind GhcRn
orig_ty@(L SrcSpan
_ (HsAppTy XAppTy GhcRn
_ LHsKind GhcRn
t1 LHsKind GhcRn
t2))
  = LHsKind GhcRn
-> [LHsKind GhcRn] -> ([LHsKind GhcRn], LHsKind GhcRn)
go LHsKind GhcRn
t1 [LHsKind GhcRn
t2]
  where  -- Look for (->) t1 t2, possibly with parenthesisation
    go :: LHsKind GhcRn
-> [LHsKind GhcRn] -> ([LHsKind GhcRn], LHsKind GhcRn)
go (L SrcSpan
_ (HsTyVar XTyVar GhcRn
_ PromotionFlag
_ (L SrcSpan
_ IdP GhcRn
fn))) [LHsKind GhcRn]
tys | Name
IdP GhcRn
fn Name -> Name -> Bool
forall a. Eq a => a -> a -> Bool
== Name
funTyConName
                                 , [LHsKind GhcRn
t1,LHsKind GhcRn
t2] <- [LHsKind GhcRn]
tys
                                 , ([LHsKind GhcRn]
args, LHsKind GhcRn
res) <- LHsKind GhcRn -> ([LHsKind GhcRn], LHsKind GhcRn)
splitHsFunType LHsKind GhcRn
t2
                                 = (LHsKind GhcRn
t1LHsKind GhcRn -> [LHsKind GhcRn] -> [LHsKind GhcRn]
forall a. a -> [a] -> [a]
:[LHsKind GhcRn]
args, LHsKind GhcRn
res)
    go (L SrcSpan
_ (HsAppTy XAppTy GhcRn
_ LHsKind GhcRn
t1 LHsKind GhcRn
t2)) [LHsKind GhcRn]
tys = LHsKind GhcRn
-> [LHsKind GhcRn] -> ([LHsKind GhcRn], LHsKind GhcRn)
go LHsKind GhcRn
t1 (LHsKind GhcRn
t2LHsKind GhcRn -> [LHsKind GhcRn] -> [LHsKind GhcRn]
forall a. a -> [a] -> [a]
:[LHsKind GhcRn]
tys)
    go (L SrcSpan
_ (HsParTy XParTy GhcRn
_ LHsKind GhcRn
ty))    [LHsKind GhcRn]
tys = LHsKind GhcRn
-> [LHsKind GhcRn] -> ([LHsKind GhcRn], LHsKind GhcRn)
go LHsKind GhcRn
ty [LHsKind GhcRn]
tys
    go LHsKind GhcRn
_                       [LHsKind GhcRn]
_   = ([], LHsKind GhcRn
orig_ty)  -- Failure to match

splitHsFunType LHsKind GhcRn
other = ([], LHsKind GhcRn
other)

-- retrieve the name of the "head" of a nested type application
-- somewhat like splitHsAppTys, but a little more thorough
-- used to examine the result of a GADT-like datacon, so it doesn't handle
-- *all* cases (like lists, tuples, (~), etc.)
hsTyGetAppHead_maybe :: LHsType (GhcPass p)
                     -> Maybe (Located (IdP (GhcPass p)))
hsTyGetAppHead_maybe :: LHsType (GhcPass p) -> Maybe (Located (IdP (GhcPass p)))
hsTyGetAppHead_maybe = LHsType (GhcPass p) -> Maybe (Located (IdP (GhcPass p)))
forall pass. LHsType pass -> Maybe (GenLocated SrcSpan (IdP pass))
go
  where
    go :: LHsType pass -> Maybe (GenLocated SrcSpan (IdP pass))
go (L SrcSpan
_ (HsTyVar XTyVar pass
_ PromotionFlag
_ GenLocated SrcSpan (IdP pass)
ln))          = GenLocated SrcSpan (IdP pass)
-> Maybe (GenLocated SrcSpan (IdP pass))
forall a. a -> Maybe a
Just GenLocated SrcSpan (IdP pass)
ln
    go (L SrcSpan
_ (HsAppTy XAppTy pass
_ LHsType pass
l LHsType pass
_))           = LHsType pass -> Maybe (GenLocated SrcSpan (IdP pass))
go LHsType pass
l
    go (L SrcSpan
_ (HsAppKindTy XAppKindTy pass
_ LHsType pass
t LHsType pass
_))       = LHsType pass -> Maybe (GenLocated SrcSpan (IdP pass))
go LHsType pass
t
    go (L SrcSpan
_ (HsOpTy XOpTy pass
_ LHsType pass
_ (L SrcSpan
loc IdP pass
n) LHsType pass
_))  = GenLocated SrcSpan (IdP pass)
-> Maybe (GenLocated SrcSpan (IdP pass))
forall a. a -> Maybe a
Just (SrcSpan -> IdP pass -> GenLocated SrcSpan (IdP pass)
forall l e. l -> e -> GenLocated l e
L SrcSpan
loc IdP pass
n)
    go (L SrcSpan
_ (HsParTy XParTy pass
_ LHsType pass
t))             = LHsType pass -> Maybe (GenLocated SrcSpan (IdP pass))
go LHsType pass
t
    go (L SrcSpan
_ (HsKindSig XKindSig pass
_ LHsType pass
t LHsType pass
_))         = LHsType pass -> Maybe (GenLocated SrcSpan (IdP pass))
go LHsType pass
t
    go LHsType pass
_                               = Maybe (GenLocated SrcSpan (IdP pass))
forall a. Maybe a
Nothing

------------------------------------------------------------
-- Arguments in an expression/type after splitting
data HsArg tm ty
  = HsValArg tm   -- Argument is an ordinary expression     (f arg)
  | HsTypeArg SrcSpan ty -- Argument is a visible type application (f @ty)
                         -- SrcSpan is location of the `@`
  | HsArgPar SrcSpan -- See Note [HsArgPar]

numVisibleArgs :: [HsArg tm ty] -> Arity
numVisibleArgs :: [HsArg tm ty] -> Int
numVisibleArgs = (HsArg tm ty -> Bool) -> [HsArg tm ty] -> Int
forall a. (a -> Bool) -> [a] -> Int
count HsArg tm ty -> Bool
forall tm ty. HsArg tm ty -> Bool
is_vis
  where is_vis :: HsArg tm ty -> Bool
is_vis (HsValArg tm
_) = Bool
True
        is_vis HsArg tm ty
_            = Bool
False

-- type level equivalent
type LHsTypeArg p = HsArg (LHsType p) (LHsKind p)

instance (Outputable tm, Outputable ty) => Outputable (HsArg tm ty) where
  ppr :: HsArg tm ty -> SDoc
ppr (HsValArg tm
tm)    = tm -> SDoc
forall a. Outputable a => a -> SDoc
ppr tm
tm
  ppr (HsTypeArg SrcSpan
_ ty
ty) = Char -> SDoc
char Char
'@' SDoc -> SDoc -> SDoc
<> ty -> SDoc
forall a. Outputable a => a -> SDoc
ppr ty
ty
  ppr (HsArgPar SrcSpan
sp)    = String -> SDoc
text String
"HsArgPar"  SDoc -> SDoc -> SDoc
<+> SrcSpan -> SDoc
forall a. Outputable a => a -> SDoc
ppr SrcSpan
sp
{-
Note [HsArgPar]
A HsArgPar indicates that everything to the left of this in the argument list is
enclosed in parentheses together with the function itself. It is necessary so
that we can recreate the parenthesis structure in the original source after
typechecking the arguments.

The SrcSpan is the span of the original HsPar

((f arg1) arg2 arg3) results in an input argument list of
[HsValArg arg1, HsArgPar span1, HsValArg arg2, HsValArg arg3, HsArgPar span2]

-}

--------------------------------

-- | Decompose a pattern synonym type signature into its constituent parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsPatSynTy :: LHsType pass
                 -> ( [LHsTyVarBndr pass]    -- universals
                    , LHsContext pass        -- required constraints
                    , [LHsTyVarBndr pass]    -- existentials
                    , LHsContext pass        -- provided constraints
                    , LHsType pass)          -- body type
splitLHsPatSynTy :: LHsType pass
-> ([LHsTyVarBndr pass], LHsContext pass, [LHsTyVarBndr pass],
    LHsContext pass, LHsType pass)
splitLHsPatSynTy LHsType pass
ty = ([LHsTyVarBndr pass]
univs, LHsContext pass
reqs, [LHsTyVarBndr pass]
exis, LHsContext pass
provs, LHsType pass
ty4)
  where
    ([LHsTyVarBndr pass]
univs, LHsType pass
ty1) = LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
forall pass. LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTyInvis LHsType pass
ty
    (LHsContext pass
reqs,  LHsType pass
ty2) = LHsType pass -> (LHsContext pass, LHsType pass)
forall pass. LHsType pass -> (LHsContext pass, LHsType pass)
splitLHsQualTy LHsType pass
ty1
    ([LHsTyVarBndr pass]
exis,  LHsType pass
ty3) = LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
forall pass. LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTyInvis LHsType pass
ty2
    (LHsContext pass
provs, LHsType pass
ty4) = LHsType pass -> (LHsContext pass, LHsType pass)
forall pass. LHsType pass -> (LHsContext pass, LHsType pass)
splitLHsQualTy LHsType pass
ty3

-- | Decompose a sigma type (of the form @forall <tvs>. context => body@)
-- into its constituent parts. Note that only /invisible/ @forall@s
-- (i.e., @forall a.@, with a dot) are split apart; /visible/ @forall@s
-- (i.e., @forall a ->@, with an arrow) are left untouched.
--
-- This function is used to split apart certain types, such as instance
-- declaration types, which disallow visible @forall@s. For instance, if GHC
-- split apart the @forall@ in @instance forall a -> Show (Blah a)@, then that
-- declaration would mistakenly be accepted!
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsSigmaTyInvis :: LHsType pass
                     -> ([LHsTyVarBndr pass], LHsContext pass, LHsType pass)
splitLHsSigmaTyInvis :: LHsType pass
-> ([LHsTyVarBndr pass], LHsContext pass, LHsType pass)
splitLHsSigmaTyInvis LHsType pass
ty
  | ([LHsTyVarBndr pass]
tvs,  LHsType pass
ty1) <- LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
forall pass. LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTyInvis LHsType pass
ty
  , (LHsContext pass
ctxt, LHsType pass
ty2) <- LHsType pass -> (LHsContext pass, LHsType pass)
forall pass. LHsType pass -> (LHsContext pass, LHsType pass)
splitLHsQualTy LHsType pass
ty1
  = ([LHsTyVarBndr pass]
tvs, LHsContext pass
ctxt, LHsType pass
ty2)

-- | Decompose a type of the form @forall <tvs>. body@ into its constituent
-- parts. Note that only /invisible/ @forall@s
-- (i.e., @forall a.@, with a dot) are split apart; /visible/ @forall@s
-- (i.e., @forall a ->@, with an arrow) are left untouched.
--
-- This function is used to split apart certain types, such as instance
-- declaration types, which disallow visible @forall@s. For instance, if GHC
-- split apart the @forall@ in @instance forall a -> Show (Blah a)@, then that
-- declaration would mistakenly be accepted!
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall a. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsForAllTyInvis :: LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTyInvis :: LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTyInvis lty :: LHsType pass
lty@(L SrcSpan
_ HsType pass
ty) =
  case HsType pass
ty of
    HsParTy XParTy pass
_ LHsType pass
ty' -> LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
forall pass. LHsType pass -> ([LHsTyVarBndr pass], LHsType pass)
splitLHsForAllTyInvis LHsType pass
ty'
    HsForAllTy { hst_fvf :: forall pass. HsType pass -> ForallVisFlag
hst_fvf = ForallVisFlag
fvf', hst_bndrs :: forall pass. HsType pass -> [LHsTyVarBndr pass]
hst_bndrs = [LHsTyVarBndr pass]
tvs', hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = LHsType pass
body' }
      |  ForallVisFlag
fvf' ForallVisFlag -> ForallVisFlag -> Bool
forall a. Eq a => a -> a -> Bool
== ForallVisFlag
ForallInvis
      -> ([LHsTyVarBndr pass]
tvs', LHsType pass
body')
    HsType pass
_ -> ([], LHsType pass
lty)

-- | Decompose a type of the form @context => body@ into its constituent parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(context => <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsQualTy :: LHsType pass -> (LHsContext pass, LHsType pass)
splitLHsQualTy :: LHsType pass -> (LHsContext pass, LHsType pass)
splitLHsQualTy (L SrcSpan
_ (HsParTy XParTy pass
_ LHsType pass
ty)) = LHsType pass -> (LHsContext pass, LHsType pass)
forall pass. LHsType pass -> (LHsContext pass, LHsType pass)
splitLHsQualTy LHsType pass
ty
splitLHsQualTy (L SrcSpan
_ (HsQualTy { hst_ctxt :: forall pass. HsType pass -> LHsContext pass
hst_ctxt = LHsContext pass
ctxt, hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = LHsType pass
body })) = (LHsContext pass
ctxt,     LHsType pass
body)
splitLHsQualTy LHsType pass
body              = (LHsContext pass
forall pass. LHsContext pass
noLHsContext, LHsType pass
body)

-- | Decompose a type class instance type (of the form
-- @forall <tvs>. context => instance_head@) into its constituent parts.
--
-- Note that this function looks through parentheses, so it will work on types
-- such as @(forall <tvs>. <...>)@. The downside to this is that it is not
-- generally possible to take the returned types and reconstruct the original
-- type (parentheses and all) from them.
splitLHsInstDeclTy :: LHsSigType GhcRn
                   -> ([Name], LHsContext GhcRn, LHsType GhcRn)
-- Split up an instance decl type, returning the pieces
splitLHsInstDeclTy :: LHsSigType GhcRn -> ([Name], LHsContext GhcRn, LHsKind GhcRn)
splitLHsInstDeclTy (HsIB { hsib_ext :: forall pass thing. HsImplicitBndrs pass thing -> XHsIB pass thing
hsib_ext = XHsIB GhcRn (LHsKind GhcRn)
itkvs
                         , hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = LHsKind GhcRn
inst_ty })
  | ([LHsTyVarBndr GhcRn]
tvs, LHsContext GhcRn
cxt, LHsKind GhcRn
body_ty) <- LHsKind GhcRn
-> ([LHsTyVarBndr GhcRn], LHsContext GhcRn, LHsKind GhcRn)
forall pass.
LHsType pass
-> ([LHsTyVarBndr pass], LHsContext pass, LHsType pass)
splitLHsSigmaTyInvis LHsKind GhcRn
inst_ty
  = ([Name]
XHsIB GhcRn (LHsKind GhcRn)
itkvs [Name] -> [Name] -> [Name]
forall a. [a] -> [a] -> [a]
++ [LHsTyVarBndr GhcRn] -> [IdP GhcRn]
forall (p :: Pass). [LHsTyVarBndr (GhcPass p)] -> [IdP (GhcPass p)]
hsLTyVarNames [LHsTyVarBndr GhcRn]
tvs, LHsContext GhcRn
cxt, LHsKind GhcRn
body_ty)
         -- Return implicitly bound type and kind vars
         -- For an instance decl, all of them are in scope
splitLHsInstDeclTy (XHsImplicitBndrs XXHsImplicitBndrs GhcRn (LHsKind GhcRn)
nec) = NoExtCon -> ([Name], LHsContext GhcRn, LHsKind GhcRn)
forall a. NoExtCon -> a
noExtCon XXHsImplicitBndrs GhcRn (LHsKind GhcRn)
NoExtCon
nec

getLHsInstDeclHead :: LHsSigType (GhcPass p) -> LHsType (GhcPass p)
getLHsInstDeclHead :: LHsSigType (GhcPass p) -> LHsType (GhcPass p)
getLHsInstDeclHead LHsSigType (GhcPass p)
inst_ty
  | ([LHsTyVarBndr (GhcPass p)]
_tvs, LHsContext (GhcPass p)
_cxt, LHsType (GhcPass p)
body_ty) <- LHsType (GhcPass p)
-> ([LHsTyVarBndr (GhcPass p)], LHsContext (GhcPass p),
    LHsType (GhcPass p))
forall pass.
LHsType pass
-> ([LHsTyVarBndr pass], LHsContext pass, LHsType pass)
splitLHsSigmaTyInvis (LHsSigType (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass). LHsSigType (GhcPass p) -> LHsType (GhcPass p)
hsSigType LHsSigType (GhcPass p)
inst_ty)
  = LHsType (GhcPass p)
body_ty

getLHsInstDeclClass_maybe :: LHsSigType (GhcPass p)
                          -> Maybe (Located (IdP (GhcPass p)))
-- Works on (HsSigType RdrName)
getLHsInstDeclClass_maybe :: LHsSigType (GhcPass p) -> Maybe (Located (IdP (GhcPass p)))
getLHsInstDeclClass_maybe LHsSigType (GhcPass p)
inst_ty
  = do { let head_ty :: LHsType (GhcPass p)
head_ty = LHsSigType (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass). LHsSigType (GhcPass p) -> LHsType (GhcPass p)
getLHsInstDeclHead LHsSigType (GhcPass p)
inst_ty
       ; Located (IdP (GhcPass p))
cls <- LHsType (GhcPass p) -> Maybe (Located (IdP (GhcPass p)))
forall (p :: Pass).
LHsType (GhcPass p) -> Maybe (Located (IdP (GhcPass p)))
hsTyGetAppHead_maybe LHsType (GhcPass p)
head_ty
       ; Located (IdP (GhcPass p)) -> Maybe (Located (IdP (GhcPass p)))
forall (m :: * -> *) a. Monad m => a -> m a
return Located (IdP (GhcPass p))
cls }

{-
************************************************************************
*                                                                      *
                FieldOcc
*                                                                      *
************************************************************************
-}

-- | Located Field Occurrence
type LFieldOcc pass = Located (FieldOcc pass)

-- | Field Occurrence
--
-- Represents an *occurrence* of an unambiguous field.  We store
-- both the 'RdrName' the user originally wrote, and after the
-- renamer, the selector function.
data FieldOcc pass = FieldOcc { FieldOcc pass -> XCFieldOcc pass
extFieldOcc     :: XCFieldOcc pass
                              , FieldOcc pass -> Located RdrName
rdrNameFieldOcc :: Located RdrName
                                 -- ^ See Note [Located RdrNames] in GHC.Hs.Expr
                              }

  | XFieldOcc
      (XXFieldOcc pass)
deriving instance Eq  (XCFieldOcc (GhcPass p)) => Eq  (FieldOcc (GhcPass p))
deriving instance Ord (XCFieldOcc (GhcPass p)) => Ord (FieldOcc (GhcPass p))

type instance XCFieldOcc GhcPs = NoExtField
type instance XCFieldOcc GhcRn = Name
type instance XCFieldOcc GhcTc = Id

type instance XXFieldOcc (GhcPass _) = NoExtCon

instance Outputable (FieldOcc pass) where
  ppr :: FieldOcc pass -> SDoc
ppr = Located RdrName -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Located RdrName -> SDoc)
-> (FieldOcc pass -> Located RdrName) -> FieldOcc pass -> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. FieldOcc pass -> Located RdrName
forall pass. FieldOcc pass -> Located RdrName
rdrNameFieldOcc

mkFieldOcc :: Located RdrName -> FieldOcc GhcPs
mkFieldOcc :: Located RdrName -> FieldOcc GhcPs
mkFieldOcc Located RdrName
rdr = XCFieldOcc GhcPs -> Located RdrName -> FieldOcc GhcPs
forall pass. XCFieldOcc pass -> Located RdrName -> FieldOcc pass
FieldOcc XCFieldOcc GhcPs
NoExtField
noExtField Located RdrName
rdr


-- | Ambiguous Field Occurrence
--
-- Represents an *occurrence* of a field that is potentially
-- ambiguous after the renamer, with the ambiguity resolved by the
-- typechecker.  We always store the 'RdrName' that the user
-- originally wrote, and store the selector function after the renamer
-- (for unambiguous occurrences) or the typechecker (for ambiguous
-- occurrences).
--
-- See Note [HsRecField and HsRecUpdField] in GHC.Hs.Pat and
-- Note [Disambiguating record fields] in TcExpr.
-- See Note [Located RdrNames] in GHC.Hs.Expr
data AmbiguousFieldOcc pass
  = Unambiguous (XUnambiguous pass) (Located RdrName)
  | Ambiguous   (XAmbiguous pass)   (Located RdrName)
  | XAmbiguousFieldOcc (XXAmbiguousFieldOcc pass)

type instance XUnambiguous GhcPs = NoExtField
type instance XUnambiguous GhcRn = Name
type instance XUnambiguous GhcTc = Id

type instance XAmbiguous GhcPs = NoExtField
type instance XAmbiguous GhcRn = NoExtField
type instance XAmbiguous GhcTc = Id

type instance XXAmbiguousFieldOcc (GhcPass _) = NoExtCon

instance Outputable (AmbiguousFieldOcc (GhcPass p)) where
  ppr :: AmbiguousFieldOcc (GhcPass p) -> SDoc
ppr = RdrName -> SDoc
forall a. Outputable a => a -> SDoc
ppr (RdrName -> SDoc)
-> (AmbiguousFieldOcc (GhcPass p) -> RdrName)
-> AmbiguousFieldOcc (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmbiguousFieldOcc (GhcPass p) -> RdrName
forall (p :: Pass). AmbiguousFieldOcc (GhcPass p) -> RdrName
rdrNameAmbiguousFieldOcc

instance OutputableBndr (AmbiguousFieldOcc (GhcPass p)) where
  pprInfixOcc :: AmbiguousFieldOcc (GhcPass p) -> SDoc
pprInfixOcc  = RdrName -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc (RdrName -> SDoc)
-> (AmbiguousFieldOcc (GhcPass p) -> RdrName)
-> AmbiguousFieldOcc (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmbiguousFieldOcc (GhcPass p) -> RdrName
forall (p :: Pass). AmbiguousFieldOcc (GhcPass p) -> RdrName
rdrNameAmbiguousFieldOcc
  pprPrefixOcc :: AmbiguousFieldOcc (GhcPass p) -> SDoc
pprPrefixOcc = RdrName -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc (RdrName -> SDoc)
-> (AmbiguousFieldOcc (GhcPass p) -> RdrName)
-> AmbiguousFieldOcc (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. AmbiguousFieldOcc (GhcPass p) -> RdrName
forall (p :: Pass). AmbiguousFieldOcc (GhcPass p) -> RdrName
rdrNameAmbiguousFieldOcc

mkAmbiguousFieldOcc :: Located RdrName -> AmbiguousFieldOcc GhcPs
mkAmbiguousFieldOcc :: Located RdrName -> AmbiguousFieldOcc GhcPs
mkAmbiguousFieldOcc Located RdrName
rdr = XUnambiguous GhcPs -> Located RdrName -> AmbiguousFieldOcc GhcPs
forall pass.
XUnambiguous pass -> Located RdrName -> AmbiguousFieldOcc pass
Unambiguous XUnambiguous GhcPs
NoExtField
noExtField Located RdrName
rdr

rdrNameAmbiguousFieldOcc :: AmbiguousFieldOcc (GhcPass p) -> RdrName
rdrNameAmbiguousFieldOcc :: AmbiguousFieldOcc (GhcPass p) -> RdrName
rdrNameAmbiguousFieldOcc (Unambiguous XUnambiguous (GhcPass p)
_ (L SrcSpan
_ RdrName
rdr)) = RdrName
rdr
rdrNameAmbiguousFieldOcc (Ambiguous   XAmbiguous (GhcPass p)
_ (L SrcSpan
_ RdrName
rdr)) = RdrName
rdr
rdrNameAmbiguousFieldOcc (XAmbiguousFieldOcc XXAmbiguousFieldOcc (GhcPass p)
nec)
  = NoExtCon -> RdrName
forall a. NoExtCon -> a
noExtCon XXAmbiguousFieldOcc (GhcPass p)
NoExtCon
nec

selectorAmbiguousFieldOcc :: AmbiguousFieldOcc GhcTc -> Id
selectorAmbiguousFieldOcc :: AmbiguousFieldOcc GhcTc -> Id
selectorAmbiguousFieldOcc (Unambiguous XUnambiguous GhcTc
sel Located RdrName
_) = Id
XUnambiguous GhcTc
sel
selectorAmbiguousFieldOcc (Ambiguous   XAmbiguous GhcTc
sel Located RdrName
_) = Id
XAmbiguous GhcTc
sel
selectorAmbiguousFieldOcc (XAmbiguousFieldOcc XXAmbiguousFieldOcc GhcTc
nec)
  = NoExtCon -> Id
forall a. NoExtCon -> a
noExtCon XXAmbiguousFieldOcc GhcTc
NoExtCon
nec

unambiguousFieldOcc :: AmbiguousFieldOcc GhcTc -> FieldOcc GhcTc
unambiguousFieldOcc :: AmbiguousFieldOcc GhcTc -> FieldOcc GhcTc
unambiguousFieldOcc (Unambiguous XUnambiguous GhcTc
rdr Located RdrName
sel) = XCFieldOcc GhcTc -> Located RdrName -> FieldOcc GhcTc
forall pass. XCFieldOcc pass -> Located RdrName -> FieldOcc pass
FieldOcc XCFieldOcc GhcTc
XUnambiguous GhcTc
rdr Located RdrName
sel
unambiguousFieldOcc (Ambiguous   XAmbiguous GhcTc
rdr Located RdrName
sel) = XCFieldOcc GhcTc -> Located RdrName -> FieldOcc GhcTc
forall pass. XCFieldOcc pass -> Located RdrName -> FieldOcc pass
FieldOcc XCFieldOcc GhcTc
XAmbiguous GhcTc
rdr Located RdrName
sel
unambiguousFieldOcc (XAmbiguousFieldOcc XXAmbiguousFieldOcc GhcTc
nec) = NoExtCon -> FieldOcc GhcTc
forall a. NoExtCon -> a
noExtCon XXAmbiguousFieldOcc GhcTc
NoExtCon
nec

ambiguousFieldOcc :: FieldOcc GhcTc -> AmbiguousFieldOcc GhcTc
ambiguousFieldOcc :: FieldOcc GhcTc -> AmbiguousFieldOcc GhcTc
ambiguousFieldOcc (FieldOcc XCFieldOcc GhcTc
sel Located RdrName
rdr) = XUnambiguous GhcTc -> Located RdrName -> AmbiguousFieldOcc GhcTc
forall pass.
XUnambiguous pass -> Located RdrName -> AmbiguousFieldOcc pass
Unambiguous XCFieldOcc GhcTc
XUnambiguous GhcTc
sel Located RdrName
rdr
ambiguousFieldOcc (XFieldOcc XXFieldOcc GhcTc
nec) = NoExtCon -> AmbiguousFieldOcc GhcTc
forall a. NoExtCon -> a
noExtCon XXFieldOcc GhcTc
NoExtCon
nec

{-
************************************************************************
*                                                                      *
\subsection{Pretty printing}
*                                                                      *
************************************************************************
-}

instance OutputableBndrId p => Outputable (HsType (GhcPass p)) where
    ppr :: HsType (GhcPass p) -> SDoc
ppr HsType (GhcPass p)
ty = HsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsType (GhcPass p) -> SDoc
pprHsType HsType (GhcPass p)
ty

instance Outputable HsTyLit where
    ppr :: HsTyLit -> SDoc
ppr = HsTyLit -> SDoc
ppr_tylit

instance OutputableBndrId p
       => Outputable (LHsQTyVars (GhcPass p)) where
    ppr :: LHsQTyVars (GhcPass p) -> SDoc
ppr (HsQTvs { hsq_explicit :: forall pass. LHsQTyVars pass -> [LHsTyVarBndr pass]
hsq_explicit = [LHsTyVarBndr (GhcPass p)]
tvs }) = [LHsTyVarBndr (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interppSP [LHsTyVarBndr (GhcPass p)]
tvs
    ppr (XLHsQTyVars XXLHsQTyVars (GhcPass p)
x) = NoExtCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXLHsQTyVars (GhcPass p)
NoExtCon
x

instance OutputableBndrId p
       => Outputable (HsTyVarBndr (GhcPass p)) where
    ppr :: HsTyVarBndr (GhcPass p) -> SDoc
ppr (UserTyVar XUserTyVar (GhcPass p)
_ Located (IdP (GhcPass p))
n)     = Located (IdP (GhcPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdP (GhcPass p))
n
    ppr (KindedTyVar XKindedTyVar (GhcPass p)
_ Located (IdP (GhcPass p))
n LHsKind (GhcPass p)
k) = SDoc -> SDoc
parens (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
hsep [Located (IdP (GhcPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdP (GhcPass p))
n, SDoc
dcolon, LHsKind (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsKind (GhcPass p)
k]
    ppr (XTyVarBndr XXTyVarBndr (GhcPass p)
nec)    = NoExtCon -> SDoc
forall a. NoExtCon -> a
noExtCon XXTyVarBndr (GhcPass p)
NoExtCon
nec

instance Outputable thing
       => Outputable (HsImplicitBndrs (GhcPass p) thing) where
    ppr :: HsImplicitBndrs (GhcPass p) thing -> SDoc
ppr (HsIB { hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = thing
ty }) = thing -> SDoc
forall a. Outputable a => a -> SDoc
ppr thing
ty
    ppr (XHsImplicitBndrs XXHsImplicitBndrs (GhcPass p) thing
x) = NoExtCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXHsImplicitBndrs (GhcPass p) thing
NoExtCon
x

instance Outputable thing
       => Outputable (HsWildCardBndrs (GhcPass p) thing) where
    ppr :: HsWildCardBndrs (GhcPass p) thing -> SDoc
ppr (HsWC { hswc_body :: forall pass thing. HsWildCardBndrs pass thing -> thing
hswc_body = thing
ty }) = thing -> SDoc
forall a. Outputable a => a -> SDoc
ppr thing
ty
    ppr (XHsWildCardBndrs XXHsWildCardBndrs (GhcPass p) thing
x) = NoExtCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXHsWildCardBndrs (GhcPass p) thing
NoExtCon
x

pprAnonWildCard :: SDoc
pprAnonWildCard :: SDoc
pprAnonWildCard = Char -> SDoc
char Char
'_'

-- | Prints a forall; When passed an empty list, prints @forall .@/@forall ->@
-- only when @-dppr-debug@ is enabled.
pprHsForAll :: (OutputableBndrId p)
            => ForallVisFlag -> [LHsTyVarBndr (GhcPass p)]
            -> LHsContext (GhcPass p) -> SDoc
pprHsForAll :: ForallVisFlag
-> [LHsTyVarBndr (GhcPass p)] -> LHsContext (GhcPass p) -> SDoc
pprHsForAll = Maybe SrcSpan
-> ForallVisFlag
-> [LHsTyVarBndr (GhcPass p)]
-> LHsContext (GhcPass p)
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Maybe SrcSpan
-> ForallVisFlag
-> [LHsTyVarBndr (GhcPass p)]
-> LHsContext (GhcPass p)
-> SDoc
pprHsForAllExtra Maybe SrcSpan
forall a. Maybe a
Nothing

-- | Version of 'pprHsForAll' that can also print an extra-constraints
-- wildcard, e.g. @_ => a -> Bool@ or @(Show a, _) => a -> String@. This
-- underscore will be printed when the 'Maybe SrcSpan' argument is a 'Just'
-- containing the location of the extra-constraints wildcard. A special
-- function for this is needed, as the extra-constraints wildcard is removed
-- from the actual context and type, and stored in a separate field, thus just
-- printing the type will not print the extra-constraints wildcard.
pprHsForAllExtra :: (OutputableBndrId p)
                 => Maybe SrcSpan -> ForallVisFlag
                 -> [LHsTyVarBndr (GhcPass p)]
                 -> LHsContext (GhcPass p) -> SDoc
pprHsForAllExtra :: Maybe SrcSpan
-> ForallVisFlag
-> [LHsTyVarBndr (GhcPass p)]
-> LHsContext (GhcPass p)
-> SDoc
pprHsForAllExtra Maybe SrcSpan
extra ForallVisFlag
fvf [LHsTyVarBndr (GhcPass p)]
qtvs LHsContext (GhcPass p)
cxt
  = SDoc
pp_forall SDoc -> SDoc -> SDoc
<+> Bool -> LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Bool -> LHsContext (GhcPass p) -> SDoc
pprLHsContextExtra (Maybe SrcSpan -> Bool
forall a. Maybe a -> Bool
isJust Maybe SrcSpan
extra) LHsContext (GhcPass p)
cxt
  where
    pp_forall :: SDoc
pp_forall | [LHsTyVarBndr (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LHsTyVarBndr (GhcPass p)]
qtvs = SDoc -> SDoc
whenPprDebug (SDoc
forAllLit SDoc -> SDoc -> SDoc
<> SDoc
separator)
              | Bool
otherwise = SDoc
forAllLit SDoc -> SDoc -> SDoc
<+> [LHsTyVarBndr (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interppSP [LHsTyVarBndr (GhcPass p)]
qtvs SDoc -> SDoc -> SDoc
<> SDoc
separator

    separator :: SDoc
separator = ForallVisFlag -> SDoc
ppr_forall_separator ForallVisFlag
fvf

-- | Version of 'pprHsForAll' or 'pprHsForAllExtra' that will always print
-- @forall.@ when passed @Just []@. Prints nothing if passed 'Nothing'
pprHsExplicitForAll :: (OutputableBndrId p)
                    => ForallVisFlag
                    -> Maybe [LHsTyVarBndr (GhcPass p)] -> SDoc
pprHsExplicitForAll :: ForallVisFlag -> Maybe [LHsTyVarBndr (GhcPass p)] -> SDoc
pprHsExplicitForAll ForallVisFlag
fvf (Just [LHsTyVarBndr (GhcPass p)]
qtvs) = SDoc
forAllLit SDoc -> SDoc -> SDoc
<+> [LHsTyVarBndr (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interppSP [LHsTyVarBndr (GhcPass p)]
qtvs
                                                 SDoc -> SDoc -> SDoc
<> ForallVisFlag -> SDoc
ppr_forall_separator ForallVisFlag
fvf
pprHsExplicitForAll ForallVisFlag
_   Maybe [LHsTyVarBndr (GhcPass p)]
Nothing     = SDoc
empty

-- | Prints an arrow for visible @forall@s (e.g., @forall a ->@) and a dot for
-- invisible @forall@s (e.g., @forall a.@).
ppr_forall_separator :: ForallVisFlag -> SDoc
ppr_forall_separator :: ForallVisFlag -> SDoc
ppr_forall_separator ForallVisFlag
ForallVis   = SDoc
space SDoc -> SDoc -> SDoc
<> SDoc
arrow
ppr_forall_separator ForallVisFlag
ForallInvis = SDoc
dot

pprLHsContext :: (OutputableBndrId p)
              => LHsContext (GhcPass p) -> SDoc
pprLHsContext :: LHsContext (GhcPass p) -> SDoc
pprLHsContext LHsContext (GhcPass p)
lctxt
  | [LHsType (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null (LHsContext (GhcPass p) -> SrcSpanLess (LHsContext (GhcPass p))
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc LHsContext (GhcPass p)
lctxt) = SDoc
empty
  | Bool
otherwise          = LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsContext (GhcPass p) -> SDoc
pprLHsContextAlways LHsContext (GhcPass p)
lctxt

-- For use in a HsQualTy, which always gets printed if it exists.
pprLHsContextAlways :: (OutputableBndrId p)
                    => LHsContext (GhcPass p) -> SDoc
pprLHsContextAlways :: LHsContext (GhcPass p) -> SDoc
pprLHsContextAlways (L SrcSpan
_ HsContext (GhcPass p)
ctxt)
  = case HsContext (GhcPass p)
ctxt of
      []       -> SDoc -> SDoc
parens SDoc
empty             SDoc -> SDoc -> SDoc
<+> SDoc
darrow
      [L SrcSpan
_ HsType (GhcPass p)
ty] -> HsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsType (GhcPass p) -> SDoc
ppr_mono_ty HsType (GhcPass p)
ty           SDoc -> SDoc -> SDoc
<+> SDoc
darrow
      HsContext (GhcPass p)
_        -> SDoc -> SDoc
parens (HsContext (GhcPass p) -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP HsContext (GhcPass p)
ctxt) SDoc -> SDoc -> SDoc
<+> SDoc
darrow

-- True <=> print an extra-constraints wildcard, e.g. @(Show a, _) =>@
pprLHsContextExtra :: (OutputableBndrId p)
                   => Bool -> LHsContext (GhcPass p) -> SDoc
pprLHsContextExtra :: Bool -> LHsContext (GhcPass p) -> SDoc
pprLHsContextExtra Bool
show_extra lctxt :: LHsContext (GhcPass p)
lctxt@(L SrcSpan
_ HsContext (GhcPass p)
ctxt)
  | Bool -> Bool
not Bool
show_extra = LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsContext (GhcPass p) -> SDoc
pprLHsContext LHsContext (GhcPass p)
lctxt
  | HsContext (GhcPass p) -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null HsContext (GhcPass p)
ctxt      = Char -> SDoc
char Char
'_' SDoc -> SDoc -> SDoc
<+> SDoc
darrow
  | Bool
otherwise      = SDoc -> SDoc
parens ([SDoc] -> SDoc
sep (SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma [SDoc]
ctxt')) SDoc -> SDoc -> SDoc
<+> SDoc
darrow
  where
    ctxt' :: [SDoc]
ctxt' = (LHsType (GhcPass p) -> SDoc) -> HsContext (GhcPass p) -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LHsType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsContext (GhcPass p)
ctxt [SDoc] -> [SDoc] -> [SDoc]
forall a. [a] -> [a] -> [a]
++ [Char -> SDoc
char Char
'_']

pprConDeclFields :: (OutputableBndrId p)
                 => [LConDeclField (GhcPass p)] -> SDoc
pprConDeclFields :: [LConDeclField (GhcPass p)] -> SDoc
pprConDeclFields [LConDeclField (GhcPass p)]
fields = SDoc -> SDoc
braces ([SDoc] -> SDoc
sep (SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma ((LConDeclField (GhcPass p) -> SDoc)
-> [LConDeclField (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LConDeclField (GhcPass p) -> SDoc
forall pass l.
(Outputable (XXConDeclField pass), Outputable (HsType pass)) =>
GenLocated l (ConDeclField pass) -> SDoc
ppr_fld [LConDeclField (GhcPass p)]
fields)))
  where
    ppr_fld :: GenLocated l (ConDeclField pass) -> SDoc
ppr_fld (L l
_ (ConDeclField { cd_fld_names :: forall pass. ConDeclField pass -> [LFieldOcc pass]
cd_fld_names = [LFieldOcc pass]
ns, cd_fld_type :: forall pass. ConDeclField pass -> LBangType pass
cd_fld_type = LBangType pass
ty,
                                 cd_fld_doc :: forall pass. ConDeclField pass -> Maybe LHsDocString
cd_fld_doc = Maybe LHsDocString
doc }))
        = [LFieldOcc pass] -> SDoc
forall a. Outputable a => [a] -> SDoc
ppr_names [LFieldOcc pass]
ns SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LBangType pass -> SDoc
forall a. Outputable a => a -> SDoc
ppr LBangType pass
ty SDoc -> SDoc -> SDoc
<+> Maybe LHsDocString -> SDoc
ppr_mbDoc Maybe LHsDocString
doc
    ppr_fld (L l
_ (XConDeclField XXConDeclField pass
x)) = XXConDeclField pass -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXConDeclField pass
x
    ppr_names :: [a] -> SDoc
ppr_names [a
n] = a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
n
    ppr_names [a]
ns = [SDoc] -> SDoc
sep (SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma ((a -> SDoc) -> [a] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map a -> SDoc
forall a. Outputable a => a -> SDoc
ppr [a]
ns))

{-
Note [Printing KindedTyVars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#3830 reminded me that we should really only print the kind
signature on a KindedTyVar if the kind signature was put there by the
programmer.  During kind inference GHC now adds a PostTcKind to UserTyVars,
rather than converting to KindedTyVars as before.

(As it happens, the message in #3830 comes out a different way now,
and the problem doesn't show up; but having the flag on a KindedTyVar
seems like the Right Thing anyway.)
-}

-- Printing works more-or-less as for Types

pprHsType :: (OutputableBndrId p) => HsType (GhcPass p) -> SDoc
pprHsType :: HsType (GhcPass p) -> SDoc
pprHsType HsType (GhcPass p)
ty = HsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsType (GhcPass p) -> SDoc
ppr_mono_ty HsType (GhcPass p)
ty

ppr_mono_lty :: (OutputableBndrId p) => LHsType (GhcPass p) -> SDoc
ppr_mono_lty :: LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty = HsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsType (GhcPass p) -> SDoc
ppr_mono_ty (LHsType (GhcPass p) -> SrcSpanLess (LHsType (GhcPass p))
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc LHsType (GhcPass p)
ty)

ppr_mono_ty :: (OutputableBndrId p) => HsType (GhcPass p) -> SDoc
ppr_mono_ty :: HsType (GhcPass p) -> SDoc
ppr_mono_ty (HsForAllTy { hst_fvf :: forall pass. HsType pass -> ForallVisFlag
hst_fvf = ForallVisFlag
fvf, hst_bndrs :: forall pass. HsType pass -> [LHsTyVarBndr pass]
hst_bndrs = [LHsTyVarBndr (GhcPass p)]
tvs, hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = LHsType (GhcPass p)
ty })
  = [SDoc] -> SDoc
sep [ForallVisFlag
-> [LHsTyVarBndr (GhcPass p)] -> LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
ForallVisFlag
-> [LHsTyVarBndr (GhcPass p)] -> LHsContext (GhcPass p) -> SDoc
pprHsForAll ForallVisFlag
fvf [LHsTyVarBndr (GhcPass p)]
tvs LHsContext (GhcPass p)
forall pass. LHsContext pass
noLHsContext, LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty]

ppr_mono_ty (HsQualTy { hst_ctxt :: forall pass. HsType pass -> LHsContext pass
hst_ctxt = LHsContext (GhcPass p)
ctxt, hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = LHsType (GhcPass p)
ty })
  = [SDoc] -> SDoc
sep [LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsContext (GhcPass p) -> SDoc
pprLHsContextAlways LHsContext (GhcPass p)
ctxt, LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty]

ppr_mono_ty (HsBangTy XBangTy (GhcPass p)
_ HsSrcBang
b LHsType (GhcPass p)
ty)   = HsSrcBang -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsSrcBang
b SDoc -> SDoc -> SDoc
<> LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty
ppr_mono_ty (HsRecTy XRecTy (GhcPass p)
_ [LConDeclField (GhcPass p)]
flds)      = [LConDeclField (GhcPass p)] -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
[LConDeclField (GhcPass p)] -> SDoc
pprConDeclFields [LConDeclField (GhcPass p)]
flds
ppr_mono_ty (HsTyVar XTyVar (GhcPass p)
_ PromotionFlag
prom (L SrcSpan
_ IdP (GhcPass p)
name))
  | PromotionFlag -> Bool
isPromoted PromotionFlag
prom = SDoc -> SDoc
quote (IdP (GhcPass p) -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdP (GhcPass p)
name)
  | Bool
otherwise       = IdP (GhcPass p) -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdP (GhcPass p)
name
ppr_mono_ty (HsFunTy XFunTy (GhcPass p)
_ LHsType (GhcPass p)
ty1 LHsType (GhcPass p)
ty2)   = LHsType (GhcPass p) -> LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> LHsType (GhcPass p) -> SDoc
ppr_fun_ty LHsType (GhcPass p)
ty1 LHsType (GhcPass p)
ty2
ppr_mono_ty (HsTupleTy XTupleTy (GhcPass p)
_ HsTupleSort
con [LHsType (GhcPass p)]
tys)
    -- Special-case unary boxed tuples so that they are pretty-printed as
    -- `Unit x`, not `(x)`
  | [LHsType (GhcPass p)
ty] <- [LHsType (GhcPass p)]
tys
  , TupleSort
BoxedTuple <- TupleSort
std_con
  = [SDoc] -> SDoc
sep [String -> SDoc
text (Boxity -> Int -> String
mkTupleStr Boxity
Boxed Int
1), LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty]
  | Bool
otherwise
  = TupleSort -> SDoc -> SDoc
tupleParens TupleSort
std_con ((LHsType (GhcPass p) -> SDoc) -> [LHsType (GhcPass p)] -> SDoc
forall a. (a -> SDoc) -> [a] -> SDoc
pprWithCommas LHsType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LHsType (GhcPass p)]
tys)
  where std_con :: TupleSort
std_con = case HsTupleSort
con of
                    HsTupleSort
HsUnboxedTuple -> TupleSort
UnboxedTuple
                    HsTupleSort
_              -> TupleSort
BoxedTuple
ppr_mono_ty (HsSumTy XSumTy (GhcPass p)
_ [LHsType (GhcPass p)]
tys)
  = TupleSort -> SDoc -> SDoc
tupleParens TupleSort
UnboxedTuple ((LHsType (GhcPass p) -> SDoc) -> [LHsType (GhcPass p)] -> SDoc
forall a. (a -> SDoc) -> [a] -> SDoc
pprWithBars LHsType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LHsType (GhcPass p)]
tys)
ppr_mono_ty (HsKindSig XKindSig (GhcPass p)
_ LHsType (GhcPass p)
ty LHsType (GhcPass p)
kind)
  = LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LHsType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsType (GhcPass p)
kind
ppr_mono_ty (HsListTy XListTy (GhcPass p)
_ LHsType (GhcPass p)
ty)       = SDoc -> SDoc
brackets (LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty)
ppr_mono_ty (HsIParamTy XIParamTy (GhcPass p)
_ Located HsIPName
n LHsType (GhcPass p)
ty)   = (Located HsIPName -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located HsIPName
n SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty)
ppr_mono_ty (HsSpliceTy XSpliceTy (GhcPass p)
_ HsSplice (GhcPass p)
s)      = HsSplice (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsSplice (GhcPass p) -> SDoc
pprSplice HsSplice (GhcPass p)
s
ppr_mono_ty (HsExplicitListTy XExplicitListTy (GhcPass p)
_ PromotionFlag
prom [LHsType (GhcPass p)]
tys)
  | PromotionFlag -> Bool
isPromoted PromotionFlag
prom = SDoc -> SDoc
quote (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ SDoc -> SDoc
brackets ([LHsType (GhcPass p)] -> SDoc -> SDoc
forall pass. [LHsType pass] -> SDoc -> SDoc
maybeAddSpace [LHsType (GhcPass p)]
tys (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [LHsType (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [LHsType (GhcPass p)]
tys)
  | Bool
otherwise       = SDoc -> SDoc
brackets ([LHsType (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [LHsType (GhcPass p)]
tys)
ppr_mono_ty (HsExplicitTupleTy XExplicitTupleTy (GhcPass p)
_ [LHsType (GhcPass p)]
tys)
    -- Special-case unary boxed tuples so that they are pretty-printed as
    -- `'Unit x`, not `'(x)`
  | [LHsType (GhcPass p)
ty] <- [LHsType (GhcPass p)]
tys
  = SDoc -> SDoc
quote (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
sep [String -> SDoc
text (Boxity -> Int -> String
mkTupleStr Boxity
Boxed Int
1), LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty]
  | Bool
otherwise
  = SDoc -> SDoc
quote (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ SDoc -> SDoc
parens ([LHsType (GhcPass p)] -> SDoc -> SDoc
forall pass. [LHsType pass] -> SDoc -> SDoc
maybeAddSpace [LHsType (GhcPass p)]
tys (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [LHsType (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [LHsType (GhcPass p)]
tys)
ppr_mono_ty (HsTyLit XTyLit (GhcPass p)
_ HsTyLit
t)       = HsTyLit -> SDoc
ppr_tylit HsTyLit
t
ppr_mono_ty (HsWildCardTy {})   = Char -> SDoc
char Char
'_'

ppr_mono_ty (HsStarTy XStarTy (GhcPass p)
_ Bool
isUni)  = Char -> SDoc
char (if Bool
isUni then Char
'★' else Char
'*')

ppr_mono_ty (HsAppTy XAppTy (GhcPass p)
_ LHsType (GhcPass p)
fun_ty LHsType (GhcPass p)
arg_ty)
  = [SDoc] -> SDoc
hsep [LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
fun_ty, LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
arg_ty]
ppr_mono_ty (HsAppKindTy XAppKindTy (GhcPass p)
_ LHsType (GhcPass p)
ty LHsType (GhcPass p)
k)
  = LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'@' SDoc -> SDoc -> SDoc
<> LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
k
ppr_mono_ty (HsOpTy XOpTy (GhcPass p)
_ LHsType (GhcPass p)
ty1 (L SrcSpan
_ IdP (GhcPass p)
op) LHsType (GhcPass p)
ty2)
  = [SDoc] -> SDoc
sep [ LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty1
        , [SDoc] -> SDoc
sep [IdP (GhcPass p) -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc IdP (GhcPass p)
op, LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty2 ] ]

ppr_mono_ty (HsParTy XParTy (GhcPass p)
_ LHsType (GhcPass p)
ty)
  = SDoc -> SDoc
parens (LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty)
  -- Put the parens in where the user did
  -- But we still use the precedence stuff to add parens because
  --    toHsType doesn't put in any HsParTys, so we may still need them

ppr_mono_ty (HsDocTy XDocTy (GhcPass p)
_ LHsType (GhcPass p)
ty LHsDocString
doc)
  -- AZ: Should we add parens?  Should we introduce "-- ^"?
  = LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty SDoc -> SDoc -> SDoc
<+> HsDocString -> SDoc
forall a. Outputable a => a -> SDoc
ppr (LHsDocString -> SrcSpanLess LHsDocString
forall a. HasSrcSpan a => a -> SrcSpanLess a
unLoc LHsDocString
doc)
  -- we pretty print Haddock comments on types as if they were
  -- postfix operators

ppr_mono_ty (XHsType XXType (GhcPass p)
t) = NewHsTypeX -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXType (GhcPass p)
NewHsTypeX
t

--------------------------
ppr_fun_ty :: (OutputableBndrId p)
           => LHsType (GhcPass p) -> LHsType (GhcPass p) -> SDoc
ppr_fun_ty :: LHsType (GhcPass p) -> LHsType (GhcPass p) -> SDoc
ppr_fun_ty LHsType (GhcPass p)
ty1 LHsType (GhcPass p)
ty2
  = let p1 :: SDoc
p1 = LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty1
        p2 :: SDoc
p2 = LHsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsType (GhcPass p) -> SDoc
ppr_mono_lty LHsType (GhcPass p)
ty2
    in
    [SDoc] -> SDoc
sep [SDoc
p1, SDoc
arrow SDoc -> SDoc -> SDoc
<+> SDoc
p2]

--------------------------
ppr_tylit :: HsTyLit -> SDoc
ppr_tylit :: HsTyLit -> SDoc
ppr_tylit (HsNumTy SourceText
_ Integer
i) = Integer -> SDoc
integer Integer
i
ppr_tylit (HsStrTy SourceText
_ FastString
s) = String -> SDoc
text (FastString -> String
forall a. Show a => a -> String
show FastString
s)


-- | @'hsTypeNeedsParens' p t@ returns 'True' if the type @t@ needs parentheses
-- under precedence @p@.
hsTypeNeedsParens :: PprPrec -> HsType pass -> Bool
hsTypeNeedsParens :: PprPrec -> HsType pass -> Bool
hsTypeNeedsParens PprPrec
p = HsType pass -> Bool
go
  where
    go :: HsType pass -> Bool
go (HsForAllTy{})        = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
funPrec
    go (HsQualTy{})          = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
funPrec
    go (HsBangTy{})          = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsRecTy{})           = Bool
False
    go (HsTyVar{})           = Bool
False
    go (HsFunTy{})           = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
funPrec
    go (HsTupleTy{})         = Bool
False
    go (HsSumTy{})           = Bool
False
    go (HsKindSig{})         = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
sigPrec
    go (HsListTy{})          = Bool
False
    go (HsIParamTy{})        = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsSpliceTy{})        = Bool
False
    go (HsExplicitListTy{})  = Bool
False
    go (HsExplicitTupleTy{}) = Bool
False
    go (HsTyLit{})           = Bool
False
    go (HsWildCardTy{})      = Bool
False
    go (HsStarTy{})          = Bool
False
    go (HsAppTy{})           = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
appPrec
    go (HsAppKindTy{})       = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
appPrec
    go (HsOpTy{})            = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
opPrec
    go (HsParTy{})           = Bool
False
    go (HsDocTy XDocTy pass
_ (L SrcSpan
_ HsType pass
t) LHsDocString
_) = HsType pass -> Bool
go HsType pass
t
    go (XHsType{})           = Bool
False

maybeAddSpace :: [LHsType pass] -> SDoc -> SDoc
-- See Note [Printing promoted type constructors]
-- in IfaceType.  This code implements the same
-- logic for printing HsType
maybeAddSpace :: [LHsType pass] -> SDoc -> SDoc
maybeAddSpace [LHsType pass]
tys SDoc
doc
  | (LHsType pass
ty : [LHsType pass]
_) <- [LHsType pass]
tys
  , LHsType pass -> Bool
forall pass. LHsType pass -> Bool
lhsTypeHasLeadingPromotionQuote LHsType pass
ty = SDoc
space SDoc -> SDoc -> SDoc
<> SDoc
doc
  | Bool
otherwise                          = SDoc
doc

lhsTypeHasLeadingPromotionQuote :: LHsType pass -> Bool
lhsTypeHasLeadingPromotionQuote :: LHsType pass -> Bool
lhsTypeHasLeadingPromotionQuote LHsType pass
ty
  = LHsType pass -> Bool
forall pass. LHsType pass -> Bool
goL LHsType pass
ty
  where
    goL :: GenLocated SrcSpan (HsType pass) -> Bool
goL (L SrcSpan
_ HsType pass
ty) = HsType pass -> Bool
go HsType pass
ty

    go :: HsType pass -> Bool
go (HsForAllTy{})        = Bool
False
    go (HsQualTy{ hst_ctxt :: forall pass. HsType pass -> LHsContext pass
hst_ctxt = LHsContext pass
ctxt, hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = GenLocated SrcSpan (HsType pass)
body})
      | L SrcSpan
_ (GenLocated SrcSpan (HsType pass)
c:[GenLocated SrcSpan (HsType pass)]
_) <- LHsContext pass
ctxt    = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
c
      | Bool
otherwise            = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
body
    go (HsBangTy{})          = Bool
False
    go (HsRecTy{})           = Bool
False
    go (HsTyVar XTyVar pass
_ PromotionFlag
p Located (IdP pass)
_)       = PromotionFlag -> Bool
isPromoted PromotionFlag
p
    go (HsFunTy XFunTy pass
_ GenLocated SrcSpan (HsType pass)
arg GenLocated SrcSpan (HsType pass)
_)     = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
arg
    go (HsListTy{})          = Bool
False
    go (HsTupleTy{})         = Bool
False
    go (HsSumTy{})           = Bool
False
    go (HsOpTy XOpTy pass
_ GenLocated SrcSpan (HsType pass)
t1 Located (IdP pass)
_ GenLocated SrcSpan (HsType pass)
_)     = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
t1
    go (HsKindSig XKindSig pass
_ GenLocated SrcSpan (HsType pass)
t GenLocated SrcSpan (HsType pass)
_)     = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
t
    go (HsIParamTy{})        = Bool
False
    go (HsSpliceTy{})        = Bool
False
    go (HsExplicitListTy XExplicitListTy pass
_ PromotionFlag
p [GenLocated SrcSpan (HsType pass)]
_) = PromotionFlag -> Bool
isPromoted PromotionFlag
p
    go (HsExplicitTupleTy{}) = Bool
True
    go (HsTyLit{})           = Bool
False
    go (HsWildCardTy{})      = Bool
False
    go (HsStarTy{})          = Bool
False
    go (HsAppTy XAppTy pass
_ GenLocated SrcSpan (HsType pass)
t GenLocated SrcSpan (HsType pass)
_)       = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
t
    go (HsAppKindTy XAppKindTy pass
_ GenLocated SrcSpan (HsType pass)
t GenLocated SrcSpan (HsType pass)
_)   = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
t
    go (HsParTy{})           = Bool
False
    go (HsDocTy XDocTy pass
_ GenLocated SrcSpan (HsType pass)
t LHsDocString
_)       = GenLocated SrcSpan (HsType pass) -> Bool
goL GenLocated SrcSpan (HsType pass)
t
    go (XHsType{})           = Bool
False

-- | @'parenthesizeHsType' p ty@ checks if @'hsTypeNeedsParens' p ty@ is
-- true, and if so, surrounds @ty@ with an 'HsParTy'. Otherwise, it simply
-- returns @ty@.
parenthesizeHsType :: PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
parenthesizeHsType :: PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
parenthesizeHsType PprPrec
p lty :: LHsType (GhcPass p)
lty@(L SrcSpan
loc HsType (GhcPass p)
ty)
  | PprPrec -> HsType (GhcPass p) -> Bool
forall pass. PprPrec -> HsType pass -> Bool
hsTypeNeedsParens PprPrec
p HsType (GhcPass p)
ty = SrcSpan -> HsType (GhcPass p) -> LHsType (GhcPass p)
forall l e. l -> e -> GenLocated l e
L SrcSpan
loc (XParTy (GhcPass p) -> LHsType (GhcPass p) -> HsType (GhcPass p)
forall pass. XParTy pass -> LHsType pass -> HsType pass
HsParTy XParTy (GhcPass p)
NoExtField
noExtField LHsType (GhcPass p)
lty)
  | Bool
otherwise              = LHsType (GhcPass p)
lty

-- | @'parenthesizeHsContext' p ctxt@ checks if @ctxt@ is a single constraint
-- @c@ such that @'hsTypeNeedsParens' p c@ is true, and if so, surrounds @c@
-- with an 'HsParTy' to form a parenthesized @ctxt@. Otherwise, it simply
-- returns @ctxt@ unchanged.
parenthesizeHsContext :: PprPrec
                      -> LHsContext (GhcPass p) -> LHsContext (GhcPass p)
parenthesizeHsContext :: PprPrec -> LHsContext (GhcPass p) -> LHsContext (GhcPass p)
parenthesizeHsContext PprPrec
p lctxt :: LHsContext (GhcPass p)
lctxt@(L SrcSpan
loc HsContext (GhcPass p)
ctxt) =
  case HsContext (GhcPass p)
ctxt of
    [LHsType (GhcPass p)
c] -> SrcSpan -> HsContext (GhcPass p) -> LHsContext (GhcPass p)
forall l e. l -> e -> GenLocated l e
L SrcSpan
loc [PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass).
PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
parenthesizeHsType PprPrec
p LHsType (GhcPass p)
c]
    HsContext (GhcPass p)
_   -> LHsContext (GhcPass p)
lctxt -- Other contexts are already "parenthesized" by virtue of
                 -- being tuples.