{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

\section{Tidying up Core}
-}

{-# LANGUAGE CPP, DeriveFunctor, ViewPatterns #-}

module TidyPgm (
       mkBootModDetailsTc, tidyProgram
   ) where

#include "HsVersions.h"

import GhcPrelude

import TcRnTypes
import DynFlags
import CoreSyn
import CoreUnfold
import CoreFVs
import CoreTidy
import CoreMonad
import CorePrep
import CoreUtils        (rhsIsStatic)
import CoreStats        (coreBindsStats, CoreStats(..))
import CoreSeq          (seqBinds)
import CoreLint
import Literal
import Rules
import PatSyn
import ConLike
import CoreArity        ( exprArity, exprBotStrictness_maybe )
import StaticPtrTable
import VarEnv
import VarSet
import Var
import Id
import MkId             ( mkDictSelRhs )
import IdInfo
import InstEnv
import Type             ( tidyTopType )
import Demand           ( appIsBottom, isTopSig, isBottomingSig )
import BasicTypes
import Name hiding (varName)
import NameSet
import NameCache
import Avail
import IfaceEnv
import TcEnv
import TcRnMonad
import DataCon
import TyCon
import Class
import Module
import Packages( isDllName )
import HscTypes
import Maybes
import UniqSupply
import Outputable
import Util( filterOut )
import qualified ErrUtils as Err

import Control.Monad
import Data.Function
import Data.List        ( sortBy, mapAccumL )
import Data.IORef       ( atomicModifyIORef' )

{-
Constructing the TypeEnv, Instances, Rules from which the
ModIface is constructed, and which goes on to subsequent modules in
--make mode.

Most of the interface file is obtained simply by serialising the
TypeEnv.  One important consequence is that if the *interface file*
has pragma info if and only if the final TypeEnv does. This is not so
important for *this* module, but it's essential for ghc --make:
subsequent compilations must not see (e.g.) the arity if the interface
file does not contain arity If they do, they'll exploit the arity;
then the arity might change, but the iface file doesn't change =>
recompilation does not happen => disaster.

For data types, the final TypeEnv will have a TyThing for the TyCon,
plus one for each DataCon; the interface file will contain just one
data type declaration, but it is de-serialised back into a collection
of TyThings.

************************************************************************
*                                                                      *
                Plan A: simpleTidyPgm
*                                                                      *
************************************************************************


Plan A: mkBootModDetails: omit pragmas, make interfaces small
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Ignore the bindings

* Drop all WiredIn things from the TypeEnv
        (we never want them in interface files)

* Retain all TyCons and Classes in the TypeEnv, to avoid
        having to find which ones are mentioned in the
        types of exported Ids

* Trim off the constructors of non-exported TyCons, both
        from the TyCon and from the TypeEnv

* Drop non-exported Ids from the TypeEnv

* Tidy the types of the DFunIds of Instances,
  make them into GlobalIds, (they already have External Names)
  and add them to the TypeEnv

* Tidy the types of the (exported) Ids in the TypeEnv,
  make them into GlobalIds (they already have External Names)

* Drop rules altogether

* Tidy the bindings, to ensure that the Caf and Arity
  information is correct for each top-level binder; the
  code generator needs it. And to ensure that local names have
  distinct OccNames in case of object-file splitting

* If this an hsig file, drop the instances altogether too (they'll
  get pulled in by the implicit module import.
-}

-- This is Plan A: make a small type env when typechecking only,
-- or when compiling a hs-boot file, or simply when not using -O
--
-- We don't look at the bindings at all -- there aren't any
-- for hs-boot files

mkBootModDetailsTc :: HscEnv -> TcGblEnv -> IO ModDetails
mkBootModDetailsTc :: HscEnv -> TcGblEnv -> IO ModDetails
mkBootModDetailsTc HscEnv
hsc_env
        TcGblEnv{ tcg_exports :: TcGblEnv -> [AvailInfo]
tcg_exports          = [AvailInfo]
exports,
                  tcg_type_env :: TcGblEnv -> TypeEnv
tcg_type_env         = TypeEnv
type_env, -- just for the Ids
                  tcg_tcs :: TcGblEnv -> [TyCon]
tcg_tcs              = [TyCon]
tcs,
                  tcg_patsyns :: TcGblEnv -> [PatSyn]
tcg_patsyns          = [PatSyn]
pat_syns,
                  tcg_insts :: TcGblEnv -> [ClsInst]
tcg_insts            = [ClsInst]
insts,
                  tcg_fam_insts :: TcGblEnv -> [FamInst]
tcg_fam_insts        = [FamInst]
fam_insts,
                  tcg_complete_matches :: TcGblEnv -> [CompleteMatch]
tcg_complete_matches = [CompleteMatch]
complete_sigs,
                  tcg_mod :: TcGblEnv -> Module
tcg_mod              = Module
this_mod
                }
  = -- This timing isn't terribly useful since the result isn't forced, but
    -- the message is useful to locating oneself in the compilation process.
    DynFlags
-> SDoc -> (ModDetails -> ()) -> IO ModDetails -> IO ModDetails
forall (m :: * -> *) a.
MonadIO m =>
DynFlags -> SDoc -> (a -> ()) -> m a -> m a
Err.withTiming DynFlags
dflags
                   (String -> SDoc
text String
"CoreTidy"SDoc -> SDoc -> SDoc
<+>SDoc -> SDoc
brackets (Module -> SDoc
forall a. Outputable a => a -> SDoc
ppr Module
this_mod))
                   (() -> ModDetails -> ()
forall a b. a -> b -> a
const ()) (IO ModDetails -> IO ModDetails) -> IO ModDetails -> IO ModDetails
forall a b. (a -> b) -> a -> b
$
    ModDetails -> IO ModDetails
forall (m :: * -> *) a. Monad m => a -> m a
return (ModDetails :: [AvailInfo]
-> TypeEnv
-> [ClsInst]
-> [FamInst]
-> [CoreRule]
-> [Annotation]
-> [CompleteMatch]
-> ModDetails
ModDetails { md_types :: TypeEnv
md_types         = TypeEnv
type_env'
                       , md_insts :: [ClsInst]
md_insts         = [ClsInst]
insts'
                       , md_fam_insts :: [FamInst]
md_fam_insts     = [FamInst]
fam_insts
                       , md_rules :: [CoreRule]
md_rules         = []
                       , md_anns :: [Annotation]
md_anns          = []
                       , md_exports :: [AvailInfo]
md_exports       = [AvailInfo]
exports
                       , md_complete_sigs :: [CompleteMatch]
md_complete_sigs = [CompleteMatch]
complete_sigs
                       })
  where
    dflags :: DynFlags
dflags = HscEnv -> DynFlags
hsc_dflags HscEnv
hsc_env

    -- Find the LocalIds in the type env that are exported
    -- Make them into GlobalIds, and tidy their types
    --
    -- It's very important to remove the non-exported ones
    -- because we don't tidy the OccNames, and if we don't remove
    -- the non-exported ones we'll get many things with the
    -- same name in the interface file, giving chaos.
    --
    -- Do make sure that we keep Ids that are already Global.
    -- When typechecking an .hs-boot file, the Ids come through as
    -- GlobalIds.
    final_ids :: [Id]
final_ids = [ Id -> Id
globaliseAndTidyBootId Id
id
                | Id
id <- TypeEnv -> [Id]
typeEnvIds TypeEnv
type_env
                , Id -> Bool
keep_it Id
id ]

    final_tcs :: [TyCon]
final_tcs  = (TyCon -> Bool) -> [TyCon] -> [TyCon]
forall a. (a -> Bool) -> [a] -> [a]
filterOut (Name -> Bool
isWiredInName (Name -> Bool) -> (TyCon -> Name) -> TyCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> Name
forall a. NamedThing a => a -> Name
getName) [TyCon]
tcs
                 -- See Note [Drop wired-in things]
    type_env1 :: TypeEnv
type_env1  = [Id] -> [TyCon] -> [FamInst] -> TypeEnv
typeEnvFromEntities [Id]
final_ids [TyCon]
final_tcs [FamInst]
fam_insts
    insts' :: [ClsInst]
insts'     = TypeEnv -> [ClsInst] -> [ClsInst]
mkFinalClsInsts TypeEnv
type_env1 [ClsInst]
insts
    pat_syns' :: [PatSyn]
pat_syns'  = TypeEnv -> [PatSyn] -> [PatSyn]
mkFinalPatSyns  TypeEnv
type_env1 [PatSyn]
pat_syns
    type_env' :: TypeEnv
type_env'  = [PatSyn] -> TypeEnv -> TypeEnv
extendTypeEnvWithPatSyns [PatSyn]
pat_syns' TypeEnv
type_env1

    -- Default methods have their export flag set (isExportedId),
    -- but everything else doesn't (yet), because this is
    -- pre-desugaring, so we must test against the exports too.
    keep_it :: Id -> Bool
keep_it Id
id | Name -> Bool
isWiredInName Name
id_name           = Bool
False
                 -- See Note [Drop wired-in things]
               | Id -> Bool
isExportedId Id
id                 = Bool
True
               | Name
id_name Name -> NameSet -> Bool
`elemNameSet` NameSet
exp_names = Bool
True
               | Bool
otherwise                       = Bool
False
               where
                 id_name :: Name
id_name = Id -> Name
idName Id
id

    exp_names :: NameSet
exp_names = [AvailInfo] -> NameSet
availsToNameSet [AvailInfo]
exports

lookupFinalId :: TypeEnv -> Id -> Id
lookupFinalId :: TypeEnv -> Id -> Id
lookupFinalId TypeEnv
type_env Id
id
  = case TypeEnv -> Name -> Maybe TyThing
lookupTypeEnv TypeEnv
type_env (Id -> Name
idName Id
id) of
      Just (AnId Id
id') -> Id
id'
      Maybe TyThing
_ -> String -> SDoc -> Id
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"lookup_final_id" (Id -> SDoc
forall a. Outputable a => a -> SDoc
ppr Id
id)

mkFinalClsInsts :: TypeEnv -> [ClsInst] -> [ClsInst]
mkFinalClsInsts :: TypeEnv -> [ClsInst] -> [ClsInst]
mkFinalClsInsts TypeEnv
env = (ClsInst -> ClsInst) -> [ClsInst] -> [ClsInst]
forall a b. (a -> b) -> [a] -> [b]
map ((Id -> Id) -> ClsInst -> ClsInst
updateClsInstDFun (TypeEnv -> Id -> Id
lookupFinalId TypeEnv
env))

mkFinalPatSyns :: TypeEnv -> [PatSyn] -> [PatSyn]
mkFinalPatSyns :: TypeEnv -> [PatSyn] -> [PatSyn]
mkFinalPatSyns TypeEnv
env = (PatSyn -> PatSyn) -> [PatSyn] -> [PatSyn]
forall a b. (a -> b) -> [a] -> [b]
map ((Id -> Id) -> PatSyn -> PatSyn
updatePatSynIds (TypeEnv -> Id -> Id
lookupFinalId TypeEnv
env))

extendTypeEnvWithPatSyns :: [PatSyn] -> TypeEnv -> TypeEnv
extendTypeEnvWithPatSyns :: [PatSyn] -> TypeEnv -> TypeEnv
extendTypeEnvWithPatSyns [PatSyn]
tidy_patsyns TypeEnv
type_env
  = TypeEnv -> [TyThing] -> TypeEnv
extendTypeEnvList TypeEnv
type_env [ConLike -> TyThing
AConLike (PatSyn -> ConLike
PatSynCon PatSyn
ps) | PatSyn
ps <- [PatSyn]
tidy_patsyns ]

globaliseAndTidyBootId :: Id -> Id
-- For a LocalId with an External Name,
-- makes it into a GlobalId
--     * unchanged Name (might be Internal or External)
--     * unchanged details
--     * VanillaIdInfo (makes a conservative assumption about Caf-hood and arity)
--     * BootUnfolding (see Note [Inlining and hs-boot files] in ToIface)
globaliseAndTidyBootId :: Id -> Id
globaliseAndTidyBootId Id
id
  = Id -> Id
globaliseId Id
id Id -> Type -> Id
`setIdType`      Type -> Type
tidyTopType (Id -> Type
idType Id
id)
                   Id -> Unfolding -> Id
`setIdUnfolding` Unfolding
BootUnfolding

{-
************************************************************************
*                                                                      *
        Plan B: tidy bindings, make TypeEnv full of IdInfo
*                                                                      *
************************************************************************

Plan B: include pragmas, make interfaces
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Step 1: Figure out which Ids are externally visible
          See Note [Choosing external Ids]

* Step 2: Gather the externally visible rules, separately from
          the top-level bindings.
          See Note [Finding external rules]

* Step 3: Tidy the bindings, externalising appropriate Ids
          See Note [Tidy the top-level bindings]

* Drop all Ids from the TypeEnv, and add all the External Ids from
  the bindings.  (This adds their IdInfo to the TypeEnv; and adds
  floated-out Ids that weren't even in the TypeEnv before.)

Note [Choosing external Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
See also the section "Interface stability" in the
recompilation-avoidance commentary:
  https://gitlab.haskell.org/ghc/ghc/wikis/commentary/compiler/recompilation-avoidance

First we figure out which Ids are "external" Ids.  An
"external" Id is one that is visible from outside the compilation
unit.  These are
  a) the user exported ones
  b) the ones bound to static forms
  c) ones mentioned in the unfoldings, workers, or
     rules of externally-visible ones

While figuring out which Ids are external, we pick a "tidy" OccName
for each one.  That is, we make its OccName distinct from the other
external OccNames in this module, so that in interface files and
object code we can refer to it unambiguously by its OccName.  The
OccName for each binder is prefixed by the name of the exported Id
that references it; e.g. if "f" references "x" in its unfolding, then
"x" is renamed to "f_x".  This helps distinguish the different "x"s
from each other, and means that if "f" is later removed, things that
depend on the other "x"s will not need to be recompiled.  Of course,
if there are multiple "f_x"s, then we have to disambiguate somehow; we
use "f_x0", "f_x1" etc.

As far as possible we should assign names in a deterministic fashion.
Each time this module is compiled with the same options, we should end
up with the same set of external names with the same types.  That is,
the ABI hash in the interface should not change.  This turns out to be
quite tricky, since the order of the bindings going into the tidy
phase is already non-deterministic, as it is based on the ordering of
Uniques, which are assigned unpredictably.

To name things in a stable way, we do a depth-first-search of the
bindings, starting from the exports sorted by name.  This way, as long
as the bindings themselves are deterministic (they sometimes aren't!),
the order in which they are presented to the tidying phase does not
affect the names we assign.

Note [Tidy the top-level bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Next we traverse the bindings top to bottom.  For each *top-level*
binder

 1. Make it into a GlobalId; its IdDetails becomes VanillaGlobal,
    reflecting the fact that from now on we regard it as a global,
    not local, Id

 2. Give it a system-wide Unique.
    [Even non-exported things need system-wide Uniques because the
    byte-code generator builds a single Name->BCO symbol table.]

    We use the NameCache kept in the HscEnv as the
    source of such system-wide uniques.

    For external Ids, use the original-name cache in the NameCache
    to ensure that the unique assigned is the same as the Id had
    in any previous compilation run.

 3. Rename top-level Ids according to the names we chose in step 1.
    If it's an external Id, make it have a External Name, otherwise
    make it have an Internal Name.  This is used by the code generator
    to decide whether to make the label externally visible

 4. Give it its UTTERLY FINAL IdInfo; in ptic,
        * its unfolding, if it should have one

        * its arity, computed from the number of visible lambdas

        * its CAF info, computed from what is free in its RHS


Finally, substitute these new top-level binders consistently
throughout, including in unfoldings.  We also tidy binders in
RHSs, so that they print nicely in interfaces.
-}

tidyProgram :: HscEnv -> ModGuts -> IO (CgGuts, ModDetails)
tidyProgram :: HscEnv -> ModGuts -> IO (CgGuts, ModDetails)
tidyProgram HscEnv
hsc_env  (ModGuts { mg_module :: ModGuts -> Module
mg_module    = Module
mod
                              , mg_exports :: ModGuts -> [AvailInfo]
mg_exports   = [AvailInfo]
exports
                              , mg_rdr_env :: ModGuts -> GlobalRdrEnv
mg_rdr_env   = GlobalRdrEnv
rdr_env
                              , mg_tcs :: ModGuts -> [TyCon]
mg_tcs       = [TyCon]
tcs
                              , mg_insts :: ModGuts -> [ClsInst]
mg_insts     = [ClsInst]
cls_insts
                              , mg_fam_insts :: ModGuts -> [FamInst]
mg_fam_insts = [FamInst]
fam_insts
                              , mg_binds :: ModGuts -> CoreProgram
mg_binds     = CoreProgram
binds
                              , mg_patsyns :: ModGuts -> [PatSyn]
mg_patsyns   = [PatSyn]
patsyns
                              , mg_rules :: ModGuts -> [CoreRule]
mg_rules     = [CoreRule]
imp_rules
                              , mg_anns :: ModGuts -> [Annotation]
mg_anns      = [Annotation]
anns
                              , mg_complete_sigs :: ModGuts -> [CompleteMatch]
mg_complete_sigs = [CompleteMatch]
complete_sigs
                              , mg_deps :: ModGuts -> Dependencies
mg_deps      = Dependencies
deps
                              , mg_foreign :: ModGuts -> ForeignStubs
mg_foreign   = ForeignStubs
foreign_stubs
                              , mg_foreign_files :: ModGuts -> [(ForeignSrcLang, String)]
mg_foreign_files = [(ForeignSrcLang, String)]
foreign_files
                              , mg_hpc_info :: ModGuts -> HpcInfo
mg_hpc_info  = HpcInfo
hpc_info
                              , mg_modBreaks :: ModGuts -> Maybe ModBreaks
mg_modBreaks = Maybe ModBreaks
modBreaks
                              })

  = DynFlags
-> SDoc
-> ((CgGuts, ModDetails) -> ())
-> IO (CgGuts, ModDetails)
-> IO (CgGuts, ModDetails)
forall (m :: * -> *) a.
MonadIO m =>
DynFlags -> SDoc -> (a -> ()) -> m a -> m a
Err.withTiming DynFlags
dflags
                   (String -> SDoc
text String
"CoreTidy"SDoc -> SDoc -> SDoc
<+>SDoc -> SDoc
brackets (Module -> SDoc
forall a. Outputable a => a -> SDoc
ppr Module
mod))
                   (() -> (CgGuts, ModDetails) -> ()
forall a b. a -> b -> a
const ()) (IO (CgGuts, ModDetails) -> IO (CgGuts, ModDetails))
-> IO (CgGuts, ModDetails) -> IO (CgGuts, ModDetails)
forall a b. (a -> b) -> a -> b
$
    do  { let { omit_prags :: Bool
omit_prags = GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_OmitInterfacePragmas DynFlags
dflags
              ; expose_all :: Bool
expose_all = GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_ExposeAllUnfoldings  DynFlags
dflags
              ; print_unqual :: PrintUnqualified
print_unqual = DynFlags -> GlobalRdrEnv -> PrintUnqualified
mkPrintUnqualified DynFlags
dflags GlobalRdrEnv
rdr_env
              ; implicit_binds :: CoreProgram
implicit_binds = (TyCon -> CoreProgram) -> [TyCon] -> CoreProgram
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap TyCon -> CoreProgram
getImplicitBinds [TyCon]
tcs
              }

        ; (UnfoldEnv
unfold_env, TidyOccEnv
tidy_occ_env)
              <- HscEnv
-> Module
-> Bool
-> Bool
-> CoreProgram
-> CoreProgram
-> [CoreRule]
-> IO (UnfoldEnv, TidyOccEnv)
chooseExternalIds HscEnv
hsc_env Module
mod Bool
omit_prags Bool
expose_all
                                   CoreProgram
binds CoreProgram
implicit_binds [CoreRule]
imp_rules
        ; let { (CoreProgram
trimmed_binds, [CoreRule]
trimmed_rules)
                    = Bool
-> CoreProgram
-> [CoreRule]
-> UnfoldEnv
-> (CoreProgram, [CoreRule])
findExternalRules Bool
omit_prags CoreProgram
binds [CoreRule]
imp_rules UnfoldEnv
unfold_env }

        ; (TidyEnv
tidy_env, CoreProgram
tidy_binds)
                 <- HscEnv
-> Module
-> UnfoldEnv
-> TidyOccEnv
-> CoreProgram
-> IO (TidyEnv, CoreProgram)
tidyTopBinds HscEnv
hsc_env Module
mod UnfoldEnv
unfold_env TidyOccEnv
tidy_occ_env CoreProgram
trimmed_binds

          -- See Note [Grand plan for static forms] in StaticPtrTable.
        ; ([SptEntry]
spt_entries, CoreProgram
tidy_binds') <-
             HscEnv -> Module -> CoreProgram -> IO ([SptEntry], CoreProgram)
sptCreateStaticBinds HscEnv
hsc_env Module
mod CoreProgram
tidy_binds
        ; let { spt_init_code :: SDoc
spt_init_code = Module -> [SptEntry] -> SDoc
sptModuleInitCode Module
mod [SptEntry]
spt_entries
              ; add_spt_init_code :: ForeignStubs -> ForeignStubs
add_spt_init_code =
                  case DynFlags -> HscTarget
hscTarget DynFlags
dflags of
                    -- If we are compiling for the interpreter we will insert
                    -- any necessary SPT entries dynamically
                    HscTarget
HscInterpreted -> ForeignStubs -> ForeignStubs
forall a. a -> a
id
                    -- otherwise add a C stub to do so
                    HscTarget
_              -> (ForeignStubs -> SDoc -> ForeignStubs
`appendStubC` SDoc
spt_init_code)

              -- The completed type environment is gotten from
              --      a) the types and classes defined here (plus implicit things)
              --      b) adding Ids with correct IdInfo, including unfoldings,
              --              gotten from the bindings
              -- From (b) we keep only those Ids with External names;
              --          the CoreTidy pass makes sure these are all and only
              --          the externally-accessible ones
              -- This truncates the type environment to include only the
              -- exported Ids and things needed from them, which saves space
              --
              -- See Note [Don't attempt to trim data types]
              ; final_ids :: [Id]
final_ids  = [ if Bool
omit_prags then Id -> Id
trimId Id
id else Id
id
                             | Id
id <- CoreProgram -> [Id]
forall b. [Bind b] -> [b]
bindersOfBinds CoreProgram
tidy_binds
                             , Name -> Bool
isExternalName (Id -> Name
idName Id
id)
                             , Bool -> Bool
not (Name -> Bool
isWiredInName (Id -> Name
forall a. NamedThing a => a -> Name
getName Id
id))
                             ]   -- See Note [Drop wired-in things]

              ; final_tcs :: [TyCon]
final_tcs      = (TyCon -> Bool) -> [TyCon] -> [TyCon]
forall a. (a -> Bool) -> [a] -> [a]
filterOut (Name -> Bool
isWiredInName (Name -> Bool) -> (TyCon -> Name) -> TyCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyCon -> Name
forall a. NamedThing a => a -> Name
getName) [TyCon]
tcs
                                 -- See Note [Drop wired-in things]
              ; type_env :: TypeEnv
type_env       = [Id] -> [TyCon] -> [FamInst] -> TypeEnv
typeEnvFromEntities [Id]
final_ids [TyCon]
final_tcs [FamInst]
fam_insts
              ; tidy_cls_insts :: [ClsInst]
tidy_cls_insts = TypeEnv -> [ClsInst] -> [ClsInst]
mkFinalClsInsts TypeEnv
type_env [ClsInst]
cls_insts
              ; tidy_patsyns :: [PatSyn]
tidy_patsyns   = TypeEnv -> [PatSyn] -> [PatSyn]
mkFinalPatSyns  TypeEnv
type_env [PatSyn]
patsyns
              ; tidy_type_env :: TypeEnv
tidy_type_env  = [PatSyn] -> TypeEnv -> TypeEnv
extendTypeEnvWithPatSyns [PatSyn]
tidy_patsyns TypeEnv
type_env
              ; tidy_rules :: [CoreRule]
tidy_rules     = TidyEnv -> [CoreRule] -> [CoreRule]
tidyRules TidyEnv
tidy_env [CoreRule]
trimmed_rules

              ; -- See Note [Injecting implicit bindings]
                all_tidy_binds :: CoreProgram
all_tidy_binds = CoreProgram
implicit_binds CoreProgram -> CoreProgram -> CoreProgram
forall a. [a] -> [a] -> [a]
++ CoreProgram
tidy_binds'

              -- Get the TyCons to generate code for.  Careful!  We must use
              -- the untidied TyCons here, because we need
              --  (a) implicit TyCons arising from types and classes defined
              --      in this module
              --  (b) wired-in TyCons, which are normally removed from the
              --      TypeEnv we put in the ModDetails
              --  (c) Constructors even if they are not exported (the
              --      tidied TypeEnv has trimmed these away)
              ; alg_tycons :: [TyCon]
alg_tycons = (TyCon -> Bool) -> [TyCon] -> [TyCon]
forall a. (a -> Bool) -> [a] -> [a]
filter TyCon -> Bool
isAlgTyCon [TyCon]
tcs
              }

        ; HscEnv
-> PrintUnqualified
-> CoreToDo
-> CoreProgram
-> [CoreRule]
-> IO ()
endPassIO HscEnv
hsc_env PrintUnqualified
print_unqual CoreToDo
CoreTidy CoreProgram
all_tidy_binds [CoreRule]
tidy_rules

          -- If the endPass didn't print the rules, but ddump-rules is
          -- on, print now
        ; Bool -> IO () -> IO ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_simpl DynFlags
dflags) (IO () -> IO ()) -> IO () -> IO ()
forall a b. (a -> b) -> a -> b
$
            DynFlags -> DumpFlag -> String -> SDoc -> IO ()
Err.dumpIfSet_dyn DynFlags
dflags DumpFlag
Opt_D_dump_rules
              (DynFlags -> SDoc -> String
showSDoc DynFlags
dflags (CoreToDo -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoreToDo
CoreTidy SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"rules"))
              (DynFlags -> [CoreRule] -> SDoc
pprRulesForUser DynFlags
dflags [CoreRule]
tidy_rules)

          -- Print one-line size info
        ; let cs :: CoreStats
cs = CoreProgram -> CoreStats
coreBindsStats CoreProgram
tidy_binds
        ; DynFlags -> DumpFlag -> String -> SDoc -> IO ()
Err.dumpIfSet_dyn DynFlags
dflags DumpFlag
Opt_D_dump_core_stats String
"Core Stats"
            (String -> SDoc
text String
"Tidy size (terms,types,coercions)"
             SDoc -> SDoc -> SDoc
<+> ModuleName -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Module -> ModuleName
moduleName Module
mod) SDoc -> SDoc -> SDoc
<> SDoc
colon
             SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int (CoreStats -> Int
cs_tm CoreStats
cs)
             SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int (CoreStats -> Int
cs_ty CoreStats
cs)
             SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int (CoreStats -> Int
cs_co CoreStats
cs) )

        ; (CgGuts, ModDetails) -> IO (CgGuts, ModDetails)
forall (m :: * -> *) a. Monad m => a -> m a
return (CgGuts :: Module
-> [TyCon]
-> CoreProgram
-> ForeignStubs
-> [(ForeignSrcLang, String)]
-> [InstalledUnitId]
-> HpcInfo
-> Maybe ModBreaks
-> [SptEntry]
-> CgGuts
CgGuts { cg_module :: Module
cg_module   = Module
mod,
                           cg_tycons :: [TyCon]
cg_tycons   = [TyCon]
alg_tycons,
                           cg_binds :: CoreProgram
cg_binds    = CoreProgram
all_tidy_binds,
                           cg_foreign :: ForeignStubs
cg_foreign  = ForeignStubs -> ForeignStubs
add_spt_init_code ForeignStubs
foreign_stubs,
                           cg_foreign_files :: [(ForeignSrcLang, String)]
cg_foreign_files = [(ForeignSrcLang, String)]
foreign_files,
                           cg_dep_pkgs :: [InstalledUnitId]
cg_dep_pkgs = ((InstalledUnitId, Bool) -> InstalledUnitId)
-> [(InstalledUnitId, Bool)] -> [InstalledUnitId]
forall a b. (a -> b) -> [a] -> [b]
map (InstalledUnitId, Bool) -> InstalledUnitId
forall a b. (a, b) -> a
fst ([(InstalledUnitId, Bool)] -> [InstalledUnitId])
-> [(InstalledUnitId, Bool)] -> [InstalledUnitId]
forall a b. (a -> b) -> a -> b
$ Dependencies -> [(InstalledUnitId, Bool)]
dep_pkgs Dependencies
deps,
                           cg_hpc_info :: HpcInfo
cg_hpc_info = HpcInfo
hpc_info,
                           cg_modBreaks :: Maybe ModBreaks
cg_modBreaks = Maybe ModBreaks
modBreaks,
                           cg_spt_entries :: [SptEntry]
cg_spt_entries = [SptEntry]
spt_entries },

                   ModDetails :: [AvailInfo]
-> TypeEnv
-> [ClsInst]
-> [FamInst]
-> [CoreRule]
-> [Annotation]
-> [CompleteMatch]
-> ModDetails
ModDetails { md_types :: TypeEnv
md_types     = TypeEnv
tidy_type_env,
                                md_rules :: [CoreRule]
md_rules     = [CoreRule]
tidy_rules,
                                md_insts :: [ClsInst]
md_insts     = [ClsInst]
tidy_cls_insts,
                                md_fam_insts :: [FamInst]
md_fam_insts = [FamInst]
fam_insts,
                                md_exports :: [AvailInfo]
md_exports   = [AvailInfo]
exports,
                                md_anns :: [Annotation]
md_anns      = [Annotation]
anns,      -- are already tidy
                                md_complete_sigs :: [CompleteMatch]
md_complete_sigs = [CompleteMatch]
complete_sigs
                              })
        }
  where
    dflags :: DynFlags
dflags = HscEnv -> DynFlags
hsc_dflags HscEnv
hsc_env

--------------------------
trimId :: Id -> Id
trimId :: Id -> Id
trimId Id
id
  | Bool -> Bool
not (Id -> Bool
isImplicitId Id
id)
  = Id
id Id -> IdInfo -> Id
`setIdInfo` IdInfo
vanillaIdInfo
  | Bool
otherwise
  = Id
id

{- Note [Drop wired-in things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We never put wired-in TyCons or Ids in an interface file.
They are wired-in, so the compiler knows about them already.

Note [Don't attempt to trim data types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For some time GHC tried to avoid exporting the data constructors
of a data type if it wasn't strictly necessary to do so; see #835.
But "strictly necessary" accumulated a longer and longer list
of exceptions, and finally I gave up the battle:

    commit 9a20e540754fc2af74c2e7392f2786a81d8d5f11
    Author: Simon Peyton Jones <simonpj@microsoft.com>
    Date:   Thu Dec 6 16:03:16 2012 +0000

    Stop attempting to "trim" data types in interface files

    Without -O, we previously tried to make interface files smaller
    by not including the data constructors of data types.  But
    there are a lot of exceptions, notably when Template Haskell is
    involved or, more recently, DataKinds.

    However #7445 shows that even without TemplateHaskell, using
    the Data class and invoking Language.Haskell.TH.Quote.dataToExpQ
    is enough to require us to expose the data constructors.

    So I've given up on this "optimisation" -- it's probably not
    important anyway.  Now I'm simply not attempting to trim off
    the data constructors.  The gain in simplicity is worth the
    modest cost in interface file growth, which is limited to the
    bits reqd to describe those data constructors.

************************************************************************
*                                                                      *
        Implicit bindings
*                                                                      *
************************************************************************

Note [Injecting implicit bindings]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We inject the implicit bindings right at the end, in CoreTidy.
Some of these bindings, notably record selectors, are not
constructed in an optimised form.  E.g. record selector for
        data T = MkT { x :: {-# UNPACK #-} !Int }
Then the unfolding looks like
        x = \t. case t of MkT x1 -> let x = I# x1 in x
This generates bad code unless it's first simplified a bit.  That is
why CoreUnfold.mkImplicitUnfolding uses simpleOptExpr to do a bit of
optimisation first.  (Only matters when the selector is used curried;
eg map x ys.)  See #2070.

[Oct 09: in fact, record selectors are no longer implicit Ids at all,
because we really do want to optimise them properly. They are treated
much like any other Id.  But doing "light" optimisation on an implicit
Id still makes sense.]

At one time I tried injecting the implicit bindings *early*, at the
beginning of SimplCore.  But that gave rise to real difficulty,
because GlobalIds are supposed to have *fixed* IdInfo, but the
simplifier and other core-to-core passes mess with IdInfo all the
time.  The straw that broke the camels back was when a class selector
got the wrong arity -- ie the simplifier gave it arity 2, whereas
importing modules were expecting it to have arity 1 (#2844).
It's much safer just to inject them right at the end, after tidying.

Oh: two other reasons for injecting them late:

  - If implicit Ids are already in the bindings when we start TidyPgm,
    we'd have to be careful not to treat them as external Ids (in
    the sense of chooseExternalIds); else the Ids mentioned in *their*
    RHSs will be treated as external and you get an interface file
    saying      a18 = <blah>
    but nothing referring to a18 (because the implicit Id is the
    one that does, and implicit Ids don't appear in interface files).

  - More seriously, the tidied type-envt will include the implicit
    Id replete with a18 in its unfolding; but we won't take account
    of a18 when computing a fingerprint for the class; result chaos.

There is one sort of implicit binding that is injected still later,
namely those for data constructor workers. Reason (I think): it's
really just a code generation trick.... binding itself makes no sense.
See Note [Data constructor workers] in CorePrep.
-}

getImplicitBinds :: TyCon -> [CoreBind]
getImplicitBinds :: TyCon -> CoreProgram
getImplicitBinds TyCon
tc = CoreProgram
cls_binds CoreProgram -> CoreProgram -> CoreProgram
forall a. [a] -> [a] -> [a]
++ TyCon -> CoreProgram
getTyConImplicitBinds TyCon
tc
  where
    cls_binds :: CoreProgram
cls_binds = CoreProgram -> (Class -> CoreProgram) -> Maybe Class -> CoreProgram
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] Class -> CoreProgram
getClassImplicitBinds (TyCon -> Maybe Class
tyConClass_maybe TyCon
tc)

getTyConImplicitBinds :: TyCon -> [CoreBind]
getTyConImplicitBinds :: TyCon -> CoreProgram
getTyConImplicitBinds TyCon
tc
  | TyCon -> Bool
isNewTyCon TyCon
tc = []  -- See Note [Compulsory newtype unfolding] in MkId
  | Bool
otherwise     = (Id -> CoreBind) -> [Id] -> CoreProgram
forall a b. (a -> b) -> [a] -> [b]
map Id -> CoreBind
get_defn ((DataCon -> Maybe Id) -> [DataCon] -> [Id]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe DataCon -> Maybe Id
dataConWrapId_maybe (TyCon -> [DataCon]
tyConDataCons TyCon
tc))

getClassImplicitBinds :: Class -> [CoreBind]
getClassImplicitBinds :: Class -> CoreProgram
getClassImplicitBinds Class
cls
  = [ Id -> Expr Id -> CoreBind
forall b. b -> Expr b -> Bind b
NonRec Id
op (Class -> Int -> Expr Id
mkDictSelRhs Class
cls Int
val_index)
    | (Id
op, Int
val_index) <- Class -> [Id]
classAllSelIds Class
cls [Id] -> [Int] -> [(Id, Int)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` [Int
0..] ]

get_defn :: Id -> CoreBind
get_defn :: Id -> CoreBind
get_defn Id
id = Id -> Expr Id -> CoreBind
forall b. b -> Expr b -> Bind b
NonRec Id
id (Unfolding -> Expr Id
unfoldingTemplate (Id -> Unfolding
realIdUnfolding Id
id))

{-
************************************************************************
*                                                                      *
\subsection{Step 1: finding externals}
*                                                                      *
************************************************************************

See Note [Choosing external Ids].
-}

type UnfoldEnv  = IdEnv (Name{-new name-}, Bool {-show unfolding-})
  -- Maps each top-level Id to its new Name (the Id is tidied in step 2)
  -- The Unique is unchanged.  If the new Name is external, it will be
  -- visible in the interface file.
  --
  -- Bool => expose unfolding or not.

chooseExternalIds :: HscEnv
                  -> Module
                  -> Bool -> Bool
                  -> [CoreBind]
                  -> [CoreBind]
                  -> [CoreRule]
                  -> IO (UnfoldEnv, TidyOccEnv)
                  -- Step 1 from the notes above

chooseExternalIds :: HscEnv
-> Module
-> Bool
-> Bool
-> CoreProgram
-> CoreProgram
-> [CoreRule]
-> IO (UnfoldEnv, TidyOccEnv)
chooseExternalIds HscEnv
hsc_env Module
mod Bool
omit_prags Bool
expose_all CoreProgram
binds CoreProgram
implicit_binds [CoreRule]
imp_id_rules
  = do { (UnfoldEnv
unfold_env1,TidyOccEnv
occ_env1) <- [(Id, Id)] -> UnfoldEnv -> TidyOccEnv -> IO (UnfoldEnv, TidyOccEnv)
search [(Id, Id)]
init_work_list UnfoldEnv
forall a. VarEnv a
emptyVarEnv TidyOccEnv
init_occ_env
       ; let internal_ids :: [Id]
internal_ids = (Id -> Bool) -> [Id] -> [Id]
forall a. (a -> Bool) -> [a] -> [a]
filter (Bool -> Bool
not (Bool -> Bool) -> (Id -> Bool) -> Id -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Id -> UnfoldEnv -> Bool
forall a. Id -> VarEnv a -> Bool
`elemVarEnv` UnfoldEnv
unfold_env1)) [Id]
binders
       ; [Id] -> UnfoldEnv -> TidyOccEnv -> IO (UnfoldEnv, TidyOccEnv)
tidy_internal [Id]
internal_ids UnfoldEnv
unfold_env1 TidyOccEnv
occ_env1 }
 where
  nc_var :: IORef NameCache
nc_var = HscEnv -> IORef NameCache
hsc_NC HscEnv
hsc_env

  -- init_ext_ids is the initial list of Ids that should be
  -- externalised.  It serves as the starting point for finding a
  -- deterministic, tidy, renaming for all external Ids in this
  -- module.
  --
  -- It is sorted, so that it has a deterministic order (i.e. it's the
  -- same list every time this module is compiled), in contrast to the
  -- bindings, which are ordered non-deterministically.
  init_work_list :: [(Id, Id)]
init_work_list = [Id] -> [Id] -> [(Id, Id)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
init_ext_ids [Id]
init_ext_ids
  init_ext_ids :: [Id]
init_ext_ids   = (Id -> Id -> Ordering) -> [Id] -> [Id]
forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy (OccName -> OccName -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (OccName -> OccName -> Ordering)
-> (Id -> OccName) -> Id -> Id -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` Id -> OccName
forall a. NamedThing a => a -> OccName
getOccName) ([Id] -> [Id]) -> [Id] -> [Id]
forall a b. (a -> b) -> a -> b
$ (Id -> Bool) -> [Id] -> [Id]
forall a. (a -> Bool) -> [a] -> [a]
filter Id -> Bool
is_external [Id]
binders

  -- An Id should be external if either (a) it is exported,
  -- (b) it appears in the RHS of a local rule for an imported Id, or
  -- See Note [Which rules to expose]
  is_external :: Id -> Bool
is_external Id
id = Id -> Bool
isExportedId Id
id Bool -> Bool -> Bool
|| Id
id Id -> VarSet -> Bool
`elemVarSet` VarSet
rule_rhs_vars

  rule_rhs_vars :: VarSet
rule_rhs_vars  = (CoreRule -> VarSet) -> [CoreRule] -> VarSet
forall a. (a -> VarSet) -> [a] -> VarSet
mapUnionVarSet CoreRule -> VarSet
ruleRhsFreeVars [CoreRule]
imp_id_rules

  binders :: [Id]
binders          = ((Id, Expr Id) -> Id) -> [(Id, Expr Id)] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map (Id, Expr Id) -> Id
forall a b. (a, b) -> a
fst ([(Id, Expr Id)] -> [Id]) -> [(Id, Expr Id)] -> [Id]
forall a b. (a -> b) -> a -> b
$ CoreProgram -> [(Id, Expr Id)]
forall b. [Bind b] -> [(b, Expr b)]
flattenBinds CoreProgram
binds
  implicit_binders :: [Id]
implicit_binders = CoreProgram -> [Id]
forall b. [Bind b] -> [b]
bindersOfBinds CoreProgram
implicit_binds
  binder_set :: VarSet
binder_set       = [Id] -> VarSet
mkVarSet [Id]
binders

  avoids :: [OccName]
avoids   = [Name -> OccName
forall a. NamedThing a => a -> OccName
getOccName Name
name | Id
bndr <- [Id]
binders [Id] -> [Id] -> [Id]
forall a. [a] -> [a] -> [a]
++ [Id]
implicit_binders,
                                let name :: Name
name = Id -> Name
idName Id
bndr,
                                Name -> Bool
isExternalName Name
name ]
                -- In computing our "avoids" list, we must include
                --      all implicit Ids
                --      all things with global names (assigned once and for
                --                                      all by the renamer)
                -- since their names are "taken".
                -- The type environment is a convenient source of such things.
                -- In particular, the set of binders doesn't include
                -- implicit Ids at this stage.

        -- We also make sure to avoid any exported binders.  Consider
        --      f{-u1-} = 1     -- Local decl
        --      ...
        --      f{-u2-} = 2     -- Exported decl
        --
        -- The second exported decl must 'get' the name 'f', so we
        -- have to put 'f' in the avoids list before we get to the first
        -- decl.  tidyTopId then does a no-op on exported binders.
  init_occ_env :: TidyOccEnv
init_occ_env = [OccName] -> TidyOccEnv
initTidyOccEnv [OccName]
avoids


  search :: [(Id,Id)]    -- The work-list: (external id, referring id)
                         -- Make a tidy, external Name for the external id,
                         --   add it to the UnfoldEnv, and do the same for the
                         --   transitive closure of Ids it refers to
                         -- The referring id is used to generate a tidy
                         ---  name for the external id
         -> UnfoldEnv    -- id -> (new Name, show_unfold)
         -> TidyOccEnv   -- occ env for choosing new Names
         -> IO (UnfoldEnv, TidyOccEnv)

  search :: [(Id, Id)] -> UnfoldEnv -> TidyOccEnv -> IO (UnfoldEnv, TidyOccEnv)
search [] UnfoldEnv
unfold_env TidyOccEnv
occ_env = (UnfoldEnv, TidyOccEnv) -> IO (UnfoldEnv, TidyOccEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnfoldEnv
unfold_env, TidyOccEnv
occ_env)

  search ((Id
idocc,Id
referrer) : [(Id, Id)]
rest) UnfoldEnv
unfold_env TidyOccEnv
occ_env
    | Id
idocc Id -> UnfoldEnv -> Bool
forall a. Id -> VarEnv a -> Bool
`elemVarEnv` UnfoldEnv
unfold_env = [(Id, Id)] -> UnfoldEnv -> TidyOccEnv -> IO (UnfoldEnv, TidyOccEnv)
search [(Id, Id)]
rest UnfoldEnv
unfold_env TidyOccEnv
occ_env
    | Bool
otherwise = do
      (TidyOccEnv
occ_env', Name
name') <- Module
-> IORef NameCache
-> Maybe Id
-> TidyOccEnv
-> Id
-> IO (TidyOccEnv, Name)
tidyTopName Module
mod IORef NameCache
nc_var (Id -> Maybe Id
forall a. a -> Maybe a
Just Id
referrer) TidyOccEnv
occ_env Id
idocc
      let
          ([Id]
new_ids, Bool
show_unfold)
                | Bool
omit_prags = ([], Bool
False)
                | Bool
otherwise  = Bool -> Id -> ([Id], Bool)
addExternal Bool
expose_all Id
refined_id

                -- 'idocc' is an *occurrence*, but we need to see the
                -- unfolding in the *definition*; so look up in binder_set
          refined_id :: Id
refined_id = case VarSet -> Id -> Maybe Id
lookupVarSet VarSet
binder_set Id
idocc of
                         Just Id
id -> Id
id
                         Maybe Id
Nothing -> WARN( True, ppr idocc ) idocc

          unfold_env' :: UnfoldEnv
unfold_env' = UnfoldEnv -> Id -> (Name, Bool) -> UnfoldEnv
forall a. VarEnv a -> Id -> a -> VarEnv a
extendVarEnv UnfoldEnv
unfold_env Id
idocc (Name
name',Bool
show_unfold)
          referrer' :: Id
referrer' | Id -> Bool
isExportedId Id
refined_id = Id
refined_id
                    | Bool
otherwise               = Id
referrer
      --
      [(Id, Id)] -> UnfoldEnv -> TidyOccEnv -> IO (UnfoldEnv, TidyOccEnv)
search ([Id] -> [Id] -> [(Id, Id)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
new_ids (Id -> [Id]
forall a. a -> [a]
repeat Id
referrer') [(Id, Id)] -> [(Id, Id)] -> [(Id, Id)]
forall a. [a] -> [a] -> [a]
++ [(Id, Id)]
rest) UnfoldEnv
unfold_env' TidyOccEnv
occ_env'

  tidy_internal :: [Id] -> UnfoldEnv -> TidyOccEnv
                -> IO (UnfoldEnv, TidyOccEnv)
  tidy_internal :: [Id] -> UnfoldEnv -> TidyOccEnv -> IO (UnfoldEnv, TidyOccEnv)
tidy_internal []       UnfoldEnv
unfold_env TidyOccEnv
occ_env = (UnfoldEnv, TidyOccEnv) -> IO (UnfoldEnv, TidyOccEnv)
forall (m :: * -> *) a. Monad m => a -> m a
return (UnfoldEnv
unfold_env,TidyOccEnv
occ_env)
  tidy_internal (Id
id:[Id]
ids) UnfoldEnv
unfold_env TidyOccEnv
occ_env = do
      (TidyOccEnv
occ_env', Name
name') <- Module
-> IORef NameCache
-> Maybe Id
-> TidyOccEnv
-> Id
-> IO (TidyOccEnv, Name)
tidyTopName Module
mod IORef NameCache
nc_var Maybe Id
forall a. Maybe a
Nothing TidyOccEnv
occ_env Id
id
      let unfold_env' :: UnfoldEnv
unfold_env' = UnfoldEnv -> Id -> (Name, Bool) -> UnfoldEnv
forall a. VarEnv a -> Id -> a -> VarEnv a
extendVarEnv UnfoldEnv
unfold_env Id
id (Name
name',Bool
False)
      [Id] -> UnfoldEnv -> TidyOccEnv -> IO (UnfoldEnv, TidyOccEnv)
tidy_internal [Id]
ids UnfoldEnv
unfold_env' TidyOccEnv
occ_env'

addExternal :: Bool -> Id -> ([Id], Bool)
addExternal :: Bool -> Id -> ([Id], Bool)
addExternal Bool
expose_all Id
id = ([Id]
new_needed_ids, Bool
show_unfold)
  where
    new_needed_ids :: [Id]
new_needed_ids = Bool -> Id -> [Id]
bndrFvsInOrder Bool
show_unfold Id
id
    idinfo :: IdInfo
idinfo         = HasDebugCallStack => Id -> IdInfo
Id -> IdInfo
idInfo Id
id
    show_unfold :: Bool
show_unfold    = Unfolding -> Bool
show_unfolding (IdInfo -> Unfolding
unfoldingInfo IdInfo
idinfo)
    never_active :: Bool
never_active   = Activation -> Bool
isNeverActive (InlinePragma -> Activation
inlinePragmaActivation (IdInfo -> InlinePragma
inlinePragInfo IdInfo
idinfo))
    loop_breaker :: Bool
loop_breaker   = OccInfo -> Bool
isStrongLoopBreaker (IdInfo -> OccInfo
occInfo IdInfo
idinfo)
    bottoming_fn :: Bool
bottoming_fn   = StrictSig -> Bool
isBottomingSig (IdInfo -> StrictSig
strictnessInfo IdInfo
idinfo)

        -- Stuff to do with the Id's unfolding
        -- We leave the unfolding there even if there is a worker
        -- In GHCi the unfolding is used by importers

    show_unfolding :: Unfolding -> Bool
show_unfolding (CoreUnfolding { uf_src :: Unfolding -> UnfoldingSource
uf_src = UnfoldingSource
src, uf_guidance :: Unfolding -> UnfoldingGuidance
uf_guidance = UnfoldingGuidance
guidance })
       =  Bool
expose_all         -- 'expose_all' says to expose all
                             -- unfoldings willy-nilly

       Bool -> Bool -> Bool
|| UnfoldingSource -> Bool
isStableSource UnfoldingSource
src     -- Always expose things whose
                                 -- source is an inline rule

       Bool -> Bool -> Bool
|| Bool -> Bool
not (Bool
bottoming_fn      -- No need to inline bottom functions
           Bool -> Bool -> Bool
|| Bool
never_active       -- Or ones that say not to
           Bool -> Bool -> Bool
|| Bool
loop_breaker       -- Or that are loop breakers
           Bool -> Bool -> Bool
|| UnfoldingGuidance -> Bool
neverUnfoldGuidance UnfoldingGuidance
guidance)
    show_unfolding (DFunUnfolding {}) = Bool
True
    show_unfolding Unfolding
_                  = Bool
False

{-
************************************************************************
*                                                                      *
               Deterministic free variables
*                                                                      *
************************************************************************

We want a deterministic free-variable list.  exprFreeVars gives us
a VarSet, which is in a non-deterministic order when converted to a
list.  Hence, here we define a free-variable finder that returns
the free variables in the order that they are encountered.

See Note [Choosing external Ids]
-}

bndrFvsInOrder :: Bool -> Id -> [Id]
bndrFvsInOrder :: Bool -> Id -> [Id]
bndrFvsInOrder Bool
show_unfold Id
id
  = DFFV () -> [Id]
run (Bool -> Id -> DFFV ()
dffvLetBndr Bool
show_unfold Id
id)

run :: DFFV () -> [Id]
run :: DFFV () -> [Id]
run (DFFV VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), ())
m) = case VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), ())
m VarSet
emptyVarSet (VarSet
emptyVarSet, []) of
                 ((VarSet
_,[Id]
ids),()
_) -> [Id]
ids

newtype DFFV a
  = DFFV (VarSet              -- Envt: non-top-level things that are in scope
                              -- we don't want to record these as free vars
      -> (VarSet, [Var])      -- Input State: (set, list) of free vars so far
      -> ((VarSet,[Var]),a))  -- Output state
    deriving (a -> DFFV b -> DFFV a
(a -> b) -> DFFV a -> DFFV b
(forall a b. (a -> b) -> DFFV a -> DFFV b)
-> (forall a b. a -> DFFV b -> DFFV a) -> Functor DFFV
forall a b. a -> DFFV b -> DFFV a
forall a b. (a -> b) -> DFFV a -> DFFV b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> DFFV b -> DFFV a
$c<$ :: forall a b. a -> DFFV b -> DFFV a
fmap :: (a -> b) -> DFFV a -> DFFV b
$cfmap :: forall a b. (a -> b) -> DFFV a -> DFFV b
Functor)

instance Applicative DFFV where
    pure :: a -> DFFV a
pure a
a = (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
forall a.
(VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
DFFV ((VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a)
-> (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
forall a b. (a -> b) -> a -> b
$ \VarSet
_ (VarSet, [Id])
st -> ((VarSet, [Id])
st, a
a)
    <*> :: DFFV (a -> b) -> DFFV a -> DFFV b
(<*>) = DFFV (a -> b) -> DFFV a -> DFFV b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap

instance Monad DFFV where
  (DFFV VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)
m) >>= :: DFFV a -> (a -> DFFV b) -> DFFV b
>>= a -> DFFV b
k = (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), b)) -> DFFV b
forall a.
(VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
DFFV ((VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), b)) -> DFFV b)
-> (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), b)) -> DFFV b
forall a b. (a -> b) -> a -> b
$ \VarSet
env (VarSet, [Id])
st ->
    case VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)
m VarSet
env (VarSet, [Id])
st of
       ((VarSet, [Id])
st',a
a) -> case a -> DFFV b
k a
a of
                     DFFV VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), b)
f -> VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), b)
f VarSet
env (VarSet, [Id])
st'

extendScope :: Var -> DFFV a -> DFFV a
extendScope :: Id -> DFFV a -> DFFV a
extendScope Id
v (DFFV VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)
f) = (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
forall a.
(VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
DFFV (\VarSet
env (VarSet, [Id])
st -> VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)
f (VarSet -> Id -> VarSet
extendVarSet VarSet
env Id
v) (VarSet, [Id])
st)

extendScopeList :: [Var] -> DFFV a -> DFFV a
extendScopeList :: [Id] -> DFFV a -> DFFV a
extendScopeList [Id]
vs (DFFV VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)
f) = (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
forall a.
(VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
DFFV (\VarSet
env (VarSet, [Id])
st -> VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)
f (VarSet -> [Id] -> VarSet
extendVarSetList VarSet
env [Id]
vs) (VarSet, [Id])
st)

insert :: Var -> DFFV ()
insert :: Id -> DFFV ()
insert Id
v = (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), ())) -> DFFV ()
forall a.
(VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), a)) -> DFFV a
DFFV ((VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), ())) -> DFFV ())
-> (VarSet -> (VarSet, [Id]) -> ((VarSet, [Id]), ())) -> DFFV ()
forall a b. (a -> b) -> a -> b
$ \ VarSet
env (VarSet
set, [Id]
ids) ->
           let keep_me :: Bool
keep_me = Id -> Bool
isLocalId Id
v Bool -> Bool -> Bool
&&
                         Bool -> Bool
not (Id
v Id -> VarSet -> Bool
`elemVarSet` VarSet
env) Bool -> Bool -> Bool
&&
                           Bool -> Bool
not (Id
v Id -> VarSet -> Bool
`elemVarSet` VarSet
set)
           in if Bool
keep_me
              then ((VarSet -> Id -> VarSet
extendVarSet VarSet
set Id
v, Id
vId -> [Id] -> [Id]
forall a. a -> [a] -> [a]
:[Id]
ids), ())
              else ((VarSet
set,                [Id]
ids),   ())


dffvExpr :: CoreExpr -> DFFV ()
dffvExpr :: Expr Id -> DFFV ()
dffvExpr (Var Id
v)              = Id -> DFFV ()
insert Id
v
dffvExpr (App Expr Id
e1 Expr Id
e2)          = Expr Id -> DFFV ()
dffvExpr Expr Id
e1 DFFV () -> DFFV () -> DFFV ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Expr Id -> DFFV ()
dffvExpr Expr Id
e2
dffvExpr (Lam Id
v Expr Id
e)            = Id -> DFFV () -> DFFV ()
forall a. Id -> DFFV a -> DFFV a
extendScope Id
v (Expr Id -> DFFV ()
dffvExpr Expr Id
e)
dffvExpr (Tick (Breakpoint Int
_ [Id]
ids) Expr Id
e) = (Id -> DFFV ()) -> [Id] -> DFFV ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Id -> DFFV ()
insert [Id]
ids DFFV () -> DFFV () -> DFFV ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Expr Id -> DFFV ()
dffvExpr Expr Id
e
dffvExpr (Tick Tickish Id
_other Expr Id
e)    = Expr Id -> DFFV ()
dffvExpr Expr Id
e
dffvExpr (Cast Expr Id
e Coercion
_)           = Expr Id -> DFFV ()
dffvExpr Expr Id
e
dffvExpr (Let (NonRec Id
x Expr Id
r) Expr Id
e) = (Id, Expr Id) -> DFFV ()
dffvBind (Id
x,Expr Id
r) DFFV () -> DFFV () -> DFFV ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Id -> DFFV () -> DFFV ()
forall a. Id -> DFFV a -> DFFV a
extendScope Id
x (Expr Id -> DFFV ()
dffvExpr Expr Id
e)
dffvExpr (Let (Rec [(Id, Expr Id)]
prs) Expr Id
e)    = [Id] -> DFFV () -> DFFV ()
forall a. [Id] -> DFFV a -> DFFV a
extendScopeList (((Id, Expr Id) -> Id) -> [(Id, Expr Id)] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map (Id, Expr Id) -> Id
forall a b. (a, b) -> a
fst [(Id, Expr Id)]
prs) (DFFV () -> DFFV ()) -> DFFV () -> DFFV ()
forall a b. (a -> b) -> a -> b
$
                                (((Id, Expr Id) -> DFFV ()) -> [(Id, Expr Id)] -> DFFV ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Id, Expr Id) -> DFFV ()
dffvBind [(Id, Expr Id)]
prs DFFV () -> DFFV () -> DFFV ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Expr Id -> DFFV ()
dffvExpr Expr Id
e)
dffvExpr (Case Expr Id
e Id
b Type
_ [Alt Id]
as)      = Expr Id -> DFFV ()
dffvExpr Expr Id
e DFFV () -> DFFV () -> DFFV ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Id -> DFFV () -> DFFV ()
forall a. Id -> DFFV a -> DFFV a
extendScope Id
b ((Alt Id -> DFFV ()) -> [Alt Id] -> DFFV ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Alt Id -> DFFV ()
forall t. (t, [Id], Expr Id) -> DFFV ()
dffvAlt [Alt Id]
as)
dffvExpr Expr Id
_other               = () -> DFFV ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

dffvAlt :: (t, [Var], CoreExpr) -> DFFV ()
dffvAlt :: (t, [Id], Expr Id) -> DFFV ()
dffvAlt (t
_,[Id]
xs,Expr Id
r) = [Id] -> DFFV () -> DFFV ()
forall a. [Id] -> DFFV a -> DFFV a
extendScopeList [Id]
xs (Expr Id -> DFFV ()
dffvExpr Expr Id
r)

dffvBind :: (Id, CoreExpr) -> DFFV ()
dffvBind :: (Id, Expr Id) -> DFFV ()
dffvBind(Id
x,Expr Id
r)
  | Bool -> Bool
not (Id -> Bool
isId Id
x) = Expr Id -> DFFV ()
dffvExpr Expr Id
r
  | Bool
otherwise    = Bool -> Id -> DFFV ()
dffvLetBndr Bool
False Id
x DFFV () -> DFFV () -> DFFV ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Expr Id -> DFFV ()
dffvExpr Expr Id
r
                -- Pass False because we are doing the RHS right here
                -- If you say True you'll get *exponential* behaviour!

dffvLetBndr :: Bool -> Id -> DFFV ()
-- Gather the free vars of the RULES and unfolding of a binder
-- We always get the free vars of a *stable* unfolding, but
-- for a *vanilla* one (InlineRhs), the flag controls what happens:
--   True <=> get fvs of even a *vanilla* unfolding
--   False <=> ignore an InlineRhs
-- For nested bindings (call from dffvBind) we always say "False" because
--       we are taking the fvs of the RHS anyway
-- For top-level bindings (call from addExternal, via bndrFvsInOrder)
--       we say "True" if we are exposing that unfolding
dffvLetBndr :: Bool -> Id -> DFFV ()
dffvLetBndr Bool
vanilla_unfold Id
id
  = do { Unfolding -> DFFV ()
go_unf (IdInfo -> Unfolding
unfoldingInfo IdInfo
idinfo)
       ; (CoreRule -> DFFV ()) -> [CoreRule] -> DFFV ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ CoreRule -> DFFV ()
go_rule (RuleInfo -> [CoreRule]
ruleInfoRules (IdInfo -> RuleInfo
ruleInfo IdInfo
idinfo)) }
  where
    idinfo :: IdInfo
idinfo = HasDebugCallStack => Id -> IdInfo
Id -> IdInfo
idInfo Id
id

    go_unf :: Unfolding -> DFFV ()
go_unf (CoreUnfolding { uf_tmpl :: Unfolding -> Expr Id
uf_tmpl = Expr Id
rhs, uf_src :: Unfolding -> UnfoldingSource
uf_src = UnfoldingSource
src })
       = case UnfoldingSource
src of
           UnfoldingSource
InlineRhs | Bool
vanilla_unfold -> Expr Id -> DFFV ()
dffvExpr Expr Id
rhs
                     | Bool
otherwise      -> () -> DFFV ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
           UnfoldingSource
_                          -> Expr Id -> DFFV ()
dffvExpr Expr Id
rhs

    go_unf (DFunUnfolding { df_bndrs :: Unfolding -> [Id]
df_bndrs = [Id]
bndrs, df_args :: Unfolding -> [Expr Id]
df_args = [Expr Id]
args })
             = [Id] -> DFFV () -> DFFV ()
forall a. [Id] -> DFFV a -> DFFV a
extendScopeList [Id]
bndrs (DFFV () -> DFFV ()) -> DFFV () -> DFFV ()
forall a b. (a -> b) -> a -> b
$ (Expr Id -> DFFV ()) -> [Expr Id] -> DFFV ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ Expr Id -> DFFV ()
dffvExpr [Expr Id]
args
    go_unf Unfolding
_ = () -> DFFV ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

    go_rule :: CoreRule -> DFFV ()
go_rule (BuiltinRule {}) = () -> DFFV ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
    go_rule (Rule { ru_bndrs :: CoreRule -> [Id]
ru_bndrs = [Id]
bndrs, ru_rhs :: CoreRule -> Expr Id
ru_rhs = Expr Id
rhs })
      = [Id] -> DFFV () -> DFFV ()
forall a. [Id] -> DFFV a -> DFFV a
extendScopeList [Id]
bndrs (Expr Id -> DFFV ()
dffvExpr Expr Id
rhs)

{-
************************************************************************
*                                                                      *
               findExternalRules
*                                                                      *
************************************************************************

Note [Finding external rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The complete rules are gotten by combining
   a) local rules for imported Ids
   b) rules embedded in the top-level Ids

There are two complications:
  * Note [Which rules to expose]
  * Note [Trimming auto-rules]

Note [Which rules to expose]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The function 'expose_rule' filters out rules that mention, on the LHS,
Ids that aren't externally visible; these rules can't fire in a client
module.

The externally-visible binders are computed (by chooseExternalIds)
assuming that all orphan rules are externalised (see init_ext_ids in
function 'search'). So in fact it's a bit conservative and we may
export more than we need.  (It's a sort of mutual recursion.)

Note [Trimming auto-rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Second, with auto-specialisation we may specialise local or imported
dfuns or INLINE functions, and then later inline them.  That may leave
behind something like
   RULE "foo" forall d. f @ Int d = f_spec
where f is either local or imported, and there is no remaining
reference to f_spec except from the RULE.

Now that RULE *might* be useful to an importing module, but that is
purely speculative, and meanwhile the code is taking up space and
codegen time.  I found that binary sizes jumped by 6-10% when I
started to specialise INLINE functions (again, Note [Inline
specialisations] in Specialise).

So it seems better to drop the binding for f_spec, and the rule
itself, if the auto-generated rule is the *only* reason that it is
being kept alive.

(The RULE still might have been useful in the past; that is, it was
the right thing to have generated it in the first place.  See Note
[Inline specialisations] in Specialise.  But now it has served its
purpose, and can be discarded.)

So findExternalRules does this:
  * Remove all bindings that are kept alive *only* by isAutoRule rules
      (this is done in trim_binds)
  * Remove all auto rules that mention bindings that have been removed
      (this is done by filtering by keep_rule)

NB: if a binding is kept alive for some *other* reason (e.g. f_spec is
called in the final code), we keep the rule too.

This stuff is the only reason for the ru_auto field in a Rule.
-}

findExternalRules :: Bool       -- Omit pragmas
                  -> [CoreBind]
                  -> [CoreRule] -- Local rules for imported fns
                  -> UnfoldEnv  -- Ids that are exported, so we need their rules
                  -> ([CoreBind], [CoreRule])
-- See Note [Finding external rules]
findExternalRules :: Bool
-> CoreProgram
-> [CoreRule]
-> UnfoldEnv
-> (CoreProgram, [CoreRule])
findExternalRules Bool
omit_prags CoreProgram
binds [CoreRule]
imp_id_rules UnfoldEnv
unfold_env
  = (CoreProgram
trimmed_binds, (CoreRule -> Bool) -> [CoreRule] -> [CoreRule]
forall a. (a -> Bool) -> [a] -> [a]
filter CoreRule -> Bool
keep_rule [CoreRule]
all_rules)
  where
    imp_rules :: [CoreRule]
imp_rules         = (CoreRule -> Bool) -> [CoreRule] -> [CoreRule]
forall a. (a -> Bool) -> [a] -> [a]
filter CoreRule -> Bool
expose_rule [CoreRule]
imp_id_rules
    imp_user_rule_fvs :: VarSet
imp_user_rule_fvs = (CoreRule -> VarSet) -> [CoreRule] -> VarSet
forall a. (a -> VarSet) -> [a] -> VarSet
mapUnionVarSet CoreRule -> VarSet
user_rule_rhs_fvs [CoreRule]
imp_rules

    user_rule_rhs_fvs :: CoreRule -> VarSet
user_rule_rhs_fvs CoreRule
rule | CoreRule -> Bool
isAutoRule CoreRule
rule = VarSet
emptyVarSet
                           | Bool
otherwise       = CoreRule -> VarSet
ruleRhsFreeVars CoreRule
rule

    (CoreProgram
trimmed_binds, VarSet
local_bndrs, VarSet
_, [CoreRule]
all_rules) = CoreProgram -> (CoreProgram, VarSet, VarSet, [CoreRule])
trim_binds CoreProgram
binds

    keep_rule :: CoreRule -> Bool
keep_rule CoreRule
rule = CoreRule -> VarSet
ruleFreeVars CoreRule
rule VarSet -> VarSet -> Bool
`subVarSet` VarSet
local_bndrs
        -- Remove rules that make no sense, because they mention a
        -- local binder (on LHS or RHS) that we have now discarded.
        -- (NB: ruleFreeVars only includes LocalIds)
        --
        -- LHS: we have already filtered out rules that mention internal Ids
        --     on LHS but that isn't enough because we might have by now
        --     discarded a binding with an external Id. (How?
        --     chooseExternalIds is a bit conservative.)
        --
        -- RHS: the auto rules that might mention a binder that has
        --      been discarded; see Note [Trimming auto-rules]

    expose_rule :: CoreRule -> Bool
expose_rule CoreRule
rule
        | Bool
omit_prags = Bool
False
        | Bool
otherwise  = (Id -> Bool) -> [Id] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Id -> Bool
is_external_id (CoreRule -> [Id]
ruleLhsFreeIdsList CoreRule
rule)
                -- Don't expose a rule whose LHS mentions a locally-defined
                -- Id that is completely internal (i.e. not visible to an
                -- importing module).  NB: ruleLhsFreeIds only returns LocalIds.
                -- See Note [Which rules to expose]

    is_external_id :: Id -> Bool
is_external_id Id
id = case UnfoldEnv -> Id -> Maybe (Name, Bool)
forall a. VarEnv a -> Id -> Maybe a
lookupVarEnv UnfoldEnv
unfold_env Id
id of
                          Just (Name
name, Bool
_) -> Name -> Bool
isExternalName Name
name
                          Maybe (Name, Bool)
Nothing        -> Bool
False

    trim_binds :: [CoreBind]
               -> ( [CoreBind]   -- Trimmed bindings
                  , VarSet       -- Binders of those bindings
                  , VarSet       -- Free vars of those bindings + rhs of user rules
                                 -- (we don't bother to delete the binders)
                  , [CoreRule])  -- All rules, imported + from the bindings
    -- This function removes unnecessary bindings, and gathers up rules from
    -- the bindings we keep.  See Note [Trimming auto-rules]
    trim_binds :: CoreProgram -> (CoreProgram, VarSet, VarSet, [CoreRule])
trim_binds []  -- Base case, start with imp_user_rule_fvs
       = ([], VarSet
emptyVarSet, VarSet
imp_user_rule_fvs, [CoreRule]
imp_rules)

    trim_binds (CoreBind
bind:CoreProgram
binds)
       | (Id -> Bool) -> [Id] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any Id -> Bool
needed [Id]
bndrs    -- Keep binding
       = ( CoreBind
bind CoreBind -> CoreProgram -> CoreProgram
forall a. a -> [a] -> [a]
: CoreProgram
binds', VarSet
bndr_set', VarSet
needed_fvs', [CoreRule]
local_rules [CoreRule] -> [CoreRule] -> [CoreRule]
forall a. [a] -> [a] -> [a]
++ [CoreRule]
rules )
       | Bool
otherwise           -- Discard binding altogether
       = (CoreProgram, VarSet, VarSet, [CoreRule])
stuff
       where
         stuff :: (CoreProgram, VarSet, VarSet, [CoreRule])
stuff@(CoreProgram
binds', VarSet
bndr_set, VarSet
needed_fvs, [CoreRule]
rules)
                       = CoreProgram -> (CoreProgram, VarSet, VarSet, [CoreRule])
trim_binds CoreProgram
binds
         needed :: Id -> Bool
needed Id
bndr   = Id -> Bool
isExportedId Id
bndr Bool -> Bool -> Bool
|| Id
bndr Id -> VarSet -> Bool
`elemVarSet` VarSet
needed_fvs

         bndrs :: [Id]
bndrs         = CoreBind -> [Id]
forall b. Bind b -> [b]
bindersOf  CoreBind
bind
         rhss :: [Expr Id]
rhss          = CoreBind -> [Expr Id]
forall b. Bind b -> [Expr b]
rhssOfBind CoreBind
bind
         bndr_set' :: VarSet
bndr_set'     = VarSet
bndr_set VarSet -> [Id] -> VarSet
`extendVarSetList` [Id]
bndrs

         needed_fvs' :: VarSet
needed_fvs'   = VarSet
needed_fvs                                   VarSet -> VarSet -> VarSet
`unionVarSet`
                         (Id -> VarSet) -> [Id] -> VarSet
forall a. (a -> VarSet) -> [a] -> VarSet
mapUnionVarSet Id -> VarSet
idUnfoldingVars   [Id]
bndrs       VarSet -> VarSet -> VarSet
`unionVarSet`
                              -- Ignore type variables in the type of bndrs
                         (Expr Id -> VarSet) -> [Expr Id] -> VarSet
forall a. (a -> VarSet) -> [a] -> VarSet
mapUnionVarSet Expr Id -> VarSet
exprFreeVars      [Expr Id]
rhss        VarSet -> VarSet -> VarSet
`unionVarSet`
                         (CoreRule -> VarSet) -> [CoreRule] -> VarSet
forall a. (a -> VarSet) -> [a] -> VarSet
mapUnionVarSet CoreRule -> VarSet
user_rule_rhs_fvs [CoreRule]
local_rules
            -- In needed_fvs', we don't bother to delete binders from the fv set

         local_rules :: [CoreRule]
local_rules  = [ CoreRule
rule
                        | Id
id <- [Id]
bndrs
                        , Id -> Bool
is_external_id Id
id   -- Only collect rules for external Ids
                        , CoreRule
rule <- Id -> [CoreRule]
idCoreRules Id
id
                        , CoreRule -> Bool
expose_rule CoreRule
rule ]  -- and ones that can fire in a client

{-
************************************************************************
*                                                                      *
               tidyTopName
*                                                                      *
************************************************************************

This is where we set names to local/global based on whether they really are
externally visible (see comment at the top of this module).  If the name
was previously local, we have to give it a unique occurrence name if
we intend to externalise it.
-}

tidyTopName :: Module -> IORef NameCache -> Maybe Id -> TidyOccEnv
            -> Id -> IO (TidyOccEnv, Name)
tidyTopName :: Module
-> IORef NameCache
-> Maybe Id
-> TidyOccEnv
-> Id
-> IO (TidyOccEnv, Name)
tidyTopName Module
mod IORef NameCache
nc_var Maybe Id
maybe_ref TidyOccEnv
occ_env Id
id
  | Bool
global Bool -> Bool -> Bool
&& Bool
internal = (TidyOccEnv, Name) -> IO (TidyOccEnv, Name)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyOccEnv
occ_env, Name -> Name
localiseName Name
name)

  | Bool
global Bool -> Bool -> Bool
&& Bool
external = (TidyOccEnv, Name) -> IO (TidyOccEnv, Name)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyOccEnv
occ_env, Name
name)
        -- Global names are assumed to have been allocated by the renamer,
        -- so they already have the "right" unique
        -- And it's a system-wide unique too

  -- Now we get to the real reason that all this is in the IO Monad:
  -- we have to update the name cache in a nice atomic fashion

  | Bool
local  Bool -> Bool -> Bool
&& Bool
internal = do { Name
new_local_name <- IORef NameCache -> (NameCache -> (NameCache, Name)) -> IO Name
forall a b. IORef a -> (a -> (a, b)) -> IO b
atomicModifyIORef' IORef NameCache
nc_var NameCache -> (NameCache, Name)
mk_new_local
                            ; (TidyOccEnv, Name) -> IO (TidyOccEnv, Name)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyOccEnv
occ_env', Name
new_local_name) }
        -- Even local, internal names must get a unique occurrence, because
        -- if we do -split-objs we externalise the name later, in the code generator
        --
        -- Similarly, we must make sure it has a system-wide Unique, because
        -- the byte-code generator builds a system-wide Name->BCO symbol table

  | Bool
local  Bool -> Bool -> Bool
&& Bool
external = do { Name
new_external_name <- IORef NameCache -> (NameCache -> (NameCache, Name)) -> IO Name
forall a b. IORef a -> (a -> (a, b)) -> IO b
atomicModifyIORef' IORef NameCache
nc_var NameCache -> (NameCache, Name)
mk_new_external
                            ; (TidyOccEnv, Name) -> IO (TidyOccEnv, Name)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyOccEnv
occ_env', Name
new_external_name) }

  | Bool
otherwise = String -> IO (TidyOccEnv, Name)
forall a. String -> a
panic String
"tidyTopName"
  where
    name :: Name
name        = Id -> Name
idName Id
id
    external :: Bool
external    = Maybe Id -> Bool
forall a. Maybe a -> Bool
isJust Maybe Id
maybe_ref
    global :: Bool
global      = Name -> Bool
isExternalName Name
name
    local :: Bool
local       = Bool -> Bool
not Bool
global
    internal :: Bool
internal    = Bool -> Bool
not Bool
external
    loc :: SrcSpan
loc         = Name -> SrcSpan
nameSrcSpan Name
name

    old_occ :: OccName
old_occ     = Name -> OccName
nameOccName Name
name
    new_occ :: OccName
new_occ | Just Id
ref <- Maybe Id
maybe_ref
            , Id
ref Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
/= Id
id
            = NameSpace -> String -> OccName
mkOccName (OccName -> NameSpace
occNameSpace OccName
old_occ) (String -> OccName) -> String -> OccName
forall a b. (a -> b) -> a -> b
$
                   let
                       ref_str :: String
ref_str = OccName -> String
occNameString (Id -> OccName
forall a. NamedThing a => a -> OccName
getOccName Id
ref)
                       occ_str :: String
occ_str = OccName -> String
occNameString OccName
old_occ
                   in
                   case String
occ_str of
                     Char
'$':Char
'w':String
_ -> String
occ_str
                        -- workers: the worker for a function already
                        -- includes the occname for its parent, so there's
                        -- no need to prepend the referrer.
                     String
_other | Name -> Bool
isSystemName Name
name -> String
ref_str
                            | Bool
otherwise         -> String
ref_str String -> String -> String
forall a. [a] -> [a] -> [a]
++ Char
'_' Char -> String -> String
forall a. a -> [a] -> [a]
: String
occ_str
                        -- If this name was system-generated, then don't bother
                        -- to retain its OccName, just use the referrer.  These
                        -- system-generated names will become "f1", "f2", etc. for
                        -- a referrer "f".
            | Bool
otherwise = OccName
old_occ

    (TidyOccEnv
occ_env', OccName
occ') = TidyOccEnv -> OccName -> (TidyOccEnv, OccName)
tidyOccName TidyOccEnv
occ_env OccName
new_occ

    mk_new_local :: NameCache -> (NameCache, Name)
mk_new_local NameCache
nc = (NameCache
nc { nsUniqs :: UniqSupply
nsUniqs = UniqSupply
us }, Unique -> OccName -> SrcSpan -> Name
mkInternalName Unique
uniq OccName
occ' SrcSpan
loc)
                    where
                      (Unique
uniq, UniqSupply
us) = UniqSupply -> (Unique, UniqSupply)
takeUniqFromSupply (NameCache -> UniqSupply
nsUniqs NameCache
nc)

    mk_new_external :: NameCache -> (NameCache, Name)
mk_new_external NameCache
nc = NameCache -> Module -> OccName -> SrcSpan -> (NameCache, Name)
allocateGlobalBinder NameCache
nc Module
mod OccName
occ' SrcSpan
loc
        -- If we want to externalise a currently-local name, check
        -- whether we have already assigned a unique for it.
        -- If so, use it; if not, extend the table.
        -- All this is done by allcoateGlobalBinder.
        -- This is needed when *re*-compiling a module in GHCi; we must
        -- use the same name for externally-visible things as we did before.

{-
************************************************************************
*                                                                      *
\subsection{Step 2: top-level tidying}
*                                                                      *
************************************************************************
-}

-- TopTidyEnv: when tidying we need to know
--   * nc_var: The NameCache, containing a unique supply and any pre-ordained Names.
--        These may have arisen because the
--        renamer read in an interface file mentioning M.$wf, say,
--        and assigned it unique r77.  If, on this compilation, we've
--        invented an Id whose name is $wf (but with a different unique)
--        we want to rename it to have unique r77, so that we can do easy
--        comparisons with stuff from the interface file
--
--   * occ_env: The TidyOccEnv, which tells us which local occurrences
--     are 'used'
--
--   * subst_env: A Var->Var mapping that substitutes the new Var for the old

tidyTopBinds :: HscEnv
             -> Module
             -> UnfoldEnv
             -> TidyOccEnv
             -> CoreProgram
             -> IO (TidyEnv, CoreProgram)

tidyTopBinds :: HscEnv
-> Module
-> UnfoldEnv
-> TidyOccEnv
-> CoreProgram
-> IO (TidyEnv, CoreProgram)
tidyTopBinds HscEnv
hsc_env Module
this_mod UnfoldEnv
unfold_env TidyOccEnv
init_occ_env CoreProgram
binds
  = do Id
mkIntegerId <- DynFlags -> HscEnv -> IO Id
lookupMkIntegerName DynFlags
dflags HscEnv
hsc_env
       Id
mkNaturalId <- DynFlags -> HscEnv -> IO Id
lookupMkNaturalName DynFlags
dflags HscEnv
hsc_env
       Maybe DataCon
integerSDataCon <- DynFlags -> HscEnv -> IO (Maybe DataCon)
lookupIntegerSDataConName DynFlags
dflags HscEnv
hsc_env
       Maybe DataCon
naturalSDataCon <- DynFlags -> HscEnv -> IO (Maybe DataCon)
lookupNaturalSDataConName DynFlags
dflags HscEnv
hsc_env
       let cvt_literal :: LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal LitNumType
nt Integer
i = case LitNumType
nt of
             LitNumType
LitNumInteger -> Expr Id -> Maybe (Expr Id)
forall a. a -> Maybe a
Just (DynFlags -> Id -> Maybe DataCon -> Integer -> Expr Id
cvtLitInteger DynFlags
dflags Id
mkIntegerId Maybe DataCon
integerSDataCon Integer
i)
             LitNumType
LitNumNatural -> Expr Id -> Maybe (Expr Id)
forall a. a -> Maybe a
Just (DynFlags -> Id -> Maybe DataCon -> Integer -> Expr Id
cvtLitNatural DynFlags
dflags Id
mkNaturalId Maybe DataCon
naturalSDataCon Integer
i)
             LitNumType
_             -> Maybe (Expr Id)
forall a. Maybe a
Nothing
           result :: (TidyEnv, CoreProgram)
result      = (LitNumType -> Integer -> Maybe (Expr Id))
-> TidyEnv -> CoreProgram -> (TidyEnv, CoreProgram)
forall (t :: * -> *).
Traversable t =>
(LitNumType -> Integer -> Maybe (Expr Id))
-> TidyEnv -> t CoreBind -> (TidyEnv, t CoreBind)
tidy LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal TidyEnv
forall a. (TidyOccEnv, VarEnv a)
init_env CoreProgram
binds
       CoreProgram -> ()
seqBinds ((TidyEnv, CoreProgram) -> CoreProgram
forall a b. (a, b) -> b
snd (TidyEnv, CoreProgram)
result) () -> IO (TidyEnv, CoreProgram) -> IO (TidyEnv, CoreProgram)
`seq` (TidyEnv, CoreProgram) -> IO (TidyEnv, CoreProgram)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv, CoreProgram)
result
       -- This seqBinds avoids a spike in space usage (see #13564)
  where
    dflags :: DynFlags
dflags = HscEnv -> DynFlags
hsc_dflags HscEnv
hsc_env

    init_env :: (TidyOccEnv, VarEnv a)
init_env = (TidyOccEnv
init_occ_env, VarEnv a
forall a. VarEnv a
emptyVarEnv)

    tidy :: (LitNumType -> Integer -> Maybe (Expr Id))
-> TidyEnv -> t CoreBind -> (TidyEnv, t CoreBind)
tidy LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal = (TidyEnv -> CoreBind -> (TidyEnv, CoreBind))
-> TidyEnv -> t CoreBind -> (TidyEnv, t CoreBind)
forall (t :: * -> *) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumL (DynFlags
-> Module
-> (LitNumType -> Integer -> Maybe (Expr Id))
-> UnfoldEnv
-> TidyEnv
-> CoreBind
-> (TidyEnv, CoreBind)
tidyTopBind DynFlags
dflags Module
this_mod LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal UnfoldEnv
unfold_env)

------------------------
tidyTopBind  :: DynFlags
             -> Module
             -> (LitNumType -> Integer -> Maybe CoreExpr)
             -> UnfoldEnv
             -> TidyEnv
             -> CoreBind
             -> (TidyEnv, CoreBind)

tidyTopBind :: DynFlags
-> Module
-> (LitNumType -> Integer -> Maybe (Expr Id))
-> UnfoldEnv
-> TidyEnv
-> CoreBind
-> (TidyEnv, CoreBind)
tidyTopBind DynFlags
dflags Module
this_mod LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal UnfoldEnv
unfold_env
            (TidyOccEnv
occ_env,VarEnv Id
subst1) (NonRec Id
bndr Expr Id
rhs)
  = (TidyEnv
tidy_env2,  Id -> Expr Id -> CoreBind
forall b. b -> Expr b -> Bind b
NonRec Id
bndr' Expr Id
rhs')
  where
    Just (Name
name',Bool
show_unfold) = UnfoldEnv -> Id -> Maybe (Name, Bool)
forall a. VarEnv a -> Id -> Maybe a
lookupVarEnv UnfoldEnv
unfold_env Id
bndr
    caf_info :: CafInfo
caf_info      = DynFlags -> Module -> CafRefEnv -> Int -> Expr Id -> CafInfo
hasCafRefs DynFlags
dflags Module
this_mod
                               (VarEnv Id
subst1, LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal)
                               (Id -> Int
idArity Id
bndr) Expr Id
rhs
    (Id
bndr', Expr Id
rhs') = DynFlags
-> Bool
-> TidyEnv
-> CafInfo
-> Name
-> (Id, Expr Id)
-> (Id, Expr Id)
tidyTopPair DynFlags
dflags Bool
show_unfold TidyEnv
tidy_env2 CafInfo
caf_info Name
name'
                                (Id
bndr, Expr Id
rhs)
    subst2 :: VarEnv Id
subst2        = VarEnv Id -> Id -> Id -> VarEnv Id
forall a. VarEnv a -> Id -> a -> VarEnv a
extendVarEnv VarEnv Id
subst1 Id
bndr Id
bndr'
    tidy_env2 :: TidyEnv
tidy_env2     = (TidyOccEnv
occ_env, VarEnv Id
subst2)

tidyTopBind DynFlags
dflags Module
this_mod LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal UnfoldEnv
unfold_env
            (TidyOccEnv
occ_env, VarEnv Id
subst1) (Rec [(Id, Expr Id)]
prs)
  = (TidyEnv
tidy_env2, [(Id, Expr Id)] -> CoreBind
forall b. [(b, Expr b)] -> Bind b
Rec [(Id, Expr Id)]
prs')
  where
    prs' :: [(Id, Expr Id)]
prs' = [ DynFlags
-> Bool
-> TidyEnv
-> CafInfo
-> Name
-> (Id, Expr Id)
-> (Id, Expr Id)
tidyTopPair DynFlags
dflags Bool
show_unfold TidyEnv
tidy_env2 CafInfo
caf_info Name
name' (Id
id,Expr Id
rhs)
           | (Id
id,Expr Id
rhs) <- [(Id, Expr Id)]
prs,
             let (Name
name',Bool
show_unfold) =
                    String -> Maybe (Name, Bool) -> (Name, Bool)
forall a. HasCallStack => String -> Maybe a -> a
expectJust String
"tidyTopBind" (Maybe (Name, Bool) -> (Name, Bool))
-> Maybe (Name, Bool) -> (Name, Bool)
forall a b. (a -> b) -> a -> b
$ UnfoldEnv -> Id -> Maybe (Name, Bool)
forall a. VarEnv a -> Id -> Maybe a
lookupVarEnv UnfoldEnv
unfold_env Id
id
           ]

    subst2 :: VarEnv Id
subst2    = VarEnv Id -> [(Id, Id)] -> VarEnv Id
forall a. VarEnv a -> [(Id, a)] -> VarEnv a
extendVarEnvList VarEnv Id
subst1 ([Id]
bndrs [Id] -> [Id] -> [(Id, Id)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` ((Id, Expr Id) -> Id) -> [(Id, Expr Id)] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map (Id, Expr Id) -> Id
forall a b. (a, b) -> a
fst [(Id, Expr Id)]
prs')
    tidy_env2 :: TidyEnv
tidy_env2 = (TidyOccEnv
occ_env, VarEnv Id
subst2)

    bndrs :: [Id]
bndrs = ((Id, Expr Id) -> Id) -> [(Id, Expr Id)] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map (Id, Expr Id) -> Id
forall a b. (a, b) -> a
fst [(Id, Expr Id)]
prs

        -- the CafInfo for a recursive group says whether *any* rhs in
        -- the group may refer indirectly to a CAF (because then, they all do).
    caf_info :: CafInfo
caf_info
        | [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or [ CafInfo -> Bool
mayHaveCafRefs (DynFlags -> Module -> CafRefEnv -> Int -> Expr Id -> CafInfo
hasCafRefs DynFlags
dflags Module
this_mod
                                          (VarEnv Id
subst1, LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal)
                                          (Id -> Int
idArity Id
bndr) Expr Id
rhs)
             | (Id
bndr,Expr Id
rhs) <- [(Id, Expr Id)]
prs ] = CafInfo
MayHaveCafRefs
        | Bool
otherwise                = CafInfo
NoCafRefs

-----------------------------------------------------------
tidyTopPair :: DynFlags
            -> Bool  -- show unfolding
            -> TidyEnv  -- The TidyEnv is used to tidy the IdInfo
                        -- It is knot-tied: don't look at it!
            -> CafInfo
            -> Name             -- New name
            -> (Id, CoreExpr)   -- Binder and RHS before tidying
            -> (Id, CoreExpr)
        -- This function is the heart of Step 2
        -- The rec_tidy_env is the one to use for the IdInfo
        -- It's necessary because when we are dealing with a recursive
        -- group, a variable late in the group might be mentioned
        -- in the IdInfo of one early in the group

tidyTopPair :: DynFlags
-> Bool
-> TidyEnv
-> CafInfo
-> Name
-> (Id, Expr Id)
-> (Id, Expr Id)
tidyTopPair DynFlags
dflags Bool
show_unfold TidyEnv
rhs_tidy_env CafInfo
caf_info Name
name' (Id
bndr, Expr Id
rhs)
  = (Id
bndr1, Expr Id
rhs1)
  where
    bndr1 :: Id
bndr1    = IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId IdDetails
details Name
name' Type
ty' IdInfo
idinfo'
    details :: IdDetails
details  = Id -> IdDetails
idDetails Id
bndr   -- Preserve the IdDetails
    ty' :: Type
ty'      = Type -> Type
tidyTopType (Id -> Type
idType Id
bndr)
    rhs1 :: Expr Id
rhs1     = TidyEnv -> Expr Id -> Expr Id
tidyExpr TidyEnv
rhs_tidy_env Expr Id
rhs
    idinfo' :: IdInfo
idinfo'  = DynFlags
-> TidyEnv
-> Name
-> Expr Id
-> Expr Id
-> IdInfo
-> Bool
-> CafInfo
-> IdInfo
tidyTopIdInfo DynFlags
dflags TidyEnv
rhs_tidy_env Name
name' Expr Id
rhs Expr Id
rhs1 (HasDebugCallStack => Id -> IdInfo
Id -> IdInfo
idInfo Id
bndr)
                             Bool
show_unfold CafInfo
caf_info

-- tidyTopIdInfo creates the final IdInfo for top-level
-- binders.  There are two delicate pieces:
--
--  * Arity.  After CoreTidy, this arity must not change any more.
--      Indeed, CorePrep must eta expand where necessary to make
--      the manifest arity equal to the claimed arity.
--
--  * CAF info.  This must also remain valid through to code generation.
--      We add the info here so that it propagates to all
--      occurrences of the binders in RHSs, and hence to occurrences in
--      unfoldings, which are inside Ids imported by GHCi. Ditto RULES.
--      CoreToStg makes use of this when constructing SRTs.
tidyTopIdInfo :: DynFlags -> TidyEnv -> Name -> CoreExpr -> CoreExpr
              -> IdInfo -> Bool -> CafInfo -> IdInfo
tidyTopIdInfo :: DynFlags
-> TidyEnv
-> Name
-> Expr Id
-> Expr Id
-> IdInfo
-> Bool
-> CafInfo
-> IdInfo
tidyTopIdInfo DynFlags
dflags TidyEnv
rhs_tidy_env Name
name Expr Id
orig_rhs Expr Id
tidy_rhs IdInfo
idinfo Bool
show_unfold CafInfo
caf_info
  | Bool -> Bool
not Bool
is_external     -- For internal Ids (not externally visible)
  = IdInfo
vanillaIdInfo       -- we only need enough info for code generation
                        -- Arity and strictness info are enough;
                        --      c.f. CoreTidy.tidyLetBndr
        IdInfo -> CafInfo -> IdInfo
`setCafInfo`        CafInfo
caf_info
        IdInfo -> Int -> IdInfo
`setArityInfo`      Int
arity
        IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo` StrictSig
final_sig
        IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  Unfolding
minimal_unfold_info  -- See note [Preserve evaluatedness]
                                                 -- in CoreTidy

  | Bool
otherwise           -- Externally-visible Ids get the whole lot
  = IdInfo
vanillaIdInfo
        IdInfo -> CafInfo -> IdInfo
`setCafInfo`           CafInfo
caf_info
        IdInfo -> Int -> IdInfo
`setArityInfo`         Int
arity
        IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo`    StrictSig
final_sig
        IdInfo -> OccInfo -> IdInfo
`setOccInfo`           OccInfo
robust_occ_info
        IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo`    (IdInfo -> InlinePragma
inlinePragInfo IdInfo
idinfo)
        IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`     Unfolding
unfold_info
                -- NB: we throw away the Rules
                -- They have already been extracted by findExternalRules
  where
    is_external :: Bool
is_external = Name -> Bool
isExternalName Name
name

    --------- OccInfo ------------
    robust_occ_info :: OccInfo
robust_occ_info = OccInfo -> OccInfo
zapFragileOcc (IdInfo -> OccInfo
occInfo IdInfo
idinfo)
    -- It's important to keep loop-breaker information
    -- when we are doing -fexpose-all-unfoldings

    --------- Strictness ------------
    mb_bot_str :: Maybe (Int, StrictSig)
mb_bot_str = Expr Id -> Maybe (Int, StrictSig)
exprBotStrictness_maybe Expr Id
orig_rhs

    sig :: StrictSig
sig = IdInfo -> StrictSig
strictnessInfo IdInfo
idinfo
    final_sig :: StrictSig
final_sig | Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ StrictSig -> Bool
isTopSig StrictSig
sig
              = WARN( _bottom_hidden sig , ppr name ) sig
              -- try a cheap-and-cheerful bottom analyser
              | Just (Int
_, StrictSig
nsig) <- Maybe (Int, StrictSig)
mb_bot_str = StrictSig
nsig
              | Bool
otherwise                    = StrictSig
sig

    _bottom_hidden :: StrictSig -> Bool
_bottom_hidden StrictSig
id_sig = case Maybe (Int, StrictSig)
mb_bot_str of
                                  Maybe (Int, StrictSig)
Nothing         -> Bool
False
                                  Just (Int
arity, StrictSig
_) -> Bool -> Bool
not (StrictSig -> Int -> Bool
appIsBottom StrictSig
id_sig Int
arity)

    --------- Unfolding ------------
    unf_info :: Unfolding
unf_info = IdInfo -> Unfolding
unfoldingInfo IdInfo
idinfo
    unfold_info :: Unfolding
unfold_info | Bool
show_unfold = TidyEnv -> Unfolding -> Unfolding -> Unfolding
tidyUnfolding TidyEnv
rhs_tidy_env Unfolding
unf_info Unfolding
unf_from_rhs
                | Bool
otherwise   = Unfolding
minimal_unfold_info
    minimal_unfold_info :: Unfolding
minimal_unfold_info = Unfolding -> Unfolding
zapUnfolding Unfolding
unf_info
    unf_from_rhs :: Unfolding
unf_from_rhs = DynFlags -> Bool -> Expr Id -> Unfolding
mkTopUnfolding DynFlags
dflags Bool
is_bot Expr Id
tidy_rhs
    is_bot :: Bool
is_bot = StrictSig -> Bool
isBottomingSig StrictSig
final_sig
    -- NB: do *not* expose the worker if show_unfold is off,
    --     because that means this thing is a loop breaker or
    --     marked NOINLINE or something like that
    -- This is important: if you expose the worker for a loop-breaker
    -- then you can make the simplifier go into an infinite loop, because
    -- in effect the unfolding is exposed.  See #1709
    --
    -- You might think that if show_unfold is False, then the thing should
    -- not be w/w'd in the first place.  But a legitimate reason is this:
    --    the function returns bottom
    -- In this case, show_unfold will be false (we don't expose unfoldings
    -- for bottoming functions), but we might still have a worker/wrapper
    -- split (see Note [Worker-wrapper for bottoming functions] in WorkWrap.hs


    --------- Arity ------------
    -- Usually the Id will have an accurate arity on it, because
    -- the simplifier has just run, but not always.
    -- One case I found was when the last thing the simplifier
    -- did was to let-bind a non-atomic argument and then float
    -- it to the top level. So it seems more robust just to
    -- fix it here.
    arity :: Int
arity = Expr Id -> Int
exprArity Expr Id
orig_rhs

{-
************************************************************************
*                                                                      *
           Figuring out CafInfo for an expression
*                                                                      *
************************************************************************

hasCafRefs decides whether a top-level closure can point into the dynamic heap.
We mark such things as `MayHaveCafRefs' because this information is
used to decide whether a particular closure needs to be referenced
in an SRT or not.

There are two reasons for setting MayHaveCafRefs:
        a) The RHS is a CAF: a top-level updatable thunk.
        b) The RHS refers to something that MayHaveCafRefs

Possible improvement: In an effort to keep the number of CAFs (and
hence the size of the SRTs) down, we could also look at the expression and
decide whether it requires a small bounded amount of heap, so we can ignore
it as a CAF.  In these cases however, we would need to use an additional
CAF list to keep track of non-collectable CAFs.

Note [Disgusting computation of CafRefs]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We compute hasCafRefs here, because IdInfo is supposed to be finalised
after TidyPgm.  But CorePrep does some transformations that affect CAF-hood.
So we have to *predict* the result here, which is revolting.

In particular CorePrep expands Integer and Natural literals. So in the
prediction code here we resort to applying the same expansion (cvt_literal).
There are also numberous other ways in which we can introduce inconsistencies
between CorePrep and TidyPgm. See Note [CAFfyness inconsistencies due to eta
expansion in TidyPgm] for one such example.

Ugh! What ugliness we hath wrought.


Note [CAFfyness inconsistencies due to eta expansion in TidyPgm]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Eta expansion during CorePrep can have non-obvious negative consequences on
the CAFfyness computation done by TidyPgm (see Note [Disgusting computation of
CafRefs] in TidyPgm). This late expansion happens/happened for a few reasons:

 * CorePrep previously eta expanded unsaturated primop applications, as
   described in Note [Primop wrappers]).

 * CorePrep still does eta expand unsaturated data constructor applications.

In particular, consider the program:

    data Ty = Ty (RealWorld# -> (# RealWorld#, Int #))

    -- Is this CAFfy?
    x :: STM Int
    x = Ty (retry# @Int)

Consider whether x is CAFfy. One might be tempted to answer "no".
Afterall, f obviously has no CAF references and the application (retry#
@Int) is essentially just a variable reference at runtime.

However, when CorePrep expanded the unsaturated application of 'retry#'
it would rewrite this to

    x = \u []
       let sat = retry# @Int
       in Ty sat

This is now a CAF. Failing to handle this properly was the cause of
#16846. We fixed this by eliminating the need to eta expand primops, as
described in Note [Primop wrappers]), However we have not yet done the same for
data constructor applications.

-}

type CafRefEnv = (VarEnv Id, LitNumType -> Integer -> Maybe CoreExpr)
  -- The env finds the Caf-ness of the Id
  -- The LitNumType -> Integer -> CoreExpr is the desugaring functions for
  -- Integer and Natural literals
  -- See Note [Disgusting computation of CafRefs]

hasCafRefs :: DynFlags -> Module
           -> CafRefEnv -> Arity -> CoreExpr
           -> CafInfo
hasCafRefs :: DynFlags -> Module -> CafRefEnv -> Int -> Expr Id -> CafInfo
hasCafRefs DynFlags
dflags Module
this_mod (VarEnv Id
subst, LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal) Int
arity Expr Id
expr
  | Bool
is_caf Bool -> Bool -> Bool
|| Bool
mentions_cafs = CafInfo
MayHaveCafRefs
  | Bool
otherwise               = CafInfo
NoCafRefs
 where
  mentions_cafs :: Bool
mentions_cafs   = Expr Id -> Bool
forall a. Expr a -> Bool
cafRefsE Expr Id
expr
  is_dynamic_name :: Name -> Bool
is_dynamic_name = DynFlags -> Module -> Name -> Bool
isDllName DynFlags
dflags Module
this_mod
  is_caf :: Bool
is_caf = Bool -> Bool
not (Int
arity Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 Bool -> Bool -> Bool
|| Platform
-> (Name -> Bool)
-> (LitNumType -> Integer -> Maybe (Expr Id))
-> Expr Id
-> Bool
rhsIsStatic (DynFlags -> Platform
targetPlatform DynFlags
dflags) Name -> Bool
is_dynamic_name
                                         LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal Expr Id
expr)

  -- NB. we pass in the arity of the expression, which is expected
  -- to be calculated by exprArity.  This is because exprArity
  -- knows how much eta expansion is going to be done by
  -- CorePrep later on, and we don't want to duplicate that
  -- knowledge in rhsIsStatic below.

  cafRefsE :: Expr a -> Bool
  cafRefsE :: Expr a -> Bool
cafRefsE (Var Id
id)            = Id -> Bool
cafRefsV Id
id
  cafRefsE (Lit Literal
lit)           = Literal -> Bool
cafRefsL Literal
lit
  cafRefsE (App Expr a
f Expr a
a)           = Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
f Bool -> Bool -> Bool
|| Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
a
  cafRefsE (Lam a
_ Expr a
e)           = Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
e
  cafRefsE (Let Bind a
b Expr a
e)           = [Expr a] -> Bool
forall a. [Expr a] -> Bool
cafRefsEs (Bind a -> [Expr a]
forall b. Bind b -> [Expr b]
rhssOfBind Bind a
b) Bool -> Bool -> Bool
|| Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
e
  cafRefsE (Case Expr a
e a
_ Type
_ [Alt a]
alts)   = Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
e Bool -> Bool -> Bool
|| [Expr a] -> Bool
forall a. [Expr a] -> Bool
cafRefsEs ([Alt a] -> [Expr a]
forall b. [Alt b] -> [Expr b]
rhssOfAlts [Alt a]
alts)
  cafRefsE (Tick Tickish Id
_n Expr a
e)         = Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
e
  cafRefsE (Cast Expr a
e Coercion
_co)        = Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
e
  cafRefsE (Type Type
_)            = Bool
False
  cafRefsE (Coercion Coercion
_)        = Bool
False

  cafRefsEs :: [Expr a] -> Bool
  cafRefsEs :: [Expr a] -> Bool
cafRefsEs []     = Bool
False
  cafRefsEs (Expr a
e:[Expr a]
es) = Expr a -> Bool
forall a. Expr a -> Bool
cafRefsE Expr a
e Bool -> Bool -> Bool
|| [Expr a] -> Bool
forall a. [Expr a] -> Bool
cafRefsEs [Expr a]
es

  cafRefsL :: Literal -> Bool
  -- Don't forget that mk_integer id might have Caf refs!
  -- We first need to convert the Integer into its final form, to
  -- see whether mkInteger is used. Same for LitNatural.
  cafRefsL :: Literal -> Bool
cafRefsL (LitNumber LitNumType
nt Integer
i Type
_) = case LitNumType -> Integer -> Maybe (Expr Id)
cvt_literal LitNumType
nt Integer
i of
    Just Expr Id
e  -> Expr Id -> Bool
forall a. Expr a -> Bool
cafRefsE Expr Id
e
    Maybe (Expr Id)
Nothing -> Bool
False
  cafRefsL Literal
_                = Bool
False

  cafRefsV :: Id -> Bool
  cafRefsV :: Id -> Bool
cafRefsV Id
id
    | Bool -> Bool
not (Id -> Bool
isLocalId Id
id)                = CafInfo -> Bool
mayHaveCafRefs (Id -> CafInfo
idCafInfo Id
id)
    | Just Id
id' <- VarEnv Id -> Id -> Maybe Id
forall a. VarEnv a -> Id -> Maybe a
lookupVarEnv VarEnv Id
subst Id
id = CafInfo -> Bool
mayHaveCafRefs (Id -> CafInfo
idCafInfo Id
id')
    | Bool
otherwise                         = Bool
False


{-
************************************************************************
*                                                                      *
                  Old, dead, type-trimming code
*                                                                      *
************************************************************************

We used to try to "trim off" the constructors of data types that are
not exported, to reduce the size of interface files, at least without
-O.  But that is not always possible: see the old Note [When we can't
trim types] below for exceptions.

Then (#7445) I realised that the TH problem arises for any data type
that we have deriving( Data ), because we can invoke
   Language.Haskell.TH.Quote.dataToExpQ
to get a TH Exp representation of a value built from that data type.
You don't even need {-# LANGUAGE TemplateHaskell #-}.

At this point I give up. The pain of trimming constructors just
doesn't seem worth the gain.  So I've dumped all the code, and am just
leaving it here at the end of the module in case something like this
is ever resurrected.


Note [When we can't trim types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The basic idea of type trimming is to export algebraic data types
abstractly (without their data constructors) when compiling without
-O, unless of course they are explicitly exported by the user.

We always export synonyms, because they can be mentioned in the type
of an exported Id.  We could do a full dependency analysis starting
from the explicit exports, but that's quite painful, and not done for
now.

But there are some times we can't do that, indicated by the 'no_trim_types' flag.

First, Template Haskell.  Consider (#2386) this
        module M(T, makeOne) where
          data T = Yay String
          makeOne = [| Yay "Yep" |]
Notice that T is exported abstractly, but makeOne effectively exports it too!
A module that splices in $(makeOne) will then look for a declaration of Yay,
so it'd better be there.  Hence, brutally but simply, we switch off type
constructor trimming if TH is enabled in this module.

Second, data kinds.  Consider (#5912)
     {-# LANGUAGE DataKinds #-}
     module M() where
     data UnaryTypeC a = UnaryDataC a
     type Bug = 'UnaryDataC
We always export synonyms, so Bug is exposed, and that means that
UnaryTypeC must be too, even though it's not explicitly exported.  In
effect, DataKinds means that we'd need to do a full dependency analysis
to see what data constructors are mentioned.  But we don't do that yet.

In these two cases we just switch off type trimming altogether.

mustExposeTyCon :: Bool         -- Type-trimming flag
                -> NameSet      -- Exports
                -> TyCon        -- The tycon
                -> Bool         -- Can its rep be hidden?
-- We are compiling without -O, and thus trying to write as little as
-- possible into the interface file.  But we must expose the details of
-- any data types whose constructors or fields are exported
mustExposeTyCon no_trim_types exports tc
  | no_trim_types               -- See Note [When we can't trim types]
  = True

  | not (isAlgTyCon tc)         -- Always expose synonyms (otherwise we'd have to
                                -- figure out whether it was mentioned in the type
                                -- of any other exported thing)
  = True

  | isEnumerationTyCon tc       -- For an enumeration, exposing the constructors
  = True                        -- won't lead to the need for further exposure

  | isFamilyTyCon tc            -- Open type family
  = True

  -- Below here we just have data/newtype decls or family instances

  | null data_cons              -- Ditto if there are no data constructors
  = True                        -- (NB: empty data types do not count as enumerations
                                -- see Note [Enumeration types] in TyCon

  | any exported_con data_cons  -- Expose rep if any datacon or field is exported
  = True

  | isNewTyCon tc && isFFITy (snd (newTyConRhs tc))
  = True   -- Expose the rep for newtypes if the rep is an FFI type.
           -- For a very annoying reason.  'Foreign import' is meant to
           -- be able to look through newtypes transparently, but it
           -- can only do that if it can "see" the newtype representation

  | otherwise
  = False
  where
    data_cons = tyConDataCons tc
    exported_con con = any (`elemNameSet` exports)
                           (dataConName con : dataConFieldLabels con)
-}