{-
(c) The GRASP/AQUA Project, Glasgow University, 1993-1998

\section[WorkWrap]{Worker/wrapper-generating back-end of strictness analyser}
-}

{-# LANGUAGE CPP #-}
module WorkWrap ( wwTopBinds ) where

import GhcPrelude

import CoreArity        ( manifestArity )
import CoreSyn
import CoreUnfold       ( certainlyWillInline, mkWwInlineRule, mkWorkerUnfolding )
import CoreUtils        ( exprType, exprIsHNF )
import CoreFVs          ( exprFreeVars )
import Var
import Id
import IdInfo
import Type
import UniqSupply
import BasicTypes
import DynFlags
import Demand
import WwLib
import Util
import Outputable
import FamInstEnv
import MonadUtils

#include "HsVersions.h"

{-
We take Core bindings whose binders have:

\begin{enumerate}

\item Strictness attached (by the front-end of the strictness
analyser), and / or

\item Constructed Product Result information attached by the CPR
analysis pass.

\end{enumerate}

and we return some ``plain'' bindings which have been
worker/wrapper-ified, meaning:

\begin{enumerate}

\item Functions have been split into workers and wrappers where
appropriate.  If a function has both strictness and CPR properties
then only one worker/wrapper doing both transformations is produced;

\item Binders' @IdInfos@ have been updated to reflect the existence of
these workers/wrappers (this is where we get STRICTNESS and CPR pragma
info for exported values).
\end{enumerate}
-}

wwTopBinds :: DynFlags -> FamInstEnvs -> UniqSupply -> CoreProgram -> CoreProgram

wwTopBinds :: DynFlags -> FamInstEnvs -> UniqSupply -> CoreProgram -> CoreProgram
wwTopBinds DynFlags
dflags FamInstEnvs
fam_envs UniqSupply
us CoreProgram
top_binds
  = UniqSupply -> UniqSM CoreProgram -> CoreProgram
forall a. UniqSupply -> UniqSM a -> a
initUs_ UniqSupply
us (UniqSM CoreProgram -> CoreProgram)
-> UniqSM CoreProgram -> CoreProgram
forall a b. (a -> b) -> a -> b
$ do
    [CoreProgram]
top_binds' <- (CoreBind -> UniqSM CoreProgram)
-> CoreProgram -> UniqSM [CoreProgram]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (DynFlags -> FamInstEnvs -> CoreBind -> UniqSM CoreProgram
wwBind DynFlags
dflags FamInstEnvs
fam_envs) CoreProgram
top_binds
    CoreProgram -> UniqSM CoreProgram
forall (m :: * -> *) a. Monad m => a -> m a
return ([CoreProgram] -> CoreProgram
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [CoreProgram]
top_binds')

{-
************************************************************************
*                                                                      *
\subsection[wwBind-wwExpr]{@wwBind@ and @wwExpr@}
*                                                                      *
************************************************************************

@wwBind@ works on a binding, trying each \tr{(binder, expr)} pair in
turn.  Non-recursive case first, then recursive...
-}

wwBind  :: DynFlags
        -> FamInstEnvs
        -> CoreBind
        -> UniqSM [CoreBind]    -- returns a WwBinding intermediate form;
                                -- the caller will convert to Expr/Binding,
                                -- as appropriate.

wwBind :: DynFlags -> FamInstEnvs -> CoreBind -> UniqSM CoreProgram
wwBind DynFlags
dflags FamInstEnvs
fam_envs (NonRec CoreBndr
binder Expr CoreBndr
rhs) = do
    Expr CoreBndr
new_rhs <- DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
rhs
    [(CoreBndr, Expr CoreBndr)]
new_pairs <- DynFlags
-> FamInstEnvs
-> RecFlag
-> CoreBndr
-> Expr CoreBndr
-> UniqSM [(CoreBndr, Expr CoreBndr)]
tryWW DynFlags
dflags FamInstEnvs
fam_envs RecFlag
NonRecursive CoreBndr
binder Expr CoreBndr
new_rhs
    CoreProgram -> UniqSM CoreProgram
forall (m :: * -> *) a. Monad m => a -> m a
return [CoreBndr -> Expr CoreBndr -> CoreBind
forall b. b -> Expr b -> Bind b
NonRec CoreBndr
b Expr CoreBndr
e | (CoreBndr
b,Expr CoreBndr
e) <- [(CoreBndr, Expr CoreBndr)]
new_pairs]
      -- Generated bindings must be non-recursive
      -- because the original binding was.

wwBind DynFlags
dflags FamInstEnvs
fam_envs (Rec [(CoreBndr, Expr CoreBndr)]
pairs)
  = CoreBind -> CoreProgram
forall (m :: * -> *) a. Monad m => a -> m a
return (CoreBind -> CoreProgram)
-> ([(CoreBndr, Expr CoreBndr)] -> CoreBind)
-> [(CoreBndr, Expr CoreBndr)]
-> CoreProgram
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(CoreBndr, Expr CoreBndr)] -> CoreBind
forall b. [(b, Expr b)] -> Bind b
Rec ([(CoreBndr, Expr CoreBndr)] -> CoreProgram)
-> UniqSM [(CoreBndr, Expr CoreBndr)] -> UniqSM CoreProgram
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CoreBndr, Expr CoreBndr) -> UniqSM [(CoreBndr, Expr CoreBndr)])
-> [(CoreBndr, Expr CoreBndr)]
-> UniqSM [(CoreBndr, Expr CoreBndr)]
forall (m :: * -> *) a b. Monad m => (a -> m [b]) -> [a] -> m [b]
concatMapM (CoreBndr, Expr CoreBndr) -> UniqSM [(CoreBndr, Expr CoreBndr)]
do_one [(CoreBndr, Expr CoreBndr)]
pairs
  where
    do_one :: (CoreBndr, Expr CoreBndr) -> UniqSM [(CoreBndr, Expr CoreBndr)]
do_one (CoreBndr
binder, Expr CoreBndr
rhs) = do Expr CoreBndr
new_rhs <- DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
rhs
                              DynFlags
-> FamInstEnvs
-> RecFlag
-> CoreBndr
-> Expr CoreBndr
-> UniqSM [(CoreBndr, Expr CoreBndr)]
tryWW DynFlags
dflags FamInstEnvs
fam_envs RecFlag
Recursive CoreBndr
binder Expr CoreBndr
new_rhs

{-
@wwExpr@ basically just walks the tree, looking for appropriate
annotations that can be used. Remember it is @wwBind@ that does the
matching by looking for strict arguments of the correct type.
@wwExpr@ is a version that just returns the ``Plain'' Tree.
-}

wwExpr :: DynFlags -> FamInstEnvs -> CoreExpr -> UniqSM CoreExpr

wwExpr :: DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
_      FamInstEnvs
_ e :: Expr CoreBndr
e@(Type {}) = Expr CoreBndr -> UniqSM (Expr CoreBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return Expr CoreBndr
e
wwExpr DynFlags
_      FamInstEnvs
_ e :: Expr CoreBndr
e@(Coercion {}) = Expr CoreBndr -> UniqSM (Expr CoreBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return Expr CoreBndr
e
wwExpr DynFlags
_      FamInstEnvs
_ e :: Expr CoreBndr
e@(Lit  {}) = Expr CoreBndr -> UniqSM (Expr CoreBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return Expr CoreBndr
e
wwExpr DynFlags
_      FamInstEnvs
_ e :: Expr CoreBndr
e@(Var  {}) = Expr CoreBndr -> UniqSM (Expr CoreBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return Expr CoreBndr
e

wwExpr DynFlags
dflags FamInstEnvs
fam_envs (Lam CoreBndr
binder Expr CoreBndr
expr)
  = CoreBndr -> Expr CoreBndr -> Expr CoreBndr
forall b. b -> Expr b -> Expr b
Lam CoreBndr
new_binder (Expr CoreBndr -> Expr CoreBndr)
-> UniqSM (Expr CoreBndr) -> UniqSM (Expr CoreBndr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
expr
  where new_binder :: CoreBndr
new_binder | CoreBndr -> Bool
isId CoreBndr
binder = CoreBndr -> CoreBndr
zapIdUsedOnceInfo CoreBndr
binder
                   | Bool
otherwise   = CoreBndr
binder
  -- See Note [Zapping Used Once info in WorkWrap]

wwExpr DynFlags
dflags FamInstEnvs
fam_envs (App Expr CoreBndr
f Expr CoreBndr
a)
  = Expr CoreBndr -> Expr CoreBndr -> Expr CoreBndr
forall b. Expr b -> Expr b -> Expr b
App (Expr CoreBndr -> Expr CoreBndr -> Expr CoreBndr)
-> UniqSM (Expr CoreBndr)
-> UniqSM (Expr CoreBndr -> Expr CoreBndr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
f UniqSM (Expr CoreBndr -> Expr CoreBndr)
-> UniqSM (Expr CoreBndr) -> UniqSM (Expr CoreBndr)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
a

wwExpr DynFlags
dflags FamInstEnvs
fam_envs (Tick Tickish CoreBndr
note Expr CoreBndr
expr)
  = Tickish CoreBndr -> Expr CoreBndr -> Expr CoreBndr
forall b. Tickish CoreBndr -> Expr b -> Expr b
Tick Tickish CoreBndr
note (Expr CoreBndr -> Expr CoreBndr)
-> UniqSM (Expr CoreBndr) -> UniqSM (Expr CoreBndr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
expr

wwExpr DynFlags
dflags FamInstEnvs
fam_envs (Cast Expr CoreBndr
expr Coercion
co) = do
    Expr CoreBndr
new_expr <- DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
expr
    Expr CoreBndr -> UniqSM (Expr CoreBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Expr CoreBndr -> Coercion -> Expr CoreBndr
forall b. Expr b -> Coercion -> Expr b
Cast Expr CoreBndr
new_expr Coercion
co)

wwExpr DynFlags
dflags FamInstEnvs
fam_envs (Let CoreBind
bind Expr CoreBndr
expr)
  = CoreProgram -> Expr CoreBndr -> Expr CoreBndr
forall b. [Bind b] -> Expr b -> Expr b
mkLets (CoreProgram -> Expr CoreBndr -> Expr CoreBndr)
-> UniqSM CoreProgram -> UniqSM (Expr CoreBndr -> Expr CoreBndr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> DynFlags -> FamInstEnvs -> CoreBind -> UniqSM CoreProgram
wwBind DynFlags
dflags FamInstEnvs
fam_envs CoreBind
bind UniqSM (Expr CoreBndr -> Expr CoreBndr)
-> UniqSM (Expr CoreBndr) -> UniqSM (Expr CoreBndr)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
expr

wwExpr DynFlags
dflags FamInstEnvs
fam_envs (Case Expr CoreBndr
expr CoreBndr
binder Type
ty [Alt CoreBndr]
alts) = do
    Expr CoreBndr
new_expr <- DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
expr
    [Alt CoreBndr]
new_alts <- (Alt CoreBndr -> UniqSM (Alt CoreBndr))
-> [Alt CoreBndr] -> UniqSM [Alt CoreBndr]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Alt CoreBndr -> UniqSM (Alt CoreBndr)
forall a.
(a, [CoreBndr], Expr CoreBndr)
-> UniqSM (a, [CoreBndr], Expr CoreBndr)
ww_alt [Alt CoreBndr]
alts
    let new_binder :: CoreBndr
new_binder = CoreBndr -> CoreBndr
zapIdUsedOnceInfo CoreBndr
binder
      -- See Note [Zapping Used Once info in WorkWrap]
    Expr CoreBndr -> UniqSM (Expr CoreBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (Expr CoreBndr
-> CoreBndr -> Type -> [Alt CoreBndr] -> Expr CoreBndr
forall b. Expr b -> b -> Type -> [Alt b] -> Expr b
Case Expr CoreBndr
new_expr CoreBndr
new_binder Type
ty [Alt CoreBndr]
new_alts)
  where
    ww_alt :: (a, [CoreBndr], Expr CoreBndr)
-> UniqSM (a, [CoreBndr], Expr CoreBndr)
ww_alt (a
con, [CoreBndr]
binders, Expr CoreBndr
rhs) = do
        Expr CoreBndr
new_rhs <- DynFlags -> FamInstEnvs -> Expr CoreBndr -> UniqSM (Expr CoreBndr)
wwExpr DynFlags
dflags FamInstEnvs
fam_envs Expr CoreBndr
rhs
        let new_binders :: [CoreBndr]
new_binders = [ if CoreBndr -> Bool
isId CoreBndr
b then CoreBndr -> CoreBndr
zapIdUsedOnceInfo CoreBndr
b else CoreBndr
b
                          | CoreBndr
b <- [CoreBndr]
binders ]
           -- See Note [Zapping Used Once info in WorkWrap]
        (a, [CoreBndr], Expr CoreBndr)
-> UniqSM (a, [CoreBndr], Expr CoreBndr)
forall (m :: * -> *) a. Monad m => a -> m a
return (a
con, [CoreBndr]
new_binders, Expr CoreBndr
new_rhs)

{-
************************************************************************
*                                                                      *
\subsection[tryWW]{@tryWW@: attempt a worker/wrapper pair}
*                                                                      *
************************************************************************

@tryWW@ just accumulates arguments, converts strictness info from the
front-end into the proper form, then calls @mkWwBodies@ to do
the business.

The only reason this is monadised is for the unique supply.

Note [Don't w/w INLINE things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's very important to refrain from w/w-ing an INLINE function (ie one
with a stable unfolding) because the wrapper will then overwrite the
old stable unfolding with the wrapper code.

Furthermore, if the programmer has marked something as INLINE,
we may lose by w/w'ing it.

If the strictness analyser is run twice, this test also prevents
wrappers (which are INLINEd) from being re-done.  (You can end up with
several liked-named Ids bouncing around at the same time---absolute
mischief.)

Notice that we refrain from w/w'ing an INLINE function even if it is
in a recursive group.  It might not be the loop breaker.  (We could
test for loop-breaker-hood, but I'm not sure that ever matters.)

Note [Worker-wrapper for INLINABLE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we have
  {-# INLINABLE f #-}
  f :: Ord a => [a] -> Int -> a
  f x y = ....f....

where f is strict in y, we might get a more efficient loop by w/w'ing
f.  But that would make a new unfolding which would overwrite the old
one! So the function would no longer be INLNABLE, and in particular
will not be specialised at call sites in other modules.

This comes in practice (#6056).

Solution: do the w/w for strictness analysis, but transfer the Stable
unfolding to the *worker*.  So we will get something like this:

  {-# INLINE[0] f #-}
  f :: Ord a => [a] -> Int -> a
  f d x y = case y of I# y' -> fw d x y'

  {-# INLINABLE[0] fw #-}
  fw :: Ord a => [a] -> Int# -> a
  fw d x y' = let y = I# y' in ...f...

How do we "transfer the unfolding"? Easy: by using the old one, wrapped
in work_fn! See CoreUnfold.mkWorkerUnfolding.

Note [Worker-wrapper for NOINLINE functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We used to disable worker/wrapper for NOINLINE things, but it turns out
this can cause unnecessary reboxing of values. Consider

  {-# NOINLINE f #-}
  f :: Int -> a
  f x = error (show x)

  g :: Bool -> Bool -> Int -> Int
  g True  True  p = f p
  g False True  p = p + 1
  g b     False p = g b True p

the strictness analysis will discover f and g are strict, but because f
has no wrapper, the worker for g will rebox p. So we get

  $wg x y p# =
    let p = I# p# in  -- Yikes! Reboxing!
    case x of
      False ->
        case y of
          False -> $wg False True p#
          True -> +# p# 1#
      True ->
        case y of
          False -> $wg True True p#
          True -> case f p of { }

  g x y p = case p of (I# p#) -> $wg x y p#

Now, in this case the reboxing will float into the True branch, and so
the allocation will only happen on the error path. But it won't float
inwards if there are multiple branches that call (f p), so the reboxing
will happen on every call of g. Disaster.

Solution: do worker/wrapper even on NOINLINE things; but move the
NOINLINE pragma to the worker.

(See #13143 for a real-world example.)

It is crucial that we do this for *all* NOINLINE functions. #10069
demonstrates what happens when we promise to w/w a (NOINLINE) leaf function, but
fail to deliver:

  data C = C Int# Int#

  {-# NOINLINE c1 #-}
  c1 :: C -> Int#
  c1 (C _ n) = n

  {-# NOINLINE fc #-}
  fc :: C -> Int#
  fc c = 2 *# c1 c

Failing to w/w `c1`, but still w/wing `fc` leads to the following code:

  c1 :: C -> Int#
  c1 (C _ n) = n

  $wfc :: Int# -> Int#
  $wfc n = let c = C 0# n in 2 #* c1 c

  fc :: C -> Int#
  fc (C _ n) = $wfc n

Yikes! The reboxed `C` in `$wfc` can't cancel out, so we are in a bad place.
This generalises to any function that derives its strictness signature from
its callees, so we have to make sure that when a function announces particular
strictness properties, we have to w/w them accordingly, even if it means
splitting a NOINLINE function.

Note [Worker activation]
~~~~~~~~~~~~~~~~~~~~~~~~
Follows on from Note [Worker-wrapper for INLINABLE functions]

It is *vital* that if the worker gets an INLINABLE pragma (from the
original function), then the worker has the same phase activation as
the wrapper (or later).  That is necessary to allow the wrapper to
inline into the worker's unfolding: see SimplUtils
Note [Simplifying inside stable unfoldings].

If the original is NOINLINE, it's important that the work inherit the
original activation. Consider

  {-# NOINLINE expensive #-}
  expensive x = x + 1

  f y = let z = expensive y in ...

If expensive's worker inherits the wrapper's activation,
we'll get this (because of the compromise in point (2) of
Note [Wrapper activation])

  {-# NOINLINE[0] $wexpensive #-}
  $wexpensive x = x + 1
  {-# INLINE[0] expensive #-}
  expensive x = $wexpensive x

  f y = let z = expensive y in ...

and $wexpensive will be immediately inlined into expensive, followed by
expensive into f. This effectively removes the original NOINLINE!

Otherwise, nothing is lost by giving the worker the same activation as the
wrapper, because the worker won't have any chance of inlining until the
wrapper does; there's no point in giving it an earlier activation.

Note [Don't w/w inline small non-loop-breaker things]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general, we refrain from w/w-ing *small* functions, which are not
loop breakers, because they'll inline anyway.  But we must take care:
it may look small now, but get to be big later after other inlining
has happened.  So we take the precaution of adding an INLINE pragma to
any such functions.

I made this change when I observed a big function at the end of
compilation with a useful strictness signature but no w-w.  (It was
small during demand analysis, we refrained from w/w, and then got big
when something was inlined in its rhs.) When I measured it on nofib,
it didn't make much difference; just a few percent improved allocation
on one benchmark (bspt/Euclid.space).  But nothing got worse.

There is an infelicity though.  We may get something like
      f = g val
==>
      g x = case gw x of r -> I# r

      f {- InlineStable, Template = g val -}
      f = case gw x of r -> I# r

The code for f duplicates that for g, without any real benefit. It
won't really be executed, because calls to f will go via the inlining.

Note [Don't CPR join points]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There's no point in doing CPR on a join point. If the whole function is getting
CPR'd, then the case expression around the worker function will get pushed into
the join point by the simplifier, which will have the same effect that CPR would
have - the result will be returned in an unboxed tuple.

  f z = let join j x y = (x+1, y+1)
        in case z of A -> j 1 2
                     B -> j 2 3

  =>

  f z = case $wf z of (# a, b #) -> (a, b)
  $wf z = case (let join j x y = (x+1, y+1)
                in case z of A -> j 1 2
                             B -> j 2 3) of (a, b) -> (# a, b #)

  =>

  f z = case $wf z of (# a, b #) -> (a, b)
  $wf z = let join j x y = (# x+1, y+1 #)
          in case z of A -> j 1 2
                       B -> j 2 3

Doing CPR on a join point would be tricky anyway, as the worker could not be
a join point because it would not be tail-called. However, doing the *argument*
part of W/W still works for join points, since the wrapper body will make a tail
call:

  f z = let join j x y = x + y
        in ...

  =>

  f z = let join $wj x# y# = x# +# y#
                 j x y = case x of I# x# ->
                         case y of I# y# ->
                         $wj x# y#
        in ...

Note [Wrapper activation]
~~~~~~~~~~~~~~~~~~~~~~~~~
When should the wrapper inlining be active?

1. It must not be active earlier than the current Activation of the
   Id

2. It should be active at some point, despite (1) because of
   Note [Worker-wrapper for NOINLINE functions]

3. For ordinary functions with no pragmas we want to inline the
   wrapper as early as possible (#15056).  Suppose another module
   defines    f x = g x x
   and suppose there is some RULE for (g True True).  Then if we have
   a call (f True), we'd expect to inline 'f' and the RULE will fire.
   But if f is w/w'd (which it might be), we want the inlining to
   occur just as if it hadn't been.

   (This only matters if f's RHS is big enough to w/w, but small
   enough to inline given the call site, but that can happen.)

4. We do not want to inline the wrapper before specialisation.
         module Foo where
           f :: Num a => a -> Int -> a
           f n 0 = n              -- Strict in the Int, hence wrapper
           f n x = f (n+n) (x-1)

           g :: Int -> Int
           g x = f x x            -- Provokes a specialisation for f

         module Bar where
           import Foo

           h :: Int -> Int
           h x = f 3 x

   In module Bar we want to give specialisations a chance to fire
   before inlining f's wrapper.

Reminder: Note [Don't w/w INLINE things], so we don't need to worry
          about INLINE things here.

Conclusion:
  - If the user said NOINLINE[n], respect that
  - If the user said NOINLINE, inline the wrapper as late as
    poss (phase 0). This is a compromise driven by (2) above
  - Otherwise inline wrapper in phase 2.  That allows the
    'gentle' simplification pass to apply specialisation rules

Historical note: At one stage I tried making the wrapper inlining
always-active, and that had a very bad effect on nofib/imaginary/x2n1;
a wrapper was inlined before the specialisation fired.

Note [Wrapper NoUserInline]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The use an inl_inline of NoUserInline on the wrapper distinguishes
this pragma from one that was given by the user. In particular, CSE
will not happen if there is a user-specified pragma, but should happen
for w/w’ed things (#14186).
-}

tryWW   :: DynFlags
        -> FamInstEnvs
        -> RecFlag
        -> Id                           -- The fn binder
        -> CoreExpr                     -- The bound rhs; its innards
                                        --   are already ww'd
        -> UniqSM [(Id, CoreExpr)]      -- either *one* or *two* pairs;
                                        -- if one, then no worker (only
                                        -- the orig "wrapper" lives on);
                                        -- if two, then a worker and a
                                        -- wrapper.
tryWW :: DynFlags
-> FamInstEnvs
-> RecFlag
-> CoreBndr
-> Expr CoreBndr
-> UniqSM [(CoreBndr, Expr CoreBndr)]
tryWW DynFlags
dflags FamInstEnvs
fam_envs RecFlag
is_rec CoreBndr
fn_id Expr CoreBndr
rhs
  -- See Note [Worker-wrapper for NOINLINE functions]

  | Just Unfolding
stable_unf <- DynFlags -> IdInfo -> Maybe Unfolding
certainlyWillInline DynFlags
dflags IdInfo
fn_info
  = [(CoreBndr, Expr CoreBndr)] -> UniqSM [(CoreBndr, Expr CoreBndr)]
forall (m :: * -> *) a. Monad m => a -> m a
return [ (CoreBndr
fn_id CoreBndr -> Unfolding -> CoreBndr
`setIdUnfolding` Unfolding
stable_unf, Expr CoreBndr
rhs) ]
        -- See Note [Don't w/w INLINE things]
        -- See Note [Don't w/w inline small non-loop-breaker things]

  | Bool
is_fun Bool -> Bool -> Bool
&& Bool
is_eta_exp
  = DynFlags
-> FamInstEnvs
-> CoreBndr
-> IdInfo
-> [Demand]
-> DmdResult
-> Expr CoreBndr
-> UniqSM [(CoreBndr, Expr CoreBndr)]
splitFun DynFlags
dflags FamInstEnvs
fam_envs CoreBndr
new_fn_id IdInfo
fn_info [Demand]
wrap_dmds DmdResult
res_info Expr CoreBndr
rhs

  | Bool
is_thunk                                   -- See Note [Thunk splitting]
  = DynFlags
-> FamInstEnvs
-> RecFlag
-> CoreBndr
-> Expr CoreBndr
-> UniqSM [(CoreBndr, Expr CoreBndr)]
splitThunk DynFlags
dflags FamInstEnvs
fam_envs RecFlag
is_rec CoreBndr
new_fn_id Expr CoreBndr
rhs

  | Bool
otherwise
  = [(CoreBndr, Expr CoreBndr)] -> UniqSM [(CoreBndr, Expr CoreBndr)]
forall (m :: * -> *) a. Monad m => a -> m a
return [ (CoreBndr
new_fn_id, Expr CoreBndr
rhs) ]

  where
    fn_info :: IdInfo
fn_info      = HasDebugCallStack => CoreBndr -> IdInfo
CoreBndr -> IdInfo
idInfo CoreBndr
fn_id
    ([Demand]
wrap_dmds, DmdResult
res_info) = StrictSig -> ([Demand], DmdResult)
splitStrictSig (IdInfo -> StrictSig
strictnessInfo IdInfo
fn_info)

    new_fn_id :: CoreBndr
new_fn_id = CoreBndr -> CoreBndr
zapIdUsedOnceInfo (CoreBndr -> CoreBndr
zapIdUsageEnvInfo CoreBndr
fn_id)
        -- See Note [Zapping DmdEnv after Demand Analyzer] and
        -- See Note [Zapping Used Once info in WorkWrap]

    is_fun :: Bool
is_fun     = [Demand] -> Bool
forall a. [a] -> Bool
notNull [Demand]
wrap_dmds Bool -> Bool -> Bool
|| CoreBndr -> Bool
isJoinId CoreBndr
fn_id
    -- See Note [Don't eta expand in w/w]
    is_eta_exp :: Bool
is_eta_exp = [Demand] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Demand]
wrap_dmds Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Expr CoreBndr -> Int
manifestArity Expr CoreBndr
rhs
    is_thunk :: Bool
is_thunk   = Bool -> Bool
not Bool
is_fun Bool -> Bool -> Bool
&& Bool -> Bool
not (Expr CoreBndr -> Bool
exprIsHNF Expr CoreBndr
rhs) Bool -> Bool -> Bool
&& Bool -> Bool
not (CoreBndr -> Bool
isJoinId CoreBndr
fn_id)
                            Bool -> Bool -> Bool
&& Bool -> Bool
not (HasDebugCallStack => Type -> Bool
Type -> Bool
isUnliftedType (CoreBndr -> Type
idType CoreBndr
fn_id))

{-
Note [Zapping DmdEnv after Demand Analyzer]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the worker-wrapper pass we zap the DmdEnv.  Why?
 (a) it is never used again
 (b) it wastes space
 (c) it becomes incorrect as things are cloned, because
     we don't push the substitution into it

Why here?
 * Because we don’t want to do it in the Demand Analyzer, as we never know
   there when we are doing the last pass.
 * We want them to be still there at the end of DmdAnal, so that
   -ddump-str-anal contains them.
 * We don’t want a second pass just for that.
 * WorkWrap looks at all bindings anyway.

We also need to do it in TidyCore.tidyLetBndr to clean up after the
final, worker/wrapper-less run of the demand analyser (see
Note [Final Demand Analyser run] in DmdAnal).

Note [Zapping Used Once info in WorkWrap]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the worker-wrapper pass we zap the used once info in demands and in
strictness signatures.

Why?
 * The simplifier may happen to transform code in a way that invalidates the
   data (see #11731 for an example).
 * It is not used in later passes, up to code generation.

So as the data is useless and possibly wrong, we want to remove it. The most
convenient place to do that is the worker wrapper phase, as it runs after every
run of the demand analyser besides the very last one (which is the one where we
want to _keep_ the info for the code generator).

We do not do it in the demand analyser for the same reasons outlined in
Note [Zapping DmdEnv after Demand Analyzer] above.

Note [Don't eta expand in w/w]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A binding where the manifestArity of the RHS is less than idArity of the binder
means CoreArity didn't eta expand that binding. When this happens, it does so
for a reason (see Note [exprArity invariant] in CoreArity) and we probably have
a PAP, cast or trivial expression as RHS.

Performing the worker/wrapper split will implicitly eta-expand the binding to
idArity, overriding CoreArity's decision. Other than playing fast and loose with
divergence, it's also broken for newtypes:

  f = (\xy.blah) |> co
    where
      co :: (Int -> Int -> Char) ~ T

Then idArity is 2 (despite the type T), and it can have a StrictSig based on a
threshold of 2. But we can't w/w it without a type error.

The situation is less grave for PAPs, but the implicit eta expansion caused a
compiler allocation regression in T15164, where huge recursive instance method
groups, mostly consisting of PAPs, got w/w'd. This caused great churn in the
simplifier, when simply waiting for the PAPs to inline arrived at the same
output program.

Note there is the worry here that such PAPs and trivial RHSs might not *always*
be inlined. That would lead to reboxing, because the analysis tacitly assumes
that we W/W'd for idArity and will propagate analysis information under that
assumption. So far, this doesn't seem to matter in practice.
See https://gitlab.haskell.org/ghc/ghc/merge_requests/312#note_192064.
-}


---------------------
splitFun :: DynFlags -> FamInstEnvs -> Id -> IdInfo -> [Demand] -> DmdResult -> CoreExpr
         -> UniqSM [(Id, CoreExpr)]
splitFun :: DynFlags
-> FamInstEnvs
-> CoreBndr
-> IdInfo
-> [Demand]
-> DmdResult
-> Expr CoreBndr
-> UniqSM [(CoreBndr, Expr CoreBndr)]
splitFun DynFlags
dflags FamInstEnvs
fam_envs CoreBndr
fn_id IdInfo
fn_info [Demand]
wrap_dmds DmdResult
res_info Expr CoreBndr
rhs
  = WARN( not (wrap_dmds `lengthIs` arity), ppr fn_id <+> (ppr arity $$ ppr wrap_dmds $$ ppr res_info) ) do
    -- The arity should match the signature
    stuff <- mkWwBodies dflags fam_envs rhs_fvs fn_id wrap_dmds use_res_info
    case stuff of
      Just (work_demands, join_arity, wrap_fn, work_fn) -> do
        work_uniq <- getUniqueM
        let work_rhs = work_fn rhs
            work_act = case fn_inline_spec of  -- See Note [Worker activation]
                          NoInline -> fn_act
                          _        -> wrap_act

            work_prag = InlinePragma { inl_src = SourceText "{-# INLINE"
                                     , inl_inline = fn_inline_spec
                                     , inl_sat    = Nothing
                                     , inl_act    = work_act
                                     , inl_rule   = FunLike }
              -- inl_inline: copy from fn_id; see Note [Worker-wrapper for INLINABLE functions]
              -- inl_act:    see Note [Worker activation]
              -- inl_rule:   it does not make sense for workers to be constructorlike.

            work_join_arity | isJoinId fn_id = Just join_arity
                            | otherwise      = Nothing
              -- worker is join point iff wrapper is join point
              -- (see Note [Don't CPR join points])

            work_id  = mkWorkerId work_uniq fn_id (exprType work_rhs)
                        `setIdOccInfo` occInfo fn_info
                                -- Copy over occurrence info from parent
                                -- Notably whether it's a loop breaker
                                -- Doesn't matter much, since we will simplify next, but
                                -- seems right-er to do so

                        `setInlinePragma` work_prag

                        `setIdUnfolding` mkWorkerUnfolding dflags work_fn fn_unfolding
                                -- See Note [Worker-wrapper for INLINABLE functions]

                        `setIdStrictness` mkClosedStrictSig work_demands work_res_info
                                -- Even though we may not be at top level,
                                -- it's ok to give it an empty DmdEnv

                        `setIdDemandInfo` worker_demand

                        `setIdArity` work_arity
                                -- Set the arity so that the Core Lint check that the
                                -- arity is consistent with the demand type goes
                                -- through
                        `asJoinId_maybe` work_join_arity

            work_arity = length work_demands

            -- See Note [Demand on the Worker]
            single_call = saturatedByOneShots arity (demandInfo fn_info)
            worker_demand | single_call = mkWorkerDemand work_arity
                          | otherwise   = topDmd

            wrap_rhs  = wrap_fn work_id
            wrap_act  = case fn_act of  -- See Note [Wrapper activation]
                           ActiveAfter {} -> fn_act
                           NeverActive    -> activeDuringFinal
                           _              -> activeAfterInitial
            wrap_prag = InlinePragma { inl_src    = SourceText "{-# INLINE"
                                     , inl_inline = NoUserInline
                                     , inl_sat    = Nothing
                                     , inl_act    = wrap_act
                                     , inl_rule   = rule_match_info }
                -- inl_act:    see Note [Wrapper activation]
                -- inl_inline: see Note [Wrapper NoUserInline]
                -- inl_rule:   RuleMatchInfo is (and must be) unaffected

            wrap_id   = fn_id `setIdUnfolding`  mkWwInlineRule dflags wrap_rhs arity
                              `setInlinePragma` wrap_prag
                              `setIdOccInfo`    noOccInfo
                                -- Zap any loop-breaker-ness, to avoid bleating from Lint
                                -- about a loop breaker with an INLINE rule



        return $ [(work_id, work_rhs), (wrap_id, wrap_rhs)]
            -- Worker first, because wrapper mentions it

      Nothing -> return [(fn_id, rhs)]
  where
    rhs_fvs :: VarSet
rhs_fvs         = Expr CoreBndr -> VarSet
exprFreeVars Expr CoreBndr
rhs
    fn_inl_prag :: InlinePragma
fn_inl_prag     = IdInfo -> InlinePragma
inlinePragInfo IdInfo
fn_info
    fn_inline_spec :: InlineSpec
fn_inline_spec  = InlinePragma -> InlineSpec
inl_inline InlinePragma
fn_inl_prag
    fn_act :: Activation
fn_act          = InlinePragma -> Activation
inl_act InlinePragma
fn_inl_prag
    rule_match_info :: RuleMatchInfo
rule_match_info = InlinePragma -> RuleMatchInfo
inlinePragmaRuleMatchInfo InlinePragma
fn_inl_prag
    fn_unfolding :: Unfolding
fn_unfolding    = IdInfo -> Unfolding
unfoldingInfo IdInfo
fn_info
    arity :: Int
arity           = IdInfo -> Int
arityInfo IdInfo
fn_info
                    -- The arity is set by the simplifier using exprEtaExpandArity
                    -- So it may be more than the number of top-level-visible lambdas

    use_res_info :: DmdResult
use_res_info  | CoreBndr -> Bool
isJoinId CoreBndr
fn_id = DmdResult
topRes -- Note [Don't CPR join points]
                  | Bool
otherwise      = DmdResult
res_info
    work_res_info :: DmdResult
work_res_info | CoreBndr -> Bool
isJoinId CoreBndr
fn_id = DmdResult
res_info -- Worker remains CPR-able
                  | Bool
otherwise
                  = case DmdResult -> Maybe Int
returnsCPR_maybe DmdResult
res_info of
                       Just Int
_  -> DmdResult
topRes    -- Cpr stuff done by wrapper; kill it here
                       Maybe Int
Nothing -> DmdResult
res_info  -- Preserve exception/divergence


{-
Note [Demand on the worker]
~~~~~~~~~~~~~~~~~~~~~~~~~~~

If the original function is called once, according to its demand info, then
so is the worker. This is important so that the occurrence analyser can
attach OneShot annotations to the worker’s lambda binders.


Example:

  -- Original function
  f [Demand=<L,1*C1(U)>] :: (a,a) -> a
  f = \p -> ...

  -- Wrapper
  f [Demand=<L,1*C1(U)>] :: a -> a -> a
  f = \p -> case p of (a,b) -> $wf a b

  -- Worker
  $wf [Demand=<L,1*C1(C1(U))>] :: Int -> Int
  $wf = \a b -> ...

We need to check whether the original function is called once, with
sufficiently many arguments. This is done using saturatedByOneShots, which
takes the arity of the original function (resp. the wrapper) and the demand on
the original function.

The demand on the worker is then calculated using mkWorkerDemand, and always of
the form [Demand=<L,1*(C1(...(C1(U))))>]


Note [Do not split void functions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider this rather common form of binding:
        $j = \x:Void# -> ...no use of x...

Since x is not used it'll be marked as absent.  But there is no point
in w/w-ing because we'll simply add (\y:Void#), see WwLib.mkWorerArgs.

If x has a more interesting type (eg Int, or Int#), there *is* a point
in w/w so that we don't pass the argument at all.

Note [Thunk splitting]
~~~~~~~~~~~~~~~~~~~~~~
Suppose x is used strictly (never mind whether it has the CPR
property).

      let
        x* = x-rhs
      in body

splitThunk transforms like this:

      let
        x* = case x-rhs of { I# a -> I# a }
      in body

Now simplifier will transform to

      case x-rhs of
        I# a -> let x* = I# a
                in body

which is what we want. Now suppose x-rhs is itself a case:

        x-rhs = case e of { T -> I# a; F -> I# b }

The join point will abstract over a, rather than over (which is
what would have happened before) which is fine.

Notice that x certainly has the CPR property now!

In fact, splitThunk uses the function argument w/w splitting
function, so that if x's demand is deeper (say U(U(L,L),L))
then the splitting will go deeper too.
-}

-- See Note [Thunk splitting]
-- splitThunk converts the *non-recursive* binding
--      x = e
-- into
--      x = let x = e
--          in case x of
--               I# y -> let x = I# y in x }
-- See comments above. Is it not beautifully short?
-- Moreover, it works just as well when there are
-- several binders, and if the binders are lifted
-- E.g.     x = e
--     -->  x = let x = e in
--              case x of (a,b) -> let x = (a,b)  in x

splitThunk :: DynFlags -> FamInstEnvs -> RecFlag -> Var -> Expr Var -> UniqSM [(Var, Expr Var)]
splitThunk :: DynFlags
-> FamInstEnvs
-> RecFlag
-> CoreBndr
-> Expr CoreBndr
-> UniqSM [(CoreBndr, Expr CoreBndr)]
splitThunk DynFlags
dflags FamInstEnvs
fam_envs RecFlag
is_rec CoreBndr
fn_id Expr CoreBndr
rhs
  = ASSERT(not (isJoinId fn_id))
    do { (Bool
useful,[CoreBndr]
_, Expr CoreBndr -> Expr CoreBndr
wrap_fn, Expr CoreBndr -> Expr CoreBndr
work_fn) <- DynFlags
-> FamInstEnvs
-> Bool
-> [CoreBndr]
-> UniqSM
     (Bool, [CoreBndr], Expr CoreBndr -> Expr CoreBndr,
      Expr CoreBndr -> Expr CoreBndr)
mkWWstr DynFlags
dflags FamInstEnvs
fam_envs Bool
False [CoreBndr
fn_id]
       ; let res :: [(CoreBndr, Expr CoreBndr)]
res = [ (CoreBndr
fn_id, CoreBind -> Expr CoreBndr -> Expr CoreBndr
forall b. Bind b -> Expr b -> Expr b
Let (CoreBndr -> Expr CoreBndr -> CoreBind
forall b. b -> Expr b -> Bind b
NonRec CoreBndr
fn_id Expr CoreBndr
rhs) (Expr CoreBndr -> Expr CoreBndr
wrap_fn (Expr CoreBndr -> Expr CoreBndr
work_fn (CoreBndr -> Expr CoreBndr
forall b. CoreBndr -> Expr b
Var CoreBndr
fn_id)))) ]
       ; if Bool
useful then ASSERT2( isNonRec is_rec, ppr fn_id ) -- The thunk must be non-recursive
                   [(CoreBndr, Expr CoreBndr)] -> UniqSM [(CoreBndr, Expr CoreBndr)]
forall (m :: * -> *) a. Monad m => a -> m a
return [(CoreBndr, Expr CoreBndr)]
res
                   else [(CoreBndr, Expr CoreBndr)] -> UniqSM [(CoreBndr, Expr CoreBndr)]
forall (m :: * -> *) a. Monad m => a -> m a
return [(CoreBndr
fn_id, Expr CoreBndr
rhs)] }