ghc-8.4.4: The GHC API

Safe HaskellNone
LanguageHaskell2010

BooleanFormula

Description

Boolean formulas without quantifiers and without negation. Such a formula consists of variables, conjunctions (and), and disjunctions (or).

This module is used to represent minimal complete definitions for classes.

Documentation

data BooleanFormula a Source #

Instances
Functor BooleanFormula Source # 
Instance details

Defined in BooleanFormula

Methods

fmap :: (a -> b) -> BooleanFormula a -> BooleanFormula b #

(<$) :: a -> BooleanFormula b -> BooleanFormula a #

Foldable BooleanFormula Source # 
Instance details

Defined in BooleanFormula

Methods

fold :: Monoid m => BooleanFormula m -> m #

foldMap :: Monoid m => (a -> m) -> BooleanFormula a -> m #

foldr :: (a -> b -> b) -> b -> BooleanFormula a -> b #

foldr' :: (a -> b -> b) -> b -> BooleanFormula a -> b #

foldl :: (b -> a -> b) -> b -> BooleanFormula a -> b #

foldl' :: (b -> a -> b) -> b -> BooleanFormula a -> b #

foldr1 :: (a -> a -> a) -> BooleanFormula a -> a #

foldl1 :: (a -> a -> a) -> BooleanFormula a -> a #

toList :: BooleanFormula a -> [a] #

null :: BooleanFormula a -> Bool #

length :: BooleanFormula a -> Int #

elem :: Eq a => a -> BooleanFormula a -> Bool #

maximum :: Ord a => BooleanFormula a -> a #

minimum :: Ord a => BooleanFormula a -> a #

sum :: Num a => BooleanFormula a -> a #

product :: Num a => BooleanFormula a -> a #

Traversable BooleanFormula Source # 
Instance details

Defined in BooleanFormula

Methods

traverse :: Applicative f => (a -> f b) -> BooleanFormula a -> f (BooleanFormula b) #

sequenceA :: Applicative f => BooleanFormula (f a) -> f (BooleanFormula a) #

mapM :: Monad m => (a -> m b) -> BooleanFormula a -> m (BooleanFormula b) #

sequence :: Monad m => BooleanFormula (m a) -> m (BooleanFormula a) #

Eq a => Eq (BooleanFormula a) Source # 
Instance details

Defined in BooleanFormula

Data a => Data (BooleanFormula a) Source # 
Instance details

Defined in BooleanFormula

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BooleanFormula a -> c (BooleanFormula a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (BooleanFormula a) #

toConstr :: BooleanFormula a -> Constr #

dataTypeOf :: BooleanFormula a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (BooleanFormula a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (BooleanFormula a)) #

gmapT :: (forall b. Data b => b -> b) -> BooleanFormula a -> BooleanFormula a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r #

gmapQ :: (forall d. Data d => d -> u) -> BooleanFormula a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> BooleanFormula a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) #

OutputableBndr a => Outputable (BooleanFormula a) Source # 
Instance details

Defined in BooleanFormula

Binary a => Binary (BooleanFormula a) Source # 
Instance details

Defined in BooleanFormula

eval :: (a -> Bool) -> BooleanFormula a -> Bool Source #