ghc-8.4.4: The GHC API

Safe HaskellNone
LanguageHaskell2010

Type

Contents

Description

Main functions for manipulating types and type-related things

Synopsis

Main data types representing Types

Types are one of:

Unboxed
Iff its representation is other than a pointer Unboxed types are also unlifted.
Lifted
Iff it has bottom as an element. Closures always have lifted types: i.e. any let-bound identifier in Core must have a lifted type. Operationally, a lifted object is one that can be entered. Only lifted types may be unified with a type variable.
Algebraic
Iff it is a type with one or more constructors, whether declared with data or newtype. An algebraic type is one that can be deconstructed with a case expression. This is not the same as lifted types, because we also include unboxed tuples in this classification.
Data
Iff it is a type declared with data, or a boxed tuple.
Primitive
Iff it is a built-in type that can't be expressed in Haskell.

Currently, all primitive types are unlifted, but that's not necessarily the case: for example, Int could be primitive.

Some primitive types are unboxed, such as Int#, whereas some are boxed but unlifted (such as ByteArray#). The only primitive types that we classify as algebraic are the unboxed tuples.

Some examples of type classifications that may make this a bit clearer are:

Type          primitive       boxed           lifted          algebraic
-----------------------------------------------------------------------------
Int#          Yes             No              No              No
ByteArray#    Yes             Yes             No              No
(# a, b #)  Yes             No              No              Yes
(# a | b #) Yes             No              No              Yes
(  a, b  )    No              Yes             Yes             Yes
[a]           No              Yes             Yes             Yes

A source type is a type that is a separate type as far as the type checker is concerned, but which has a more low-level representation as far as Core-to-Core passes and the rest of the back end is concerned.

You don't normally have to worry about this, as the utility functions in this module will automatically convert a source into a representation type if they are spotted, to the best of it's abilities. If you don't want this to happen, use the equivalent functions from the TcType module.

data TyThing Source #

A global typecheckable-thing, essentially anything that has a name. Not to be confused with a TcTyThing, which is also a typecheckable thing but in the *local* context. See TcEnv for how to retrieve a TyThing given a Name.

Instances
Outputable TyThing Source # 
Instance details

Defined in TyCoRep

NamedThing TyThing Source # 
Instance details

Defined in TyCoRep

data Type Source #

Instances
Data Type Source # 
Instance details

Defined in TyCoRep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Type -> c Type #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Type #

toConstr :: Type -> Constr #

dataTypeOf :: Type -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Type) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Type) #

gmapT :: (forall b. Data b => b -> b) -> Type -> Type #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Type -> r #

gmapQ :: (forall d. Data d => d -> u) -> Type -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Type -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Type -> m Type #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Type -> m Type #

Outputable Type Source # 
Instance details

Defined in TyCoRep

data ArgFlag Source #

Argument Flag

Is something required to appear in source Haskell (Required), permitted by request (Specified) (visible type application), or prohibited entirely from appearing in source Haskell (Inferred)? See Note [TyVarBndrs, TyVarBinders, TyConBinders, and visibility] in TyCoRep

Constructors

Required 
Specified 
Inferred 
Instances
Eq ArgFlag Source # 
Instance details

Defined in Var

Methods

(==) :: ArgFlag -> ArgFlag -> Bool #

(/=) :: ArgFlag -> ArgFlag -> Bool #

Data ArgFlag Source # 
Instance details

Defined in Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ArgFlag -> c ArgFlag #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ArgFlag #

toConstr :: ArgFlag -> Constr #

dataTypeOf :: ArgFlag -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ArgFlag) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ArgFlag) #

gmapT :: (forall b. Data b => b -> b) -> ArgFlag -> ArgFlag #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ArgFlag -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ArgFlag -> r #

gmapQ :: (forall d. Data d => d -> u) -> ArgFlag -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> ArgFlag -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ArgFlag -> m ArgFlag #

Outputable ArgFlag Source # 
Instance details

Defined in Var

Binary ArgFlag Source # 
Instance details

Defined in Var

Outputable tv => Outputable (TyVarBndr tv ArgFlag) Source # 
Instance details

Defined in Var

type KindOrType = Type Source #

The key representation of types within the compiler

type PredType = Type Source #

A type of the form p of kind Constraint represents a value whose type is the Haskell predicate p, where a predicate is what occurs before the => in a Haskell type.

We use PredType as documentation to mark those types that we guarantee to have this kind.

It can be expanded into its representation, but:

  • The type checker must treat it as opaque
  • The rest of the compiler treats it as transparent

Consider these examples:

f :: (Eq a) => a -> Int
g :: (?x :: Int -> Int) => a -> Int
h :: (r\l) => {r} => {l::Int | r}

Here the Eq a and ?x :: Int -> Int and rl are all called "predicates"

type ThetaType = [PredType] Source #

A collection of PredTypes

data Var Source #

Variable

Essentially a typed Name, that may also contain some additional information about the Var and it's use sites.

Instances
Eq Var Source # 
Instance details

Defined in Var

Methods

(==) :: Var -> Var -> Bool #

(/=) :: Var -> Var -> Bool #

Data Var Source # 
Instance details

Defined in Var

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Var -> c Var #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Var #

toConstr :: Var -> Constr #

dataTypeOf :: Var -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Var) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Var) #

gmapT :: (forall b. Data b => b -> b) -> Var -> Var #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Var -> r #

gmapQ :: (forall d. Data d => d -> u) -> Var -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Var -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Var -> m Var #

Ord Var Source # 
Instance details

Defined in Var

Methods

compare :: Var -> Var -> Ordering #

(<) :: Var -> Var -> Bool #

(<=) :: Var -> Var -> Bool #

(>) :: Var -> Var -> Bool #

(>=) :: Var -> Var -> Bool #

max :: Var -> Var -> Var #

min :: Var -> Var -> Var #

OutputableBndr Var Source # 
Instance details

Defined in PprCore

Outputable Var Source # 
Instance details

Defined in Var

Methods

ppr :: Var -> SDoc Source #

pprPrec :: Rational -> Var -> SDoc Source #

Uniquable Var Source # 
Instance details

Defined in Var

Methods

getUnique :: Var -> Unique Source #

HasOccName Var Source # 
Instance details

Defined in Var

Methods

occName :: Var -> OccName Source #

NamedThing Var Source # 
Instance details

Defined in Var

type TyVar = Var Source #

Type or kind Variable

type TyCoVar = Id Source #

Type or Coercion Variable

data TyBinder Source #

A TyBinder represents an argument to a function. TyBinders can be dependent (Named) or nondependent (Anon). They may also be visible or not. See Note [TyBinders]

Instances
Data TyBinder Source # 
Instance details

Defined in TyCoRep

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyBinder -> c TyBinder #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyBinder #

toConstr :: TyBinder -> Constr #

dataTypeOf :: TyBinder -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyBinder) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyBinder) #

gmapT :: (forall b. Data b => b -> b) -> TyBinder -> TyBinder #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyBinder -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyBinder -> r #

gmapQ :: (forall d. Data d => d -> u) -> TyBinder -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> TyBinder -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyBinder -> m TyBinder #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyBinder -> m TyBinder #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyBinder -> m TyBinder #

Outputable TyBinder Source # 
Instance details

Defined in TyCoRep

type TyVarBinder = TyVarBndr TyVar ArgFlag Source #

Type Variable Binder

A TyVarBinder is the binder of a ForAllTy It's convenient to define this synonym here rather its natural home in TyCoRep, because it's used in DataCon.hs-boot

Constructing and deconstructing types

getTyVar :: String -> Type -> TyVar Source #

Attempts to obtain the type variable underlying a Type, and panics with the given message if this is not a type variable type. See also getTyVar_maybe

getTyVar_maybe :: Type -> Maybe TyVar Source #

Attempts to obtain the type variable underlying a Type

repGetTyVar_maybe :: Type -> Maybe TyVar Source #

Attempts to obtain the type variable underlying a Type, without any expansion

getCastedTyVar_maybe :: Type -> Maybe (TyVar, CoercionN) Source #

If the type is a tyvar, possibly under a cast, returns it, along with the coercion. Thus, the co is :: kind tv ~N kind type

mkAppTy :: Type -> Type -> Type Source #

Applies a type to another, as in e.g. k a

splitAppTy :: Type -> (Type, Type) Source #

Attempts to take a type application apart, as in splitAppTy_maybe, and panics if this is not possible

splitAppTys :: Type -> (Type, [Type]) Source #

Recursively splits a type as far as is possible, leaving a residual type being applied to and the type arguments applied to it. Never fails, even if that means returning an empty list of type applications.

repSplitAppTys :: HasDebugCallStack => Type -> (Type, [Type]) Source #

Like splitAppTys, but doesn't look through type synonyms

splitAppTy_maybe :: Type -> Maybe (Type, Type) Source #

Attempt to take a type application apart, whether it is a function, type constructor, or plain type application. Note that type family applications are NEVER unsaturated by this!

repSplitAppTy_maybe :: HasDebugCallStack => Type -> Maybe (Type, Type) Source #

Does the AppTy split as in splitAppTy_maybe, but assumes that any Core view stuff is already done

tcRepSplitAppTy_maybe :: Type -> Maybe (Type, Type) Source #

Does the AppTy split as in tcSplitAppTy_maybe, but assumes that any coreView stuff is already done. Refuses to look through (c => t)

mkFunTy :: Type -> Type -> Type infixr 3 Source #

Make an arrow type

mkFunTys :: [Type] -> Type -> Type Source #

Make nested arrow types

splitFunTy :: Type -> (Type, Type) Source #

Attempts to extract the argument and result types from a type, and panics if that is not possible. See also splitFunTy_maybe

splitFunTy_maybe :: Type -> Maybe (Type, Type) Source #

Attempts to extract the argument and result types from a type

funResultTy :: Type -> Type Source #

Extract the function result type and panic if that is not possible

funArgTy :: Type -> Type Source #

Extract the function argument type and panic if that is not possible

mkTyConApp :: TyCon -> [Type] -> Type Source #

A key function: builds a TyConApp or FunTy as appropriate to its arguments. Applies its arguments to the constructor from left to right.

mkTyConTy :: TyCon -> Type Source #

Create the plain type constructor type which has been applied to no type arguments at all.

tyConAppTyCon_maybe :: Type -> Maybe TyCon Source #

The same as fst . splitTyConApp

tyConAppTyConPicky_maybe :: Type -> Maybe TyCon Source #

Retrieve the tycon heading this type, if there is one. Does not look through synonyms.

tyConAppArgs_maybe :: Type -> Maybe [Type] Source #

The same as snd . splitTyConApp

splitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) Source #

Attempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor

splitTyConApp :: Type -> (TyCon, [Type]) Source #

Attempts to tease a type apart into a type constructor and the application of a number of arguments to that constructor. Panics if that is not possible. See also splitTyConApp_maybe

nextRole :: Type -> Role Source #

What is the role assigned to the next parameter of this type? Usually, this will be Nominal, but if the type is a TyConApp, we may be able to do better. The type does *not* have to be well-kinded when applied for this to work!

tcRepSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type]) Source #

Like tcSplitTyConApp_maybe but doesn't look through type synonyms.

tcSplitTyConApp_maybe :: HasCallStack => Type -> Maybe (TyCon, [Type]) Source #

Split a type constructor application into its type constructor and applied types. Note that this may fail in the case of a FunTy with an argument of unknown kind FunTy (e.g. FunTy (a :: k) Int. since the kind of a isn't of the form TYPE rep). Consequently, you may need to zonk your type before using this function.

If you only need the TyCon, consider using tcTyConAppTyCon_maybe.

splitListTyConApp_maybe :: Type -> Maybe Type Source #

Attempts to tease a list type apart and gives the type of the elements if successful (looks through type synonyms)

repSplitTyConApp_maybe :: HasDebugCallStack => Type -> Maybe (TyCon, [Type]) Source #

Like splitTyConApp_maybe, but doesn't look through synonyms. This assumes the synonyms have already been dealt with.

mkForAllTys :: [TyVarBinder] -> Type -> Type Source #

Wraps foralls over the type using the provided TyVars from left to right

mkInvForAllTys :: [TyVar] -> Type -> Type Source #

Like mkForAllTys, but assumes all variables are dependent and Inferred, a common case

mkSpecForAllTys :: [TyVar] -> Type -> Type Source #

Like mkForAllTys, but assumes all variables are dependent and specified, a common case

mkVisForAllTys :: [TyVar] -> Type -> Type Source #

Like mkForAllTys, but assumes all variables are dependent and visible

mkInvForAllTy :: TyVar -> Type -> Type Source #

Make a dependent forall over an Inferred (as opposed to Specified) variable

splitForAllTys :: Type -> ([TyVar], Type) Source #

Take a ForAllTy apart, returning the list of tyvars and the result type. This always succeeds, even if it returns only an empty list. Note that the result type returned may have free variables that were bound by a forall.

splitForAllTyVarBndrs :: Type -> ([TyVarBinder], Type) Source #

Like splitPiTys but split off only named binders.

splitForAllTy_maybe :: Type -> Maybe (TyVar, Type) Source #

Attempts to take a forall type apart, but only if it's a proper forall, with a named binder

splitForAllTy :: Type -> (TyVar, Type) Source #

Take a forall type apart, or panics if that is not possible.

splitPiTy_maybe :: Type -> Maybe (TyBinder, Type) Source #

Attempts to take a forall type apart; works with proper foralls and functions

splitPiTy :: Type -> (TyBinder, Type) Source #

Takes a forall type apart, or panics

splitPiTys :: Type -> ([TyBinder], Type) Source #

Split off all TyBinders to a type, splitting both proper foralls and functions

mkTyConBindersPreferAnon :: [TyVar] -> Type -> [TyConBinder] Source #

Given a list of type-level vars and a result kind, makes TyBinders, preferring anonymous binders if the variable is, in fact, not dependent. e.g. mkTyConBindersPreferAnon (k:*),(b:k),(c:k) We want (k:*) Named, (a;k) Anon, (c:k) Anon

All binders are visible.

mkLamType :: Var -> Type -> Type Source #

Makes a (->) type or an implicit forall type, depending on whether it is given a type variable or a term variable. This is used, for example, when producing the type of a lambda. Always uses Inferred binders.

mkLamTypes :: [Var] -> Type -> Type Source #

mkLamType for multiple type or value arguments

piResultTys :: HasDebugCallStack => Type -> [Type] -> Type Source #

(piResultTys f_ty [ty1, .., tyn]) gives the type of (f ty1 .. tyn) where f :: f_ty piResultTys is interesting because: 1. f_ty may have more for-alls than there are args 2. Less obviously, it may have fewer for-alls For case 2. think of: piResultTys (forall a.a) [forall b.b, Int] This really can happen, but only (I think) in situations involving undefined. For example: undefined :: forall a. a Term: undefined (forall b. b->b) Int This term should have type (Int -> Int), but notice that there are more type args than foralls in undefineds type.

applyTysX :: [TyVar] -> Type -> [Type] -> Type Source #

dropForAlls :: Type -> Type Source #

Drops all ForAllTys

isNumLitTy :: Type -> Maybe Integer Source #

Is this a numeric literal. We also look through type synonyms.

isStrLitTy :: Type -> Maybe FastString Source #

Is this a symbol literal. We also look through type synonyms.

getRuntimeRep_maybe :: HasDebugCallStack => Type -> Maybe Type Source #

Extract the RuntimeRep classifier of a type. For instance, getRuntimeRep_maybe Int = LiftedRep. Returns Nothing if this is not possible.

getRuntimeRepFromKind_maybe :: HasDebugCallStack => Type -> Maybe Type Source #

Extract the RuntimeRep classifier of a type from its kind. For example, getRuntimeRepFromKind * = LiftedRep; Returns Nothing if this is not possible.

mkCastTy :: Type -> Coercion -> Type Source #

Make a CastTy. The Coercion must be nominal. Checks the Coercion for reflexivity, dropping it if it's reflexive. See Note [No reflexive casts in types]

userTypeError_maybe :: Type -> Maybe Type Source #

Is this type a custom user error? If so, give us the kind and the error message.

pprUserTypeErrorTy :: Type -> SDoc Source #

Render a type corresponding to a user type error into a SDoc.

coAxNthLHS :: CoAxiom br -> Int -> Type Source #

Get the type on the LHS of a coercion induced by a type/data family instance.

splitCoercionType_maybe :: Type -> Maybe (Type, Type) Source #

Try to split up a coercion type into the types that it coerces

filterOutInvisibleTypes :: TyCon -> [Type] -> [Type] Source #

Given a tycon and its arguments, filters out any invisible arguments

partitionInvisibles :: TyCon -> (a -> Type) -> [a] -> ([a], [a]) Source #

Given a tycon and a list of things (which correspond to arguments), partitions the things into Inferred or Specified ones and Required ones The callback function is necessary for this scenario:

T :: forall k. k -> k
partitionInvisibles T [forall m. m -> m -> m, S, R, Q]

After substituting, we get

T (forall m. m -> m -> m) :: (forall m. m -> m -> m) -> forall n. n -> n -> n

Thus, the first argument is invisible, S is visible, R is invisible again, and Q is visible.

If you're absolutely sure that your tycon's kind doesn't end in a variable, it's OK if the callback function panics, as that's the only time it's consulted.

synTyConResKind :: TyCon -> Kind Source #

Find the result Kind of a type synonym, after applying it to its arity number of type variables Actually this function works fine on data types too, but they'd always return *, so we never need to ask

data TyCoMapper env m Source #

This describes how a "map" operation over a type/coercion should behave

Constructors

TyCoMapper 

Fields

mapType :: Monad m => TyCoMapper env m -> env -> Type -> m Type Source #

mapCoercion :: Monad m => TyCoMapper env m -> env -> Coercion -> m Coercion Source #

newTyConInstRhs :: TyCon -> [Type] -> Type Source #

Unwrap one layer of newtype on a type constructor and its arguments, using an eta-reduced version of the newtype if possible. This requires tys to have at least newTyConInstArity tycon elements.

mkFamilyTyConApp :: TyCon -> [Type] -> Type Source #

Given a family instance TyCon and its arg types, return the corresponding family type. E.g:

data family T a
data instance T (Maybe b) = MkT b

Where the instance tycon is :RTL, so:

mkFamilyTyConApp :RTL Int  =  T (Maybe Int)

mkPrimEqPred :: Type -> Type -> Type Source #

Creates a primitive type equality predicate. Invariant: the types are not Coercions

mkPrimEqPredRole :: Role -> Type -> Type -> PredType Source #

Makes a lifted equality predicate at the given role

mkHeteroPrimEqPred :: Kind -> Kind -> Type -> Type -> Type Source #

Creates a primite type equality predicate with explicit kinds

mkHeteroReprPrimEqPred :: Kind -> Kind -> Type -> Type -> Type Source #

Creates a primitive representational type equality predicate with explicit kinds

data EqRel Source #

A choice of equality relation. This is separate from the type Role because Phantom does not define a (non-trivial) equality relation.

Constructors

NomEq 
ReprEq 
Instances
Eq EqRel Source # 
Instance details

Defined in Type

Methods

(==) :: EqRel -> EqRel -> Bool #

(/=) :: EqRel -> EqRel -> Bool #

Ord EqRel Source # 
Instance details

Defined in Type

Methods

compare :: EqRel -> EqRel -> Ordering #

(<) :: EqRel -> EqRel -> Bool #

(<=) :: EqRel -> EqRel -> Bool #

(>) :: EqRel -> EqRel -> Bool #

(>=) :: EqRel -> EqRel -> Bool #

max :: EqRel -> EqRel -> EqRel #

min :: EqRel -> EqRel -> EqRel #

Outputable EqRel Source # 
Instance details

Defined in Type

predTypeEqRel :: PredType -> EqRel Source #

Get the equality relation relevant for a pred type.

Binders

sameVis :: ArgFlag -> ArgFlag -> Bool Source #

Do these denote the same level of visibility? Required arguments are visible, others are not. So this function equates Specified and Inferred. Used for printing.

mkTyVarBinder :: ArgFlag -> Var -> TyVarBinder Source #

Make a named binder

mkTyVarBinders :: ArgFlag -> [TyVar] -> [TyVarBinder] Source #

Make many named binders

mkAnonBinder :: Type -> TyBinder Source #

Make an anonymous binder

isAnonTyBinder :: TyBinder -> Bool Source #

Does this binder bind a variable that is not erased? Returns True for anonymous binders.

binderVar :: TyVarBndr tv argf -> tv Source #

binderVars :: [TyVarBndr tv argf] -> [tv] Source #

binderArgFlag :: TyVarBndr tv argf -> argf Source #

binderRelevantType_maybe :: TyBinder -> Maybe Type Source #

Extract a relevant type, if there is one.

caseBinder Source #

Arguments

:: TyBinder

binder to scrutinize

-> (TyVarBinder -> a)

named case

-> (Type -> a)

anonymous case

-> a 

Like maybe, but for binders.

isVisibleArgFlag :: ArgFlag -> Bool Source #

Does this ArgFlag classify an argument that is written in Haskell?

isInvisibleArgFlag :: ArgFlag -> Bool Source #

Does this ArgFlag classify an argument that is not written in Haskell?

isVisibleBinder :: TyBinder -> Bool Source #

Does this binder bind a visible argument?

isInvisibleBinder :: TyBinder -> Bool Source #

Does this binder bind an invisible argument?

Common type constructors

funTyCon :: TyCon Source #

The (->) type constructor.

(->) :: forall (rep1 :: RuntimeRep) (rep2 :: RuntimeRep).
        TYPE rep1 -> TYPE rep2 -> *

Predicates on types

isPredTy :: Type -> Bool Source #

Is the type suitable to classify a given/wanted in the typechecker?

isCoercionType :: Type -> Bool Source #

Does this type classify a core (unlifted) Coercion? At either role nominal or representational (t1 ~ t2)

isForAllTy :: Type -> Bool Source #

Checks whether this is a proper forall (with a named binder)

isPiTy :: Type -> Bool Source #

Is this a function or forall?

isValidJoinPointType :: JoinArity -> Type -> Bool Source #

Determine whether a type could be the type of a join point of given total arity, according to the polymorphism rule. A join point cannot be polymorphic in its return type, since given join j a b x y z = e1 in e2, the types of e1 and e2 must be the same, and a and b are not in scope for e2. (See Note [The polymorphism rule of join points] in CoreSyn.) Returns False also if the type simply doesn't have enough arguments.

Note that we need to know how many arguments (type *and* value) the putative join point takes; for instance, if j :: forall a. a -> Int then j could be a binary join point returning an Int, but it could *not* be a unary join point returning a -> Int.

TODO: See Note [Excess polymorphism and join points]

isLiftedType_maybe :: HasDebugCallStack => Type -> Maybe Bool Source #

Returns Just True if this type is surely lifted, Just False if it is surely unlifted, Nothing if we can't be sure (i.e., it is levity polymorphic), and panics if the kind does not have the shape TYPE r.

isUnliftedType :: HasDebugCallStack => Type -> Bool Source #

See Type for what an unlifted type is. Panics on levity polymorphic types.

isAlgType :: Type -> Bool Source #

See Type for what an algebraic type is. Should only be applied to types, as opposed to e.g. partially saturated type constructors

isDataFamilyAppType :: Type -> Bool Source #

Check whether a type is a data family type

isPrimitiveType :: Type -> Bool Source #

Returns true of types that are opaque to Haskell.

isStrictType :: HasDebugCallStack => Type -> Bool Source #

Computes whether an argument (or let right hand side) should be computed strictly or lazily, based only on its type. Currently, it's just isUnliftedType. Panics on levity-polymorphic types.

isRuntimeRepTy :: Type -> Bool Source #

Is this the type RuntimeRep?

isRuntimeRepVar :: TyVar -> Bool Source #

Is a tyvar of type RuntimeRep?

isRuntimeRepKindedTy :: Type -> Bool Source #

Is this a type of kind RuntimeRep? (e.g. LiftedRep)

dropRuntimeRepArgs :: [Type] -> [Type] Source #

Drops prefix of RuntimeRep constructors in TyConApps. Useful for e.g. dropping 'LiftedRep arguments of unboxed tuple TyCon applications:

dropRuntimeRepArgs [ 'LiftedRep, 'IntRep , String, Int]

getRuntimeRep :: HasDebugCallStack => Type -> Type Source #

Extract the RuntimeRep classifier of a type. For instance, getRuntimeRep_maybe Int = LiftedRep. Panics if this is not possible.

getRuntimeRepFromKind :: HasDebugCallStack => Type -> Type Source #

Extract the RuntimeRep classifier of a type from its kind. For example, getRuntimeRepFromKind * = LiftedRep; Panics if this is not possible.

Main data types representing Kinds

type Kind = Type Source #

The key type representing kinds in the compiler.

Finding the kind of a type

isTypeLevPoly :: Type -> Bool Source #

Returns True if a type is levity polymorphic. Should be the same as (isKindLevPoly . typeKind) but much faster. Precondition: The type has kind (TYPE blah)

resultIsLevPoly :: Type -> Bool Source #

Looking past all pi-types, is the end result potentially levity polymorphic? Example: True for (forall r (a :: TYPE r). String -> a) Example: False for (forall r1 r2 (a :: TYPE r1) (b :: TYPE r2). a -> b -> Type)

Common Kind

Type free variables

tyCoFVsOfType :: Type -> FV Source #

The worker for tyCoFVsOfType and tyCoFVsOfTypeList. The previous implementation used unionVarSet which is O(n+m) and can make the function quadratic. It's exported, so that it can be composed with other functions that compute free variables. See Note [FV naming conventions] in FV.

Eta-expanded because that makes it run faster (apparently) See Note [FV eta expansion] in FV for explanation.

tyCoVarsOfType :: Type -> TyCoVarSet Source #

Returns free variables of a type, including kind variables as a non-deterministic set. For type synonyms it does not expand the synonym.

tyCoVarsOfTypes :: [Type] -> TyCoVarSet Source #

Returns free variables of types, including kind variables as a non-deterministic set. For type synonyms it does not expand the synonym.

tyCoVarsOfTypeDSet :: Type -> DTyCoVarSet Source #

tyCoFVsOfType that returns free variables of a type in a deterministic set. For explanation of why using VarSet is not deterministic see Note [Deterministic FV] in FV.

closeOverKinds :: TyVarSet -> TyVarSet Source #

Add the kind variables free in the kinds of the tyvars in the given set. Returns a non-deterministic set.

closeOverKindsList :: [TyVar] -> [TyVar] Source #

Add the kind variables free in the kinds of the tyvars in the given set. Returns a deterministically ordered list.

noFreeVarsOfType :: Type -> Bool Source #

Returns True if this type has no free variables. Should be the same as isEmptyVarSet . tyCoVarsOfType, but faster in the non-forall case.

splitVisVarsOfType :: Type -> Pair TyCoVarSet Source #

Retrieve the free variables in this type, splitting them based on whether they are used visibly or invisibly. Invisible ones come first.

expandTypeSynonyms :: Type -> Type Source #

Expand out all type synonyms. Actually, it'd suffice to expand out just the ones that discard type variables (e.g. type Funny a = Int) But we don't know which those are currently, so we just expand all.

expandTypeSynonyms only expands out type synonyms mentioned in the type, not in the kinds of any TyCon or TyVar mentioned in the type.

Keep this synchronized with synonymTyConsOfType

Well-scoped lists of variables

dVarSetElemsWellScoped :: DVarSet -> [Var] Source #

Extract a well-scoped list of variables from a deterministic set of variables. The result is deterministic. NB: There used to exist varSetElemsWellScoped :: VarSet -> [Var] which took a non-deterministic set and produced a non-deterministic well-scoped list. If you care about the list being well-scoped you also most likely care about it being in deterministic order.

toposortTyVars :: [TyCoVar] -> [TyCoVar] Source #

Do a topological sort on a list of tyvars, so that binders occur before occurrences E.g. given [ a::k, k::*, b::k ] it'll return a well-scoped list [ k::*, a::k, b::k ]

This is a deterministic sorting operation (that is, doesn't depend on Uniques).

tyCoVarsOfTypeWellScoped :: Type -> [TyVar] Source #

Get the free vars of a type in scoped order

tyCoVarsOfTypesWellScoped :: [Type] -> [TyVar] Source #

Get the free vars of types in scoped order

Type comparison

eqType :: Type -> Type -> Bool Source #

Type equality on source types. Does not look through newtypes or PredTypes, but it does look through type synonyms. This first checks that the kinds of the types are equal and then checks whether the types are equal, ignoring casts and coercions. (The kind check is a recursive call, but since all kinds have type Type, there is no need to check the types of kinds.) See also Note [Non-trivial definitional equality] in TyCoRep.

eqTypeX :: RnEnv2 -> Type -> Type -> Bool Source #

Compare types with respect to a (presumably) non-empty RnEnv2.

eqTypes :: [Type] -> [Type] -> Bool Source #

Type equality on lists of types, looking through type synonyms but not newtypes.

nonDetCmpTc :: TyCon -> TyCon -> Ordering Source #

Compare two TyCons. NB: This should never see the "star synonyms", as recognized by Kind.isStarKindSynonymTyCon. See Note [Kind Constraint and kind *] in Kind. See Note [nonDetCmpType nondeterminism]

Forcing evaluation of types

seqType :: Type -> () Source #

seqTypes :: [Type] -> () Source #

Other views onto Types

coreView :: Type -> Maybe Type Source #

This function Strips off the top layer only of a type synonym application (if any) its underlying representation type. Returns Nothing if there is nothing to look through. This function considers Constraint to be a synonym of TYPE LiftedRep.

By being non-recursive and inlined, this case analysis gets efficiently joined onto the case analysis that the caller is already doing

tcView :: Type -> Maybe Type Source #

Gives the typechecker view of a type. This unwraps synonyms but leaves Constraint alone. c.f. coreView, which turns Constraint into TYPE LiftedRep. Returns Nothing if no unwrapping happens. See also Note [coreView vs tcView] in Type.

tyConsOfType :: Type -> UniqSet TyCon Source #

All type constructors occurring in the type; looking through type synonyms, but not newtypes. When it finds a Class, it returns the class TyCon.

Main type substitution data types

type TvSubstEnv = TyVarEnv Type Source #

A substitution of Types for TyVars and Kinds for KindVars

data TCvSubst Source #

Type & coercion substitution

The following invariants must hold of a TCvSubst:

  1. The in-scope set is needed only to guide the generation of fresh uniques
  2. In particular, the kind of the type variables in the in-scope set is not relevant
  3. The substitution is only applied ONCE! This is because in general such application will not reach a fixed point.
Instances
Outputable TCvSubst Source # 
Instance details

Defined in TyCoRep

Manipulating type substitutions

zipTvSubst :: [TyVar] -> [Type] -> TCvSubst Source #

Generates the in-scope set for the TCvSubst from the types in the incoming environment. No CoVars, please!

mkTvSubstPrs :: [(TyVar, Type)] -> TCvSubst Source #

Generates the in-scope set for the TCvSubst from the types in the incoming environment. No CoVars, please!

getTCvSubstRangeFVs :: TCvSubst -> VarSet Source #

Returns the free variables of the types in the range of a substitution as a non-deterministic set.

composeTCvSubstEnv :: InScopeSet -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) -> (TvSubstEnv, CvSubstEnv) Source #

(compose env1 env2)(x) is env1(env2(x)); i.e. apply env2 then env1. It assumes that both are idempotent. Typically, env1 is the refinement to a base substitution env2

composeTCvSubst :: TCvSubst -> TCvSubst -> TCvSubst Source #

Composes two substitutions, applying the second one provided first, like in function composition.

Performing substitution on types and kinds

substTy :: HasCallStack => TCvSubst -> Type -> Type Source #

Substitute within a Type The substitution has to satisfy the invariants described in Note [The substitution invariant].

substTys :: HasCallStack => TCvSubst -> [Type] -> [Type] Source #

Substitute within several Types The substitution has to satisfy the invariants described in Note [The substitution invariant].

substTyWith :: HasCallStack => [TyVar] -> [Type] -> Type -> Type Source #

Type substitution, see zipTvSubst

substTysWith :: [TyVar] -> [Type] -> [Type] -> [Type] Source #

Type substitution, see zipTvSubst

substTheta :: HasCallStack => TCvSubst -> ThetaType -> ThetaType Source #

Substitute within a ThetaType The substitution has to satisfy the invariants described in Note [The substitution invariant].

substTyAddInScope :: TCvSubst -> Type -> Type Source #

Substitute within a Type after adding the free variables of the type to the in-scope set. This is useful for the case when the free variables aren't already in the in-scope set or easily available. See also Note [The substitution invariant].

substTyUnchecked :: TCvSubst -> Type -> Type Source #

Substitute within a Type disabling the sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.

substTysUnchecked :: TCvSubst -> [Type] -> [Type] Source #

Substitute within several Types disabling the sanity checks. The problems that the sanity checks in substTys catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTysUnchecked to substTys and remove this function. Please don't use in new code.

substThetaUnchecked :: TCvSubst -> ThetaType -> ThetaType Source #

Substitute within a ThetaType disabling the sanity checks. The problems that the sanity checks in substTys catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substThetaUnchecked to substTheta and remove this function. Please don't use in new code.

substTyWithUnchecked :: [TyVar] -> [Type] -> Type -> Type Source #

Type substitution, see zipTvSubst. Disables sanity checks. The problems that the sanity checks in substTy catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substTyUnchecked to substTy and remove this function. Please don't use in new code.

substCoUnchecked :: TCvSubst -> Coercion -> Coercion Source #

Substitute within a Coercion disabling sanity checks. The problems that the sanity checks in substCo catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substCoUnchecked to substCo and remove this function. Please don't use in new code.

substCoWithUnchecked :: [TyVar] -> [Type] -> Coercion -> Coercion Source #

Coercion substitution, see zipTvSubst. Disables sanity checks. The problems that the sanity checks in substCo catch are described in Note [The substitution invariant]. The goal of #11371 is to migrate all the calls of substCoUnchecked to substCo and remove this function. Please don't use in new code.

Pretty-printing

pprUserForAll :: [TyVarBinder] -> SDoc Source #

Print a user-level forall; see Note [When to print foralls]

pprSourceTyCon :: TyCon -> SDoc Source #

Pretty prints a TyCon, using the family instance in case of a representation tycon. For example:

data T [a] = ...

In that case we want to print T [a], where T is the family TyCon

data TyPrec Source #

Instances
Eq TyPrec Source # 
Instance details

Defined in BasicTypes

Methods

(==) :: TyPrec -> TyPrec -> Bool #

(/=) :: TyPrec -> TyPrec -> Bool #

Ord TyPrec Source # 
Instance details

Defined in BasicTypes

Tidying type related things up for printing

tidyOpenTypes :: TidyEnv -> [Type] -> (TidyEnv, [Type]) Source #

Grabs the free type variables, tidies them and then uses tidyType to work over the type itself

tidyTyCoVarBndrs :: TidyEnv -> [TyCoVar] -> (TidyEnv, [TyCoVar]) Source #

This tidies up a type for printing in an error message, or in an interface file.

It doesn't change the uniques at all, just the print names.

tidyFreeTyCoVars :: TidyEnv -> [TyCoVar] -> TidyEnv Source #

Add the free TyVars to the env in tidy form, so that we can tidy the type they are free in

tidyOpenTyCoVar :: TidyEnv -> TyCoVar -> (TidyEnv, TyCoVar) Source #

Treat a new TyCoVar as a binder, and give it a fresh tidy name using the environment if one has not already been allocated. See also tidyTyCoVarBndr

tidyTopType :: Type -> Type Source #

Calls tidyType on a top-level type (i.e. with an empty tidying environment)