{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
module Convert( convertToHsExpr, convertToPat, convertToHsDecls,
convertToHsType,
thRdrNameGuesses ) where
import GhcPrelude
import HsSyn as Hs
import qualified Class
import PrelNames
import RdrName
import qualified Name
import Module
import RdrHsSyn
import qualified OccName
import OccName
import SrcLoc
import Type
import qualified Coercion ( Role(..) )
import TysWiredIn
import BasicTypes as Hs
import ForeignCall
import Unique
import ErrUtils
import Bag
import Lexeme
import Util
import FastString
import Outputable
import MonadUtils ( foldrM )
import qualified Data.ByteString as BS
import Control.Monad( unless, liftM, ap, (<=<) )
import Data.Maybe( catMaybes, isNothing )
import Language.Haskell.TH as TH hiding (sigP)
import Language.Haskell.TH.Syntax as TH
convertToHsDecls :: SrcSpan -> [TH.Dec] -> Either MsgDoc [LHsDecl GhcPs]
convertToHsDecls loc ds = initCvt loc (fmap catMaybes (mapM cvt_dec ds))
where
cvt_dec d = wrapMsg "declaration" d (cvtDec d)
convertToHsExpr :: SrcSpan -> TH.Exp -> Either MsgDoc (LHsExpr GhcPs)
convertToHsExpr loc e
= initCvt loc $ wrapMsg "expression" e $ cvtl e
convertToPat :: SrcSpan -> TH.Pat -> Either MsgDoc (LPat GhcPs)
convertToPat loc p
= initCvt loc $ wrapMsg "pattern" p $ cvtPat p
convertToHsType :: SrcSpan -> TH.Type -> Either MsgDoc (LHsType GhcPs)
convertToHsType loc t
= initCvt loc $ wrapMsg "type" t $ cvtType t
newtype CvtM a = CvtM { unCvtM :: SrcSpan -> Either MsgDoc (SrcSpan, a) }
instance Functor CvtM where
fmap = liftM
instance Applicative CvtM where
pure x = CvtM $ \loc -> Right (loc,x)
(<*>) = ap
instance Monad CvtM where
(CvtM m) >>= k = CvtM $ \loc -> case m loc of
Left err -> Left err
Right (loc',v) -> unCvtM (k v) loc'
initCvt :: SrcSpan -> CvtM a -> Either MsgDoc a
initCvt loc (CvtM m) = fmap snd (m loc)
force :: a -> CvtM ()
force a = a `seq` return ()
failWith :: MsgDoc -> CvtM a
failWith m = CvtM (\_ -> Left m)
getL :: CvtM SrcSpan
getL = CvtM (\loc -> Right (loc,loc))
setL :: SrcSpan -> CvtM ()
setL loc = CvtM (\_ -> Right (loc, ()))
returnL :: a -> CvtM (Located a)
returnL x = CvtM (\loc -> Right (loc, L loc x))
returnJustL :: a -> CvtM (Maybe (Located a))
returnJustL = fmap Just . returnL
wrapParL :: (Located a -> a) -> a -> CvtM a
wrapParL add_par x = CvtM (\loc -> Right (loc, add_par (L loc x)))
wrapMsg :: (Show a, TH.Ppr a) => String -> a -> CvtM b -> CvtM b
wrapMsg what item (CvtM m)
= CvtM (\loc -> case m loc of
Left err -> Left (err $$ getPprStyle msg)
Right v -> Right v)
where
msg sty = hang (text "When splicing a TH" <+> text what <> colon)
2 (if debugStyle sty
then text (show item)
else text (pprint item))
wrapL :: CvtM a -> CvtM (Located a)
wrapL (CvtM m) = CvtM (\loc -> case m loc of
Left err -> Left err
Right (loc',v) -> Right (loc',L loc v))
cvtDecs :: [TH.Dec] -> CvtM [LHsDecl GhcPs]
cvtDecs = fmap catMaybes . mapM cvtDec
cvtDec :: TH.Dec -> CvtM (Maybe (LHsDecl GhcPs))
cvtDec (TH.ValD pat body ds)
| TH.VarP s <- pat
= do { s' <- vNameL s
; cl' <- cvtClause (mkPrefixFunRhs s') (Clause [] body ds)
; returnJustL $ Hs.ValD noExt $ mkFunBind s' [cl'] }
| otherwise
= do { pat' <- cvtPat pat
; body' <- cvtGuard body
; ds' <- cvtLocalDecs (text "a where clause") ds
; returnJustL $ Hs.ValD noExt $
PatBind { pat_lhs = pat', pat_rhs = GRHSs noExt body' (noLoc ds')
, pat_ext = noExt
, pat_ticks = ([],[]) } }
cvtDec (TH.FunD nm cls)
| null cls
= failWith (text "Function binding for"
<+> quotes (text (TH.pprint nm))
<+> text "has no equations")
| otherwise
= do { nm' <- vNameL nm
; cls' <- mapM (cvtClause (mkPrefixFunRhs nm')) cls
; returnJustL $ Hs.ValD noExt $ mkFunBind nm' cls' }
cvtDec (TH.SigD nm typ)
= do { nm' <- vNameL nm
; ty' <- cvtType typ
; returnJustL $ Hs.SigD noExt
(TypeSig noExt [nm'] (mkLHsSigWcType ty')) }
cvtDec (TH.InfixD fx nm)
= do { nm' <- vcNameL nm
; returnJustL (Hs.SigD noExt (FixSig noExt
(FixitySig noExt [nm'] (cvtFixity fx)))) }
cvtDec (PragmaD prag)
= cvtPragmaD prag
cvtDec (TySynD tc tvs rhs)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; rhs' <- cvtType rhs
; returnJustL $ TyClD noExt $
SynDecl { tcdSExt = noExt, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdRhs = rhs' } }
cvtDec (DataD ctxt tc tvs ksig constrs derivs)
= do { let isGadtCon (GadtC _ _ _) = True
isGadtCon (RecGadtC _ _ _) = True
isGadtCon (ForallC _ _ c) = isGadtCon c
isGadtCon _ = False
isGadtDecl = all isGadtCon constrs
isH98Decl = all (not . isGadtCon) constrs
; unless (isGadtDecl || isH98Decl)
(failWith (text "Cannot mix GADT constructors with Haskell 98"
<+> text "constructors"))
; unless (isNothing ksig || isGadtDecl)
(failWith (text "Kind signatures are only allowed on GADTs"))
; (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; ksig' <- cvtKind `traverse` ksig
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExt
, dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = ksig'
, dd_cons = cons', dd_derivs = derivs' }
; returnJustL $ TyClD noExt (DataDecl
{ tcdDExt = noExt
, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdDataDefn = defn }) }
cvtDec (NewtypeD ctxt tc tvs ksig constr derivs)
= do { (ctxt', tc', tvs') <- cvt_tycl_hdr ctxt tc tvs
; ksig' <- cvtKind `traverse` ksig
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExt
, dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = ksig'
, dd_cons = [con']
, dd_derivs = derivs' }
; returnJustL $ TyClD noExt (DataDecl
{ tcdDExt = noExt
, tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdDataDefn = defn }) }
cvtDec (ClassD ctxt cl tvs fds decs)
= do { (cxt', tc', tvs') <- cvt_tycl_hdr ctxt cl tvs
; fds' <- mapM cvt_fundep fds
; (binds', sigs', fams', ats', adts') <- cvt_ci_decs (text "a class declaration") decs
; unless (null adts')
(failWith $ (text "Default data instance declarations"
<+> text "are not allowed:")
$$ (Outputable.ppr adts'))
; at_defs <- mapM cvt_at_def ats'
; returnJustL $ TyClD noExt $
ClassDecl { tcdCExt = noExt
, tcdCtxt = cxt', tcdLName = tc', tcdTyVars = tvs'
, tcdFixity = Prefix
, tcdFDs = fds', tcdSigs = Hs.mkClassOpSigs sigs'
, tcdMeths = binds'
, tcdATs = fams', tcdATDefs = at_defs, tcdDocs = [] }
}
where
cvt_at_def :: LTyFamInstDecl GhcPs -> CvtM (LTyFamDefltEqn GhcPs)
cvt_at_def decl = case RdrHsSyn.mkATDefault decl of
Right def -> return def
Left (_, msg) -> failWith msg
cvtDec (InstanceD o ctxt ty decs)
= do { let doc = text "an instance declaration"
; (binds', sigs', fams', ats', adts') <- cvt_ci_decs doc decs
; unless (null fams') (failWith (mkBadDecMsg doc fams'))
; ctxt' <- cvtContext ctxt
; L loc ty' <- cvtType ty
; let inst_ty' = mkHsQualTy ctxt loc ctxt' $ L loc ty'
; returnJustL $ InstD noExt $ ClsInstD noExt $
ClsInstDecl { cid_ext = noExt, cid_poly_ty = mkLHsSigType inst_ty'
, cid_binds = binds'
, cid_sigs = Hs.mkClassOpSigs sigs'
, cid_tyfam_insts = ats', cid_datafam_insts = adts'
, cid_overlap_mode = fmap (L loc . overlap) o } }
where
overlap pragma =
case pragma of
TH.Overlaps -> Hs.Overlaps (SourceText "OVERLAPS")
TH.Overlappable -> Hs.Overlappable (SourceText "OVERLAPPABLE")
TH.Overlapping -> Hs.Overlapping (SourceText "OVERLAPPING")
TH.Incoherent -> Hs.Incoherent (SourceText "INCOHERENT")
cvtDec (ForeignD ford)
= do { ford' <- cvtForD ford
; returnJustL $ ForD noExt ford' }
cvtDec (DataFamilyD tc tvs kind)
= do { (_, tc', tvs') <- cvt_tycl_hdr [] tc tvs
; result <- cvtMaybeKindToFamilyResultSig kind
; returnJustL $ TyClD noExt $ FamDecl noExt $
FamilyDecl noExt DataFamily tc' tvs' Prefix result Nothing }
cvtDec (DataInstD ctxt tc tys ksig constrs derivs)
= do { (ctxt', tc', typats') <- cvt_tyinst_hdr ctxt tc tys
; ksig' <- cvtKind `traverse` ksig
; cons' <- mapM cvtConstr constrs
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExt
, dd_ND = DataType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = ksig'
, dd_cons = cons', dd_derivs = derivs' }
; returnJustL $ InstD noExt $ DataFamInstD
{ dfid_ext = noExt
, dfid_inst = DataFamInstDecl { dfid_eqn = mkHsImplicitBndrs $
FamEqn { feqn_ext = noExt
, feqn_tycon = tc', feqn_pats = typats'
, feqn_rhs = defn
, feqn_fixity = Prefix } }}}
cvtDec (NewtypeInstD ctxt tc tys ksig constr derivs)
= do { (ctxt', tc', typats') <- cvt_tyinst_hdr ctxt tc tys
; ksig' <- cvtKind `traverse` ksig
; con' <- cvtConstr constr
; derivs' <- cvtDerivs derivs
; let defn = HsDataDefn { dd_ext = noExt
, dd_ND = NewType, dd_cType = Nothing
, dd_ctxt = ctxt'
, dd_kindSig = ksig'
, dd_cons = [con'], dd_derivs = derivs' }
; returnJustL $ InstD noExt $ DataFamInstD
{ dfid_ext = noExt
, dfid_inst = DataFamInstDecl { dfid_eqn = mkHsImplicitBndrs $
FamEqn { feqn_ext = noExt
, feqn_tycon = tc', feqn_pats = typats'
, feqn_rhs = defn
, feqn_fixity = Prefix } }}}
cvtDec (TySynInstD tc eqn)
= do { tc' <- tconNameL tc
; L _ eqn' <- cvtTySynEqn tc' eqn
; returnJustL $ InstD noExt $ TyFamInstD
{ tfid_ext = noExt
, tfid_inst = TyFamInstDecl { tfid_eqn = eqn' } } }
cvtDec (OpenTypeFamilyD head)
= do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
; returnJustL $ TyClD noExt $ FamDecl noExt $
FamilyDecl noExt OpenTypeFamily tc' tyvars' Prefix result' injectivity'
}
cvtDec (ClosedTypeFamilyD head eqns)
= do { (tc', tyvars', result', injectivity') <- cvt_tyfam_head head
; eqns' <- mapM (cvtTySynEqn tc') eqns
; returnJustL $ TyClD noExt $ FamDecl noExt $
FamilyDecl noExt (ClosedTypeFamily (Just eqns')) tc' tyvars' Prefix
result' injectivity' }
cvtDec (TH.RoleAnnotD tc roles)
= do { tc' <- tconNameL tc
; let roles' = map (noLoc . cvtRole) roles
; returnJustL $ Hs.RoleAnnotD noExt (RoleAnnotDecl noExt tc' roles') }
cvtDec (TH.StandaloneDerivD ds cxt ty)
= do { cxt' <- cvtContext cxt
; ds' <- traverse cvtDerivStrategy ds
; L loc ty' <- cvtType ty
; let inst_ty' = mkHsQualTy cxt loc cxt' $ L loc ty'
; returnJustL $ DerivD noExt $
DerivDecl { deriv_ext =noExt
, deriv_strategy = ds'
, deriv_type = mkLHsSigWcType inst_ty'
, deriv_overlap_mode = Nothing } }
cvtDec (TH.DefaultSigD nm typ)
= do { nm' <- vNameL nm
; ty' <- cvtType typ
; returnJustL $ Hs.SigD noExt
$ ClassOpSig noExt True [nm'] (mkLHsSigType ty')}
cvtDec (TH.PatSynD nm args dir pat)
= do { nm' <- cNameL nm
; args' <- cvtArgs args
; dir' <- cvtDir nm' dir
; pat' <- cvtPat pat
; returnJustL $ Hs.ValD noExt $ PatSynBind noExt $
PSB noExt nm' args' pat' dir' }
where
cvtArgs (TH.PrefixPatSyn args) = Hs.PrefixCon <$> mapM vNameL args
cvtArgs (TH.InfixPatSyn a1 a2) = Hs.InfixCon <$> vNameL a1 <*> vNameL a2
cvtArgs (TH.RecordPatSyn sels)
= do { sels' <- mapM vNameL sels
; vars' <- mapM (vNameL . mkNameS . nameBase) sels
; return $ Hs.RecCon $ zipWith RecordPatSynField sels' vars' }
cvtDir _ Unidir = return Unidirectional
cvtDir _ ImplBidir = return ImplicitBidirectional
cvtDir n (ExplBidir cls) =
do { ms <- mapM (cvtClause (mkPrefixFunRhs n)) cls
; return $ ExplicitBidirectional $ mkMatchGroup FromSource ms }
cvtDec (TH.PatSynSigD nm ty)
= do { nm' <- cNameL nm
; ty' <- cvtPatSynSigTy ty
; returnJustL $ Hs.SigD noExt $ PatSynSig noExt [nm'] (mkLHsSigType ty')}
cvtTySynEqn :: Located RdrName -> TySynEqn -> CvtM (LTyFamInstEqn GhcPs)
cvtTySynEqn tc (TySynEqn lhs rhs)
= do { lhs' <- mapM (wrap_apps <=< cvtType) lhs
; rhs' <- cvtType rhs
; returnL $ mkHsImplicitBndrs
$ FamEqn { feqn_ext = noExt
, feqn_tycon = tc
, feqn_pats = lhs'
, feqn_fixity = Prefix
, feqn_rhs = rhs' } }
cvt_ci_decs :: MsgDoc -> [TH.Dec]
-> CvtM (LHsBinds GhcPs,
[LSig GhcPs],
[LFamilyDecl GhcPs],
[LTyFamInstDecl GhcPs],
[LDataFamInstDecl GhcPs])
cvt_ci_decs doc decs
= do { decs' <- cvtDecs decs
; let (ats', bind_sig_decs') = partitionWith is_tyfam_inst decs'
; let (adts', no_ats') = partitionWith is_datafam_inst bind_sig_decs'
; let (sigs', prob_binds') = partitionWith is_sig no_ats'
; let (binds', prob_fams') = partitionWith is_bind prob_binds'
; let (fams', bads) = partitionWith is_fam_decl prob_fams'
; unless (null bads) (failWith (mkBadDecMsg doc bads))
; return (listToBag binds', sigs', fams', ats', adts') }
cvt_tycl_hdr :: TH.Cxt -> TH.Name -> [TH.TyVarBndr]
-> CvtM ( LHsContext GhcPs
, Located RdrName
, LHsQTyVars GhcPs)
cvt_tycl_hdr cxt tc tvs
= do { cxt' <- cvtContext cxt
; tc' <- tconNameL tc
; tvs' <- cvtTvs tvs
; return (cxt', tc', tvs')
}
cvt_tyinst_hdr :: TH.Cxt -> TH.Name -> [TH.Type]
-> CvtM ( LHsContext GhcPs
, Located RdrName
, HsTyPats GhcPs)
cvt_tyinst_hdr cxt tc tys
= do { cxt' <- cvtContext cxt
; tc' <- tconNameL tc
; tys' <- mapM (wrap_apps <=< cvtType) tys
; return (cxt', tc', tys') }
cvt_tyfam_head :: TypeFamilyHead
-> CvtM ( Located RdrName
, LHsQTyVars GhcPs
, Hs.LFamilyResultSig GhcPs
, Maybe (Hs.LInjectivityAnn GhcPs))
cvt_tyfam_head (TypeFamilyHead tc tyvars result injectivity)
= do {(_, tc', tyvars') <- cvt_tycl_hdr [] tc tyvars
; result' <- cvtFamilyResultSig result
; injectivity' <- traverse cvtInjectivityAnnotation injectivity
; return (tc', tyvars', result', injectivity') }
is_fam_decl :: LHsDecl GhcPs -> Either (LFamilyDecl GhcPs) (LHsDecl GhcPs)
is_fam_decl (L loc (TyClD _ (FamDecl { tcdFam = d }))) = Left (L loc d)
is_fam_decl decl = Right decl
is_tyfam_inst :: LHsDecl GhcPs -> Either (LTyFamInstDecl GhcPs) (LHsDecl GhcPs)
is_tyfam_inst (L loc (Hs.InstD _ (TyFamInstD { tfid_inst = d })))
= Left (L loc d)
is_tyfam_inst decl
= Right decl
is_datafam_inst :: LHsDecl GhcPs
-> Either (LDataFamInstDecl GhcPs) (LHsDecl GhcPs)
is_datafam_inst (L loc (Hs.InstD _ (DataFamInstD { dfid_inst = d })))
= Left (L loc d)
is_datafam_inst decl
= Right decl
is_sig :: LHsDecl GhcPs -> Either (LSig GhcPs) (LHsDecl GhcPs)
is_sig (L loc (Hs.SigD _ sig)) = Left (L loc sig)
is_sig decl = Right decl
is_bind :: LHsDecl GhcPs -> Either (LHsBind GhcPs) (LHsDecl GhcPs)
is_bind (L loc (Hs.ValD _ bind)) = Left (L loc bind)
is_bind decl = Right decl
mkBadDecMsg :: Outputable a => MsgDoc -> [a] -> MsgDoc
mkBadDecMsg doc bads
= sep [ text "Illegal declaration(s) in" <+> doc <> colon
, nest 2 (vcat (map Outputable.ppr bads)) ]
cvtConstr :: TH.Con -> CvtM (LConDecl GhcPs)
cvtConstr (NormalC c strtys)
= do { c' <- cNameL c
; tys' <- mapM cvt_arg strtys
; returnL $ mkConDeclH98 c' Nothing Nothing (PrefixCon tys') }
cvtConstr (RecC c varstrtys)
= do { c' <- cNameL c
; args' <- mapM cvt_id_arg varstrtys
; returnL $ mkConDeclH98 c' Nothing Nothing
(RecCon (noLoc args')) }
cvtConstr (InfixC st1 c st2)
= do { c' <- cNameL c
; st1' <- cvt_arg st1
; st2' <- cvt_arg st2
; returnL $ mkConDeclH98 c' Nothing Nothing (InfixCon st1' st2') }
cvtConstr (ForallC tvs ctxt con)
= do { tvs' <- cvtTvs tvs
; ctxt' <- cvtContext ctxt
; L _ con' <- cvtConstr con
; returnL $ add_forall tvs' ctxt' con' }
where
add_cxt lcxt Nothing = Just lcxt
add_cxt (L loc cxt1) (Just (L _ cxt2)) = Just (L loc (cxt1 ++ cxt2))
add_forall tvs' cxt' con@(ConDeclGADT { con_qvars = qvars, con_mb_cxt = cxt })
= con { con_forall = noLoc $ not (null all_tvs)
, con_qvars = mkHsQTvs all_tvs
, con_mb_cxt = add_cxt cxt' cxt }
where
all_tvs = hsQTvExplicit tvs' ++ hsQTvExplicit qvars
add_forall tvs' cxt' con@(ConDeclH98 { con_ex_tvs = ex_tvs, con_mb_cxt = cxt })
= con { con_forall = noLoc $ not (null all_tvs)
, con_ex_tvs = all_tvs
, con_mb_cxt = add_cxt cxt' cxt }
where
all_tvs = hsQTvExplicit tvs' ++ ex_tvs
add_forall _ _ (XConDecl _) = panic "cvtConstr"
cvtConstr (GadtC c strtys ty)
= do { c' <- mapM cNameL c
; args <- mapM cvt_arg strtys
; L _ ty' <- cvtType ty
; c_ty <- mk_arr_apps args ty'
; returnL $ fst $ mkGadtDecl c' c_ty}
cvtConstr (RecGadtC c varstrtys ty)
= do { c' <- mapM cNameL c
; ty' <- cvtType ty
; rec_flds <- mapM cvt_id_arg varstrtys
; let rec_ty = noLoc (HsFunTy noExt
(noLoc $ HsRecTy noExt rec_flds) ty')
; returnL $ fst $ mkGadtDecl c' rec_ty }
cvtSrcUnpackedness :: TH.SourceUnpackedness -> SrcUnpackedness
cvtSrcUnpackedness NoSourceUnpackedness = NoSrcUnpack
cvtSrcUnpackedness SourceNoUnpack = SrcNoUnpack
cvtSrcUnpackedness SourceUnpack = SrcUnpack
cvtSrcStrictness :: TH.SourceStrictness -> SrcStrictness
cvtSrcStrictness NoSourceStrictness = NoSrcStrict
cvtSrcStrictness SourceLazy = SrcLazy
cvtSrcStrictness SourceStrict = SrcStrict
cvt_arg :: (TH.Bang, TH.Type) -> CvtM (LHsType GhcPs)
cvt_arg (Bang su ss, ty)
= do { ty'' <- cvtType ty
; ty' <- wrap_apps ty''
; let su' = cvtSrcUnpackedness su
; let ss' = cvtSrcStrictness ss
; returnL $ HsBangTy noExt (HsSrcBang NoSourceText su' ss') ty' }
cvt_id_arg :: (TH.Name, TH.Bang, TH.Type) -> CvtM (LConDeclField GhcPs)
cvt_id_arg (i, str, ty)
= do { L li i' <- vNameL i
; ty' <- cvt_arg (str,ty)
; return $ noLoc (ConDeclField
{ cd_fld_ext = noExt
, cd_fld_names
= [L li $ FieldOcc noExt (L li i')]
, cd_fld_type = ty'
, cd_fld_doc = Nothing}) }
cvtDerivs :: [TH.DerivClause] -> CvtM (HsDeriving GhcPs)
cvtDerivs cs = do { cs' <- mapM cvtDerivClause cs
; returnL cs' }
cvt_fundep :: FunDep -> CvtM (Located (Class.FunDep (Located RdrName)))
cvt_fundep (FunDep xs ys) = do { xs' <- mapM tNameL xs
; ys' <- mapM tNameL ys
; returnL (xs', ys') }
cvtForD :: Foreign -> CvtM (ForeignDecl GhcPs)
cvtForD (ImportF callconv safety from nm ty)
| callconv == TH.Prim || callconv == TH.JavaScript
= mk_imp (CImport (noLoc (cvt_conv callconv)) (noLoc safety') Nothing
(CFunction (StaticTarget (SourceText from)
(mkFastString from) Nothing
True))
(noLoc $ quotedSourceText from))
| Just impspec <- parseCImport (noLoc (cvt_conv callconv)) (noLoc safety')
(mkFastString (TH.nameBase nm))
from (noLoc $ quotedSourceText from)
= mk_imp impspec
| otherwise
= failWith $ text (show from) <+> text "is not a valid ccall impent"
where
mk_imp impspec
= do { nm' <- vNameL nm
; ty' <- cvtType ty
; return (ForeignImport { fd_i_ext = noExt
, fd_name = nm'
, fd_sig_ty = mkLHsSigType ty'
, fd_fi = impspec })
}
safety' = case safety of
Unsafe -> PlayRisky
Safe -> PlaySafe
Interruptible -> PlayInterruptible
cvtForD (ExportF callconv as nm ty)
= do { nm' <- vNameL nm
; ty' <- cvtType ty
; let e = CExport (noLoc (CExportStatic (SourceText as)
(mkFastString as)
(cvt_conv callconv)))
(noLoc (SourceText as))
; return $ ForeignExport { fd_e_ext = noExt
, fd_name = nm'
, fd_sig_ty = mkLHsSigType ty'
, fd_fe = e } }
cvt_conv :: TH.Callconv -> CCallConv
cvt_conv TH.CCall = CCallConv
cvt_conv TH.StdCall = StdCallConv
cvt_conv TH.CApi = CApiConv
cvt_conv TH.Prim = PrimCallConv
cvt_conv TH.JavaScript = JavaScriptCallConv
cvtPragmaD :: Pragma -> CvtM (Maybe (LHsDecl GhcPs))
cvtPragmaD (InlineP nm inline rm phases)
= do { nm' <- vNameL nm
; let dflt = dfltActivation inline
; let src TH.NoInline = "{-# NOINLINE"
src TH.Inline = "{-# INLINE"
src TH.Inlinable = "{-# INLINABLE"
; let ip = InlinePragma { inl_src = SourceText $ src inline
, inl_inline = cvtInline inline
, inl_rule = cvtRuleMatch rm
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
; returnJustL $ Hs.SigD noExt $ InlineSig noExt nm' ip }
cvtPragmaD (SpecialiseP nm ty inline phases)
= do { nm' <- vNameL nm
; ty' <- cvtType ty
; let src TH.NoInline = "{-# SPECIALISE NOINLINE"
src TH.Inline = "{-# SPECIALISE INLINE"
src TH.Inlinable = "{-# SPECIALISE INLINE"
; let (inline', dflt,srcText) = case inline of
Just inline1 -> (cvtInline inline1, dfltActivation inline1,
src inline1)
Nothing -> (NoUserInline, AlwaysActive,
"{-# SPECIALISE")
; let ip = InlinePragma { inl_src = SourceText srcText
, inl_inline = inline'
, inl_rule = Hs.FunLike
, inl_act = cvtPhases phases dflt
, inl_sat = Nothing }
; returnJustL $ Hs.SigD noExt $ SpecSig noExt nm' [mkLHsSigType ty'] ip }
cvtPragmaD (SpecialiseInstP ty)
= do { ty' <- cvtType ty
; returnJustL $ Hs.SigD noExt $
SpecInstSig noExt (SourceText "{-# SPECIALISE") (mkLHsSigType ty') }
cvtPragmaD (RuleP nm bndrs lhs rhs phases)
= do { let nm' = mkFastString nm
; let act = cvtPhases phases AlwaysActive
; bndrs' <- mapM cvtRuleBndr bndrs
; lhs' <- cvtl lhs
; rhs' <- cvtl rhs
; returnJustL $ Hs.RuleD noExt
$ HsRules noExt (SourceText "{-# RULES")
[noLoc $ HsRule noExt (noLoc (quotedSourceText nm,nm'))
act bndrs' lhs' rhs']
}
cvtPragmaD (AnnP target exp)
= do { exp' <- cvtl exp
; target' <- case target of
ModuleAnnotation -> return ModuleAnnProvenance
TypeAnnotation n -> do
n' <- tconName n
return (TypeAnnProvenance (noLoc n'))
ValueAnnotation n -> do
n' <- vcName n
return (ValueAnnProvenance (noLoc n'))
; returnJustL $ Hs.AnnD noExt
$ HsAnnotation noExt (SourceText "{-# ANN") target' exp'
}
cvtPragmaD (LineP line file)
= do { setL (srcLocSpan (mkSrcLoc (fsLit file) line 1))
; return Nothing
}
cvtPragmaD (CompleteP cls mty)
= do { cls' <- noLoc <$> mapM cNameL cls
; mty' <- traverse tconNameL mty
; returnJustL $ Hs.SigD noExt
$ CompleteMatchSig noExt NoSourceText cls' mty' }
dfltActivation :: TH.Inline -> Activation
dfltActivation TH.NoInline = NeverActive
dfltActivation _ = AlwaysActive
cvtInline :: TH.Inline -> Hs.InlineSpec
cvtInline TH.NoInline = Hs.NoInline
cvtInline TH.Inline = Hs.Inline
cvtInline TH.Inlinable = Hs.Inlinable
cvtRuleMatch :: TH.RuleMatch -> RuleMatchInfo
cvtRuleMatch TH.ConLike = Hs.ConLike
cvtRuleMatch TH.FunLike = Hs.FunLike
cvtPhases :: TH.Phases -> Activation -> Activation
cvtPhases AllPhases dflt = dflt
cvtPhases (FromPhase i) _ = ActiveAfter NoSourceText i
cvtPhases (BeforePhase i) _ = ActiveBefore NoSourceText i
cvtRuleBndr :: TH.RuleBndr -> CvtM (Hs.LRuleBndr GhcPs)
cvtRuleBndr (RuleVar n)
= do { n' <- vNameL n
; return $ noLoc $ Hs.RuleBndr noExt n' }
cvtRuleBndr (TypedRuleVar n ty)
= do { n' <- vNameL n
; ty' <- cvtType ty
; return $ noLoc $ Hs.RuleBndrSig noExt n' $ mkLHsSigWcType ty' }
cvtLocalDecs :: MsgDoc -> [TH.Dec] -> CvtM (HsLocalBinds GhcPs)
cvtLocalDecs doc ds
| null ds
= return (EmptyLocalBinds noExt)
| otherwise
= do { ds' <- cvtDecs ds
; let (binds, prob_sigs) = partitionWith is_bind ds'
; let (sigs, bads) = partitionWith is_sig prob_sigs
; unless (null bads) (failWith (mkBadDecMsg doc bads))
; return (HsValBinds noExt (ValBinds noExt (listToBag binds) sigs)) }
cvtClause :: HsMatchContext RdrName
-> TH.Clause -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtClause ctxt (Clause ps body wheres)
= do { ps' <- cvtPats ps
; let pps = map (parenthesizePat appPrec) ps'
; g' <- cvtGuard body
; ds' <- cvtLocalDecs (text "a where clause") wheres
; returnL $ Hs.Match noExt ctxt pps (GRHSs noExt g' (noLoc ds')) }
cvtl :: TH.Exp -> CvtM (LHsExpr GhcPs)
cvtl e = wrapL (cvt e)
where
cvt (VarE s) = do { s' <- vName s; return $ HsVar noExt (noLoc s') }
cvt (ConE s) = do { s' <- cName s; return $ HsVar noExt (noLoc s') }
cvt (LitE l)
| overloadedLit l = go cvtOverLit (HsOverLit noExt)
(hsOverLitNeedsParens appPrec)
| otherwise = go cvtLit (HsLit noExt)
(hsLitNeedsParens appPrec)
where
go :: (Lit -> CvtM (l GhcPs))
-> (l GhcPs -> HsExpr GhcPs)
-> (l GhcPs -> Bool)
-> CvtM (HsExpr GhcPs)
go cvt_lit mk_expr is_compound_lit = do
l' <- cvt_lit l
let e' = mk_expr l'
return $ if is_compound_lit l' then HsPar noExt (noLoc e') else e'
cvt (AppE x@(LamE _ _) y) = do { x' <- cvtl x; y' <- cvtl y
; return $ HsApp noExt (mkLHsPar x')
(mkLHsPar y')}
cvt (AppE x y) = do { x' <- cvtl x; y' <- cvtl y
; return $ HsApp noExt (mkLHsPar x')
(mkLHsPar y')}
cvt (AppTypeE e t) = do { e' <- cvtl e
; t' <- cvtType t
; tp <- wrap_apps t'
; let tp' = parenthesizeHsType appPrec tp
; return $ HsAppType (mkHsWildCardBndrs tp') e' }
cvt (LamE [] e) = cvt e
cvt (LamE ps e) = do { ps' <- cvtPats ps; e' <- cvtl e
; let pats = map (parenthesizePat appPrec) ps'
; return $ HsLam noExt (mkMatchGroup FromSource
[mkSimpleMatch LambdaExpr
pats e'])}
cvt (LamCaseE ms) = do { ms' <- mapM (cvtMatch CaseAlt) ms
; return $ HsLamCase noExt
(mkMatchGroup FromSource ms')
}
cvt (TupE [e]) = do { e' <- cvtl e; return $ HsPar noExt e' }
cvt (TupE es) = do { es' <- mapM cvtl es
; return $ ExplicitTuple noExt
(map (noLoc . (Present noExt)) es')
Boxed }
cvt (UnboxedTupE es) = do { es' <- mapM cvtl es
; return $ ExplicitTuple noExt
(map (noLoc . (Present noExt)) es')
Unboxed }
cvt (UnboxedSumE e alt arity) = do { e' <- cvtl e
; unboxedSumChecks alt arity
; return $ ExplicitSum noExt
alt arity e'}
cvt (CondE x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z;
; return $ HsIf noExt (Just noSyntaxExpr) x' y' z' }
cvt (MultiIfE alts)
| null alts = failWith (text "Multi-way if-expression with no alternatives")
| otherwise = do { alts' <- mapM cvtpair alts
; return $ HsMultiIf noExt alts' }
cvt (LetE ds e) = do { ds' <- cvtLocalDecs (text "a let expression") ds
; e' <- cvtl e; return $ HsLet noExt (noLoc ds') e'}
cvt (CaseE e ms) = do { e' <- cvtl e; ms' <- mapM (cvtMatch CaseAlt) ms
; return $ HsCase noExt e'
(mkMatchGroup FromSource ms') }
cvt (DoE ss) = cvtHsDo DoExpr ss
cvt (CompE ss) = cvtHsDo ListComp ss
cvt (ArithSeqE dd) = do { dd' <- cvtDD dd
; return $ ArithSeq noExt Nothing dd' }
cvt (ListE xs)
| Just s <- allCharLs xs = do { l' <- cvtLit (StringL s)
; return (HsLit noExt l') }
| otherwise = do { xs' <- mapM cvtl xs
; return $ ExplicitList noExt Nothing xs'
}
cvt (InfixE (Just x) s (Just y)) = do { x' <- cvtl x; s' <- cvtl s; y' <- cvtl y
; let px = parenthesizeHsExpr opPrec x'
py = parenthesizeHsExpr opPrec y'
; wrapParL (HsPar noExt) $
OpApp noExt px s' py }
cvt (InfixE Nothing s (Just y)) = do { s' <- cvtl s; y' <- cvtl y
; wrapParL (HsPar noExt) $
SectionR noExt s' y' }
cvt (InfixE (Just x) s Nothing ) = do { x' <- cvtl x; s' <- cvtl s
; wrapParL (HsPar noExt) $
SectionL noExt x' s' }
cvt (InfixE Nothing s Nothing ) = do { s' <- cvtl s
; return $ HsPar noExt s' }
cvt (UInfixE x s y) = do { x' <- cvtl x
; let x'' = case x' of
L _ (OpApp {}) -> x'
_ -> mkLHsPar x'
; cvtOpApp x'' s y }
cvt (ParensE e) = do { e' <- cvtl e; return $ HsPar noExt e' }
cvt (SigE e t) = do { e' <- cvtl e; t' <- cvtType t
; let pe = parenthesizeHsExpr sigPrec e'
; return $ ExprWithTySig (mkLHsSigWcType t') pe }
cvt (RecConE c flds) = do { c' <- cNameL c
; flds' <- mapM (cvtFld (mkFieldOcc . noLoc)) flds
; return $ mkRdrRecordCon c' (HsRecFields flds' Nothing) }
cvt (RecUpdE e flds) = do { e' <- cvtl e
; flds'
<- mapM (cvtFld (mkAmbiguousFieldOcc . noLoc))
flds
; return $ mkRdrRecordUpd e' flds' }
cvt (StaticE e) = fmap (HsStatic noExt) $ cvtl e
cvt (UnboundVarE s) = do { s' <- vName s; return $ HsVar noExt (noLoc s') }
cvt (LabelE s) = do { return $ HsOverLabel noExt Nothing (fsLit s) }
cvtFld :: (RdrName -> t) -> (TH.Name, TH.Exp)
-> CvtM (LHsRecField' t (LHsExpr GhcPs))
cvtFld f (v,e)
= do { v' <- vNameL v; e' <- cvtl e
; return (noLoc $ HsRecField { hsRecFieldLbl = fmap f v'
, hsRecFieldArg = e'
, hsRecPun = False}) }
cvtDD :: Range -> CvtM (ArithSeqInfo GhcPs)
cvtDD (FromR x) = do { x' <- cvtl x; return $ From x' }
cvtDD (FromThenR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromThen x' y' }
cvtDD (FromToR x y) = do { x' <- cvtl x; y' <- cvtl y; return $ FromTo x' y' }
cvtDD (FromThenToR x y z) = do { x' <- cvtl x; y' <- cvtl y; z' <- cvtl z; return $ FromThenTo x' y' z' }
cvtOpApp :: LHsExpr GhcPs -> TH.Exp -> TH.Exp -> CvtM (HsExpr GhcPs)
cvtOpApp x op1 (UInfixE y op2 z)
= do { l <- wrapL $ cvtOpApp x op1 y
; cvtOpApp l op2 z }
cvtOpApp x op y
= do { op' <- cvtl op
; y' <- cvtl y
; return (OpApp noExt x op' y') }
cvtHsDo :: HsStmtContext Name.Name -> [TH.Stmt] -> CvtM (HsExpr GhcPs)
cvtHsDo do_or_lc stmts
| null stmts = failWith (text "Empty stmt list in do-block")
| otherwise
= do { stmts' <- cvtStmts stmts
; let Just (stmts'', last') = snocView stmts'
; last'' <- case last' of
L loc (BodyStmt _ body _ _)
-> return (L loc (mkLastStmt body))
_ -> failWith (bad_last last')
; return $ HsDo noExt do_or_lc (noLoc (stmts'' ++ [last''])) }
where
bad_last stmt = vcat [ text "Illegal last statement of" <+> pprAStmtContext do_or_lc <> colon
, nest 2 $ Outputable.ppr stmt
, text "(It should be an expression.)" ]
cvtStmts :: [TH.Stmt] -> CvtM [Hs.LStmt GhcPs (LHsExpr GhcPs)]
cvtStmts = mapM cvtStmt
cvtStmt :: TH.Stmt -> CvtM (Hs.LStmt GhcPs (LHsExpr GhcPs))
cvtStmt (NoBindS e) = do { e' <- cvtl e; returnL $ mkBodyStmt e' }
cvtStmt (TH.BindS p e) = do { p' <- cvtPat p; e' <- cvtl e; returnL $ mkBindStmt p' e' }
cvtStmt (TH.LetS ds) = do { ds' <- cvtLocalDecs (text "a let binding") ds
; returnL $ LetStmt noExt (noLoc ds') }
cvtStmt (TH.ParS dss) = do { dss' <- mapM cvt_one dss
; returnL $ ParStmt noExt dss' noExpr noSyntaxExpr }
where
cvt_one ds = do { ds' <- cvtStmts ds
; return (ParStmtBlock noExt ds' undefined noSyntaxExpr) }
cvtMatch :: HsMatchContext RdrName
-> TH.Match -> CvtM (Hs.LMatch GhcPs (LHsExpr GhcPs))
cvtMatch ctxt (TH.Match p body decs)
= do { p' <- cvtPat p
; let lp = case p' of
L loc SigPat{} -> L loc (ParPat NoExt p')
_ -> p'
; g' <- cvtGuard body
; decs' <- cvtLocalDecs (text "a where clause") decs
; returnL $ Hs.Match noExt ctxt [lp] (GRHSs noExt g' (noLoc decs')) }
cvtGuard :: TH.Body -> CvtM [LGRHS GhcPs (LHsExpr GhcPs)]
cvtGuard (GuardedB pairs) = mapM cvtpair pairs
cvtGuard (NormalB e) = do { e' <- cvtl e
; g' <- returnL $ GRHS noExt [] e'; return [g'] }
cvtpair :: (TH.Guard, TH.Exp) -> CvtM (LGRHS GhcPs (LHsExpr GhcPs))
cvtpair (NormalG ge,rhs) = do { ge' <- cvtl ge; rhs' <- cvtl rhs
; g' <- returnL $ mkBodyStmt ge'
; returnL $ GRHS noExt [g'] rhs' }
cvtpair (PatG gs,rhs) = do { gs' <- cvtStmts gs; rhs' <- cvtl rhs
; returnL $ GRHS noExt gs' rhs' }
cvtOverLit :: Lit -> CvtM (HsOverLit GhcPs)
cvtOverLit (IntegerL i)
= do { force i; return $ mkHsIntegral (mkIntegralLit i) }
cvtOverLit (RationalL r)
= do { force r; return $ mkHsFractional (mkFractionalLit r) }
cvtOverLit (StringL s)
= do { let { s' = mkFastString s }
; force s'
; return $ mkHsIsString (quotedSourceText s) s'
}
cvtOverLit _ = panic "Convert.cvtOverLit: Unexpected overloaded literal"
allCharLs :: [TH.Exp] -> Maybe String
allCharLs xs
= case xs of
LitE (CharL c) : ys -> go [c] ys
_ -> Nothing
where
go cs [] = Just (reverse cs)
go cs (LitE (CharL c) : ys) = go (c:cs) ys
go _ _ = Nothing
cvtLit :: Lit -> CvtM (HsLit GhcPs)
cvtLit (IntPrimL i) = do { force i; return $ HsIntPrim NoSourceText i }
cvtLit (WordPrimL w) = do { force w; return $ HsWordPrim NoSourceText w }
cvtLit (FloatPrimL f)
= do { force f; return $ HsFloatPrim noExt (mkFractionalLit f) }
cvtLit (DoublePrimL f)
= do { force f; return $ HsDoublePrim noExt (mkFractionalLit f) }
cvtLit (CharL c) = do { force c; return $ HsChar NoSourceText c }
cvtLit (CharPrimL c) = do { force c; return $ HsCharPrim NoSourceText c }
cvtLit (StringL s) = do { let { s' = mkFastString s }
; force s'
; return $ HsString (quotedSourceText s) s' }
cvtLit (StringPrimL s) = do { let { s' = BS.pack s }
; force s'
; return $ HsStringPrim NoSourceText s' }
cvtLit _ = panic "Convert.cvtLit: Unexpected literal"
quotedSourceText :: String -> SourceText
quotedSourceText s = SourceText $ "\"" ++ s ++ "\""
cvtPats :: [TH.Pat] -> CvtM [Hs.LPat GhcPs]
cvtPats pats = mapM cvtPat pats
cvtPat :: TH.Pat -> CvtM (Hs.LPat GhcPs)
cvtPat pat = wrapL (cvtp pat)
cvtp :: TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtp (TH.LitP l)
| overloadedLit l = do { l' <- cvtOverLit l
; return (mkNPat (noLoc l') Nothing) }
| otherwise = do { l' <- cvtLit l; return $ Hs.LitPat noExt l' }
cvtp (TH.VarP s) = do { s' <- vName s
; return $ Hs.VarPat noExt (noLoc s') }
cvtp (TupP [p]) = do { p' <- cvtPat p; return $ ParPat noExt p' }
cvtp (TupP ps) = do { ps' <- cvtPats ps
; return $ TuplePat noExt ps' Boxed }
cvtp (UnboxedTupP ps) = do { ps' <- cvtPats ps
; return $ TuplePat noExt ps' Unboxed }
cvtp (UnboxedSumP p alt arity)
= do { p' <- cvtPat p
; unboxedSumChecks alt arity
; return $ SumPat noExt p' alt arity }
cvtp (ConP s ps) = do { s' <- cNameL s; ps' <- cvtPats ps
; let pps = map (parenthesizePat appPrec) ps'
; return $ ConPatIn s' (PrefixCon pps) }
cvtp (InfixP p1 s p2) = do { s' <- cNameL s; p1' <- cvtPat p1; p2' <- cvtPat p2
; wrapParL (ParPat noExt) $
ConPatIn s' $
InfixCon (parenthesizePat opPrec p1')
(parenthesizePat opPrec p2') }
cvtp (UInfixP p1 s p2) = do { p1' <- cvtPat p1; cvtOpAppP p1' s p2 }
cvtp (ParensP p) = do { p' <- cvtPat p;
; case p' of
(L _ (ParPat {})) -> return $ unLoc p'
_ -> return $ ParPat noExt p' }
cvtp (TildeP p) = do { p' <- cvtPat p; return $ LazyPat noExt p' }
cvtp (BangP p) = do { p' <- cvtPat p; return $ BangPat noExt p' }
cvtp (TH.AsP s p) = do { s' <- vNameL s; p' <- cvtPat p
; return $ AsPat noExt s' p' }
cvtp TH.WildP = return $ WildPat noExt
cvtp (RecP c fs) = do { c' <- cNameL c; fs' <- mapM cvtPatFld fs
; return $ ConPatIn c'
$ Hs.RecCon (HsRecFields fs' Nothing) }
cvtp (ListP ps) = do { ps' <- cvtPats ps
; return
$ ListPat noExt ps'}
cvtp (SigP p t) = do { p' <- cvtPat p; t' <- cvtType t
; return $ SigPat (mkLHsSigWcType t') p' }
cvtp (ViewP e p) = do { e' <- cvtl e; p' <- cvtPat p
; return $ ViewPat noExt e' p'}
cvtPatFld :: (TH.Name, TH.Pat) -> CvtM (LHsRecField GhcPs (LPat GhcPs))
cvtPatFld (s,p)
= do { L ls s' <- vNameL s; p' <- cvtPat p
; return (noLoc $ HsRecField { hsRecFieldLbl
= L ls $ mkFieldOcc (L ls s')
, hsRecFieldArg = p'
, hsRecPun = False}) }
cvtOpAppP :: Hs.LPat GhcPs -> TH.Name -> TH.Pat -> CvtM (Hs.Pat GhcPs)
cvtOpAppP x op1 (UInfixP y op2 z)
= do { l <- wrapL $ cvtOpAppP x op1 y
; cvtOpAppP l op2 z }
cvtOpAppP x op y
= do { op' <- cNameL op
; y' <- cvtPat y
; return (ConPatIn op' (InfixCon x y')) }
cvtTvs :: [TH.TyVarBndr] -> CvtM (LHsQTyVars GhcPs)
cvtTvs tvs = do { tvs' <- mapM cvt_tv tvs; return (mkHsQTvs tvs') }
cvt_tv :: TH.TyVarBndr -> CvtM (LHsTyVarBndr GhcPs)
cvt_tv (TH.PlainTV nm)
= do { nm' <- tNameL nm
; returnL $ UserTyVar noExt nm' }
cvt_tv (TH.KindedTV nm ki)
= do { nm' <- tNameL nm
; ki' <- cvtKind ki
; returnL $ KindedTyVar noExt nm' ki' }
cvtRole :: TH.Role -> Maybe Coercion.Role
cvtRole TH.NominalR = Just Coercion.Nominal
cvtRole TH.RepresentationalR = Just Coercion.Representational
cvtRole TH.PhantomR = Just Coercion.Phantom
cvtRole TH.InferR = Nothing
cvtContext :: TH.Cxt -> CvtM (LHsContext GhcPs)
cvtContext tys = do { preds' <- mapM cvtPred tys; returnL preds' }
cvtPred :: TH.Pred -> CvtM (LHsType GhcPs)
cvtPred = cvtType
cvtDerivClause :: TH.DerivClause
-> CvtM (LHsDerivingClause GhcPs)
cvtDerivClause (TH.DerivClause ds ctxt)
= do { ctxt' <- fmap (map mkLHsSigType) <$> cvtContext ctxt
; ds' <- traverse cvtDerivStrategy ds
; returnL $ HsDerivingClause noExt ds' ctxt' }
cvtDerivStrategy :: TH.DerivStrategy -> CvtM (Hs.LDerivStrategy GhcPs)
cvtDerivStrategy TH.StockStrategy = returnL Hs.StockStrategy
cvtDerivStrategy TH.AnyclassStrategy = returnL Hs.AnyclassStrategy
cvtDerivStrategy TH.NewtypeStrategy = returnL Hs.NewtypeStrategy
cvtDerivStrategy (TH.ViaStrategy ty) = do
ty' <- cvtType ty
returnL $ Hs.ViaStrategy (mkLHsSigType ty')
cvtType :: TH.Type -> CvtM (LHsType GhcPs)
cvtType = cvtTypeKind "type"
cvtTypeKind :: String -> TH.Type -> CvtM (LHsType GhcPs)
cvtTypeKind ty_str ty
= do { (head_ty, tys') <- split_ty_app ty
; case head_ty of
TupleT n
| tys' `lengthIs` n
-> if n==1 then return (head tys')
else returnL (HsTupleTy noExt
HsBoxedOrConstraintTuple tys')
| n == 1
-> failWith (ptext (sLit ("Illegal 1-tuple " ++ ty_str ++ " constructor")))
| otherwise
-> mk_apps (HsTyVar noExt NotPromoted
(noLoc (getRdrName (tupleTyCon Boxed n)))) tys'
UnboxedTupleT n
| tys' `lengthIs` n
-> returnL (HsTupleTy noExt HsUnboxedTuple tys')
| otherwise
-> mk_apps (HsTyVar noExt NotPromoted
(noLoc (getRdrName (tupleTyCon Unboxed n)))) tys'
UnboxedSumT n
| n < 2
-> failWith $
vcat [ text "Illegal sum arity:" <+> text (show n)
, nest 2 $
text "Sums must have an arity of at least 2" ]
| tys' `lengthIs` n
-> returnL (HsSumTy noExt tys')
| otherwise
-> mk_apps (HsTyVar noExt NotPromoted
(noLoc (getRdrName (sumTyCon n))))
tys'
ArrowT
| [x',y'] <- tys' -> do
x'' <- case x' of
L _ HsFunTy{} -> returnL (HsParTy noExt x')
L _ HsForAllTy{} -> returnL (HsParTy noExt x')
L _ HsQualTy{} -> returnL (HsParTy noExt x')
_ -> return x'
returnL (HsFunTy noExt x'' y')
| otherwise ->
mk_apps (HsTyVar noExt NotPromoted
(noLoc (getRdrName funTyCon)))
tys'
ListT
| [x'] <- tys' -> returnL (HsListTy noExt x')
| otherwise ->
mk_apps (HsTyVar noExt NotPromoted
(noLoc (getRdrName listTyCon)))
tys'
VarT nm -> do { nm' <- tNameL nm
; mk_apps (HsTyVar noExt NotPromoted nm') tys' }
ConT nm -> do { nm' <- tconName nm
;
let prom = if isRdrDataCon nm'
then Promoted
else NotPromoted
; mk_apps (HsTyVar noExt prom (noLoc nm')) tys'}
ForallT tvs cxt ty
| null tys'
-> do { tvs' <- cvtTvs tvs
; cxt' <- cvtContext cxt
; ty' <- cvtType ty
; loc <- getL
; let hs_ty = mkHsForAllTy tvs loc tvs' rho_ty
rho_ty = mkHsQualTy cxt loc cxt' ty'
; return hs_ty }
SigT ty ki
-> do { ty' <- cvtType ty
; ki' <- cvtKind ki
; mk_apps (HsKindSig noExt ty' ki') tys'
}
LitT lit
-> returnL (HsTyLit noExt (cvtTyLit lit))
WildCardT
-> mk_apps mkAnonWildCardTy tys'
InfixT t1 s t2
-> do { s' <- tconName s
; t1' <- cvtType t1
; t2' <- cvtType t2
; mk_apps (HsTyVar noExt NotPromoted (noLoc s')) [t1', t2']
}
UInfixT t1 s t2
-> do { t2' <- cvtType t2
; cvtOpAppT t1 s t2'
}
ParensT t
-> do { t' <- cvtType t
; returnL $ HsParTy noExt t'
}
PromotedT nm -> do { nm' <- cName nm
; mk_apps (HsTyVar noExt Promoted
(noLoc nm')) tys' }
PromotedTupleT n
| n == 1
-> failWith (ptext (sLit ("Illegal promoted 1-tuple " ++ ty_str)))
| m == n
-> returnL (HsExplicitTupleTy noExt tys')
| otherwise
-> mk_apps (HsTyVar noExt Promoted
(noLoc (getRdrName (tupleDataCon Boxed n)))) tys'
where
m = length tys'
PromotedNilT
-> returnL (HsExplicitListTy noExt Promoted [])
PromotedConsT
| [ty1, L _ (HsExplicitListTy _ ip tys2)] <- tys'
-> returnL (HsExplicitListTy noExt ip (ty1:tys2))
| otherwise
-> mk_apps (HsTyVar noExt Promoted
(noLoc (getRdrName consDataCon)))
tys'
StarT
-> returnL (HsTyVar noExt NotPromoted (noLoc
(getRdrName liftedTypeKindTyCon)))
ConstraintT
-> returnL (HsTyVar noExt NotPromoted
(noLoc (getRdrName constraintKindTyCon)))
EqualityT
| [x',y'] <- tys' ->
let px = parenthesizeHsType opPrec x'
py = parenthesizeHsType opPrec y'
in returnL (HsOpTy noExt px (noLoc eqTyCon_RDR) py)
| otherwise ->
mk_apps (HsTyVar noExt NotPromoted
(noLoc eqTyCon_RDR)) tys'
_ -> failWith (ptext (sLit ("Malformed " ++ ty_str)) <+> text (show ty))
}
mk_apps :: HsType GhcPs -> [LHsType GhcPs] -> CvtM (LHsType GhcPs)
mk_apps head_ty [] = returnL head_ty
mk_apps head_ty (ty:tys) =
do { head_ty' <- returnL head_ty
; p_ty <- add_parens ty
; mk_apps (HsAppTy noExt head_ty' p_ty) tys }
where
add_parens lt@(L _ t)
| hsTypeNeedsParens appPrec t = returnL (HsParTy noExt lt)
| otherwise = return lt
wrap_apps :: LHsType GhcPs -> CvtM (LHsType GhcPs)
wrap_apps t@(L _ HsAppTy {}) = returnL (HsParTy noExt t)
wrap_apps t = return t
mk_arr_apps :: [LHsType GhcPs] -> HsType GhcPs -> CvtM (LHsType GhcPs)
mk_arr_apps tys return_ty = foldrM go return_ty tys >>= returnL
where go :: LHsType GhcPs -> HsType GhcPs -> CvtM (HsType GhcPs)
go arg ret_ty = do { ret_ty_l <- returnL ret_ty
; return (HsFunTy noExt arg ret_ty_l) }
split_ty_app :: TH.Type -> CvtM (TH.Type, [LHsType GhcPs])
split_ty_app ty = go ty []
where
go (AppT f a) as' = do { a' <- cvtType a; go f (a':as') }
go f as = return (f,as)
cvtTyLit :: TH.TyLit -> HsTyLit
cvtTyLit (TH.NumTyLit i) = HsNumTy NoSourceText i
cvtTyLit (TH.StrTyLit s) = HsStrTy NoSourceText (fsLit s)
cvtOpAppT :: TH.Type -> TH.Name -> LHsType GhcPs -> CvtM (LHsType GhcPs)
cvtOpAppT (UInfixT x op2 y) op1 z
= do { l <- cvtOpAppT y op1 z
; cvtOpAppT x op2 l }
cvtOpAppT x op y
= do { op' <- tconNameL op
; x' <- cvtType x
; returnL (mkHsOpTy x' op' y) }
cvtKind :: TH.Kind -> CvtM (LHsKind GhcPs)
cvtKind = cvtTypeKind "kind"
cvtMaybeKindToFamilyResultSig :: Maybe TH.Kind
-> CvtM (LFamilyResultSig GhcPs)
cvtMaybeKindToFamilyResultSig Nothing = returnL (Hs.NoSig noExt)
cvtMaybeKindToFamilyResultSig (Just ki) = do { ki' <- cvtKind ki
; returnL (Hs.KindSig noExt ki') }
cvtFamilyResultSig :: TH.FamilyResultSig -> CvtM (Hs.LFamilyResultSig GhcPs)
cvtFamilyResultSig TH.NoSig = returnL (Hs.NoSig noExt)
cvtFamilyResultSig (TH.KindSig ki) = do { ki' <- cvtKind ki
; returnL (Hs.KindSig noExt ki') }
cvtFamilyResultSig (TH.TyVarSig bndr) = do { tv <- cvt_tv bndr
; returnL (Hs.TyVarSig noExt tv) }
cvtInjectivityAnnotation :: TH.InjectivityAnn
-> CvtM (Hs.LInjectivityAnn GhcPs)
cvtInjectivityAnnotation (TH.InjectivityAnn annLHS annRHS)
= do { annLHS' <- tNameL annLHS
; annRHS' <- mapM tNameL annRHS
; returnL (Hs.InjectivityAnn annLHS' annRHS') }
cvtPatSynSigTy :: TH.Type -> CvtM (LHsType GhcPs)
cvtPatSynSigTy (ForallT univs reqs (ForallT exis provs ty))
| null exis, null provs = cvtType (ForallT univs reqs ty)
| null univs, null reqs = do { l <- getL
; ty' <- cvtType (ForallT exis provs ty)
; return $ L l (HsQualTy { hst_ctxt = L l []
, hst_xqual = noExt
, hst_body = ty' }) }
| null reqs = do { l <- getL
; univs' <- hsQTvExplicit <$> cvtTvs univs
; ty' <- cvtType (ForallT exis provs ty)
; let forTy = HsForAllTy { hst_bndrs = univs'
, hst_xforall = noExt
, hst_body = L l cxtTy }
cxtTy = HsQualTy { hst_ctxt = L l []
, hst_xqual = noExt
, hst_body = ty' }
; return $ L l forTy }
| otherwise = cvtType (ForallT univs reqs (ForallT exis provs ty))
cvtPatSynSigTy ty = cvtType ty
cvtFixity :: TH.Fixity -> Hs.Fixity
cvtFixity (TH.Fixity prec dir) = Hs.Fixity NoSourceText prec (cvt_dir dir)
where
cvt_dir TH.InfixL = Hs.InfixL
cvt_dir TH.InfixR = Hs.InfixR
cvt_dir TH.InfixN = Hs.InfixN
overloadedLit :: Lit -> Bool
overloadedLit (IntegerL _) = True
overloadedLit (RationalL _) = True
overloadedLit _ = False
unboxedSumChecks :: TH.SumAlt -> TH.SumArity -> CvtM ()
unboxedSumChecks alt arity
| alt > arity
= failWith $ text "Sum alternative" <+> text (show alt)
<+> text "exceeds its arity," <+> text (show arity)
| alt <= 0
= failWith $ vcat [ text "Illegal sum alternative:" <+> text (show alt)
, nest 2 $ text "Sum alternatives must start from 1" ]
| arity < 2
= failWith $ vcat [ text "Illegal sum arity:" <+> text (show arity)
, nest 2 $ text "Sums must have an arity of at least 2" ]
| otherwise
= return ()
mkHsForAllTy :: [TH.TyVarBndr]
-> SrcSpan
-> LHsQTyVars GhcPs
-> LHsType GhcPs
-> LHsType GhcPs
mkHsForAllTy tvs loc tvs' rho_ty
| null tvs = rho_ty
| otherwise = L loc $ HsForAllTy { hst_bndrs = hsQTvExplicit tvs'
, hst_xforall = noExt
, hst_body = rho_ty }
mkHsQualTy :: TH.Cxt
-> SrcSpan
-> LHsContext GhcPs
-> LHsType GhcPs
-> LHsType GhcPs
mkHsQualTy ctxt loc ctxt' ty
| null ctxt = ty
| otherwise = L loc $ HsQualTy { hst_xqual = noExt, hst_ctxt = ctxt'
, hst_body = ty }
vNameL, cNameL, vcNameL, tNameL, tconNameL :: TH.Name -> CvtM (Located RdrName)
vName, cName, vcName, tName, tconName :: TH.Name -> CvtM RdrName
vNameL n = wrapL (vName n)
vName n = cvtName OccName.varName n
cNameL n = wrapL (cName n)
cName n = cvtName OccName.dataName n
vcNameL n = wrapL (vcName n)
vcName n = if isVarName n then vName n else cName n
tNameL n = wrapL (tName n)
tName n = cvtName OccName.tvName n
tconNameL n = wrapL (tconName n)
tconName n = cvtName OccName.tcClsName n
cvtName :: OccName.NameSpace -> TH.Name -> CvtM RdrName
cvtName ctxt_ns (TH.Name occ flavour)
| not (okOcc ctxt_ns occ_str) = failWith (badOcc ctxt_ns occ_str)
| otherwise
= do { loc <- getL
; let rdr_name = thRdrName loc ctxt_ns occ_str flavour
; force rdr_name
; return rdr_name }
where
occ_str = TH.occString occ
okOcc :: OccName.NameSpace -> String -> Bool
okOcc ns str
| OccName.isVarNameSpace ns = okVarOcc str
| OccName.isDataConNameSpace ns = okConOcc str
| otherwise = okTcOcc str
isVarName :: TH.Name -> Bool
isVarName (TH.Name occ _)
= case TH.occString occ of
"" -> False
(c:_) -> startsVarId c || startsVarSym c
badOcc :: OccName.NameSpace -> String -> SDoc
badOcc ctxt_ns occ
= text "Illegal" <+> pprNameSpace ctxt_ns
<+> text "name:" <+> quotes (text occ)
thRdrName :: SrcSpan -> OccName.NameSpace -> String -> TH.NameFlavour -> RdrName
thRdrName loc ctxt_ns th_occ th_name
= case th_name of
TH.NameG th_ns pkg mod -> thOrigRdrName th_occ th_ns pkg mod
TH.NameQ mod -> (mkRdrQual $! mk_mod mod) $! occ
TH.NameL uniq -> nameRdrName $! (((Name.mkInternalName $! mk_uniq uniq) $! occ) loc)
TH.NameU uniq -> nameRdrName $! (((Name.mkSystemNameAt $! mk_uniq uniq) $! occ) loc)
TH.NameS | Just name <- isBuiltInOcc_maybe occ -> nameRdrName $! name
| otherwise -> mkRdrUnqual $! occ
where
occ :: OccName.OccName
occ = mk_occ ctxt_ns th_occ
thOrigRdrName :: String -> TH.NameSpace -> PkgName -> ModName -> RdrName
thOrigRdrName occ th_ns pkg mod =
let occ' = mk_occ (mk_ghc_ns th_ns) occ
in case isBuiltInOcc_maybe occ' of
Just name -> nameRdrName name
Nothing -> (mkOrig $! (mkModule (mk_pkg pkg) (mk_mod mod))) $! occ'
thRdrNameGuesses :: TH.Name -> [RdrName]
thRdrNameGuesses (TH.Name occ flavour)
| TH.NameG th_ns pkg mod <- flavour = [ thOrigRdrName occ_str th_ns pkg mod]
| otherwise = [ thRdrName noSrcSpan gns occ_str flavour
| gns <- guessed_nss]
where
guessed_nss | isLexCon (mkFastString occ_str) = [OccName.tcName, OccName.dataName]
| otherwise = [OccName.varName, OccName.tvName]
occ_str = TH.occString occ
mk_occ :: OccName.NameSpace -> String -> OccName.OccName
mk_occ ns occ = OccName.mkOccName ns occ
mk_ghc_ns :: TH.NameSpace -> OccName.NameSpace
mk_ghc_ns TH.DataName = OccName.dataName
mk_ghc_ns TH.TcClsName = OccName.tcClsName
mk_ghc_ns TH.VarName = OccName.varName
mk_mod :: TH.ModName -> ModuleName
mk_mod mod = mkModuleName (TH.modString mod)
mk_pkg :: TH.PkgName -> UnitId
mk_pkg pkg = stringToUnitId (TH.pkgString pkg)
mk_uniq :: Int -> Unique
mk_uniq u = mkUniqueGrimily u