{-
(c) The University of Glasgow 2006-2012
(c) The GRASP Project, Glasgow University, 1992-2002

-}


{-# LANGUAGE TypeFamilies #-}

module GHC.Tc.Gen.Sig(
       TcSigInfo(..),
       TcIdSigInfo(..), TcIdSigInst,
       TcPatSynInfo(..),
       TcSigFun,

       isPartialSig, hasCompleteSig, tcIdSigName, tcSigInfoName,
       completeSigPolyId_maybe, isCompleteHsSig,
       lhsSigWcTypeContextSpan, lhsSigTypeContextSpan,

       tcTySigs, tcUserTypeSig, completeSigFromId,
       tcInstSig,

       TcPragEnv, emptyPragEnv, lookupPragEnv, extendPragEnv,
       mkPragEnv, tcSpecPrags, tcSpecWrapper, tcImpPrags,
       addInlinePrags, addInlinePragArity
   ) where

import GHC.Prelude

import GHC.Driver.Session
import GHC.Driver.Backend

import GHC.Hs


import GHC.Tc.Errors.Types ( FixedRuntimeRepProvenance(..), TcRnMessage(..) )
import GHC.Tc.Gen.HsType
import GHC.Tc.Types
import GHC.Tc.Solver( pushLevelAndSolveEqualitiesX, reportUnsolvedEqualities )
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcMType ( checkTypeHasFixedRuntimeRep )
import GHC.Tc.Utils.Zonk
import GHC.Tc.Types.Origin
import GHC.Tc.Utils.TcType
import GHC.Tc.Validity ( checkValidType )
import GHC.Tc.Utils.Unify( tcSkolemise, unifyType )
import GHC.Tc.Utils.Instantiate( topInstantiate, tcInstTypeBndrs )
import GHC.Tc.Utils.Env( tcLookupId )
import GHC.Tc.Types.Evidence( HsWrapper, (<.>) )

import GHC.Core( hasSomeUnfolding )
import GHC.Core.Type ( mkTyVarBinders )
import GHC.Core.Multiplicity

import GHC.Types.Error
import GHC.Types.Var ( TyVar, Specificity(..), tyVarKind, binderVars )
import GHC.Types.Id  ( Id, idName, idType, setInlinePragma
                     , mkLocalId, realIdUnfolding )
import GHC.Types.Basic
import GHC.Types.Name
import GHC.Types.Name.Env
import GHC.Types.SrcLoc

import GHC.Builtin.Names( mkUnboundName )
import GHC.Unit.Module( getModule )

import GHC.Utils.Misc as Utils ( singleton )
import GHC.Utils.Outputable
import GHC.Utils.Panic

import GHC.Data.Maybe( orElse )

import Data.Maybe( mapMaybe )
import Control.Monad( unless )


{- -------------------------------------------------------------
          Note [Overview of type signatures]
----------------------------------------------------------------
Type signatures, including partial signatures, are jolly tricky,
especially on value bindings.  Here's an overview.

    f :: forall a. [a] -> [a]
    g :: forall b. _ -> b

    f = ...g...
    g = ...f...

* HsSyn: a signature in a binding starts off as a TypeSig, in
  type HsBinds.Sig

* When starting a mutually recursive group, like f/g above, we
  call tcTySig on each signature in the group.

* tcTySig: Sig -> TcIdSigInfo
  - For a /complete/ signature, like 'f' above, tcTySig kind-checks
    the HsType, producing a Type, and wraps it in a CompleteSig, and
    extend the type environment with this polymorphic 'f'.

  - For a /partial/signature, like 'g' above, tcTySig does nothing
    Instead it just wraps the pieces in a PartialSig, to be handled
    later.

* tcInstSig: TcIdSigInfo -> TcIdSigInst
  In tcMonoBinds, when looking at an individual binding, we use
  tcInstSig to instantiate the signature forall's in the signature,
  and attribute that instantiated (monomorphic) type to the
  binder.  You can see this in GHC.Tc.Gen.Bind.tcLhsId.

  The instantiation does the obvious thing for complete signatures,
  but for /partial/ signatures it starts from the HsSyn, so it
  has to kind-check it etc: tcHsPartialSigType.  It's convenient
  to do this at the same time as instantiation, because we can
  make the wildcards into unification variables right away, raather
  than somehow quantifying over them.  And the "TcLevel" of those
  unification variables is correct because we are in tcMonoBinds.


Note [Binding scoped type variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The type variables *brought into lexical scope* by a type signature
may be a subset of the *quantified type variables* of the signatures,
for two reasons:

* With kind polymorphism a signature like
    f :: forall f a. f a -> f a
  may actually give rise to
    f :: forall k. forall (f::k -> *) (a:k). f a -> f a
  So the sig_tvs will be [k,f,a], but only f,a are scoped.
  NB: the scoped ones are not necessarily the *initial* ones!

* Even aside from kind polymorphism, there may be more instantiated
  type variables than lexically-scoped ones.  For example:
        type T a = forall b. b -> (a,b)
        f :: forall c. T c
  Here, the signature for f will have one scoped type variable, c,
  but two instantiated type variables, c' and b'.

However, all of this only applies to the renamer.  The typechecker
just puts all of them into the type environment; any lexical-scope
errors were dealt with by the renamer.

-}


{- *********************************************************************
*                                                                      *
             Utility functions for TcSigInfo
*                                                                      *
********************************************************************* -}

tcIdSigName :: TcIdSigInfo -> Name
tcIdSigName :: TcIdSigInfo -> Name
tcIdSigName (CompleteSig { sig_bndr :: TcIdSigInfo -> TcId
sig_bndr = TcId
id }) = TcId -> Name
idName TcId
id
tcIdSigName (PartialSig { psig_name :: TcIdSigInfo -> Name
psig_name = Name
n })  = Name
n

tcSigInfoName :: TcSigInfo -> Name
tcSigInfoName :: TcSigInfo -> Name
tcSigInfoName (TcIdSig     TcIdSigInfo
idsi) = TcIdSigInfo -> Name
tcIdSigName TcIdSigInfo
idsi
tcSigInfoName (TcPatSynSig TcPatSynInfo
tpsi) = TcPatSynInfo -> Name
patsig_name TcPatSynInfo
tpsi

completeSigPolyId_maybe :: TcSigInfo -> Maybe TcId
completeSigPolyId_maybe :: TcSigInfo -> Maybe TcId
completeSigPolyId_maybe TcSigInfo
sig
  | TcIdSig TcIdSigInfo
sig_info <- TcSigInfo
sig
  , CompleteSig { sig_bndr :: TcIdSigInfo -> TcId
sig_bndr = TcId
id } <- TcIdSigInfo
sig_info = TcId -> Maybe TcId
forall a. a -> Maybe a
Just TcId
id
  | Bool
otherwise                                 = Maybe TcId
forall a. Maybe a
Nothing


{- *********************************************************************
*                                                                      *
               Typechecking user signatures
*                                                                      *
********************************************************************* -}

tcTySigs :: [LSig GhcRn] -> TcM ([TcId], TcSigFun)
tcTySigs :: [LSig GhcRn] -> TcM ([TcId], TcSigFun)
tcTySigs [LSig GhcRn]
hs_sigs
  = TcM ([TcId], TcSigFun) -> TcM ([TcId], TcSigFun)
forall r. TcM r -> TcM r
checkNoErrs (TcM ([TcId], TcSigFun) -> TcM ([TcId], TcSigFun))
-> TcM ([TcId], TcSigFun) -> TcM ([TcId], TcSigFun)
forall a b. (a -> b) -> a -> b
$
    do { -- Fail if any of the signatures is duff
         -- Hence mapAndReportM
         -- See Note [Fail eagerly on bad signatures]
         [[TcSigInfo]]
ty_sigs_s <- (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
 -> TcRn [TcSigInfo])
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> TcRn [[TcSigInfo]]
forall a b. (a -> TcRn b) -> [a] -> TcRn [b]
mapAndReportM LSig GhcRn -> TcRn [TcSigInfo]
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> TcRn [TcSigInfo]
tcTySig [LSig GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
hs_sigs

       ; let ty_sigs :: [TcSigInfo]
ty_sigs = [[TcSigInfo]] -> [TcSigInfo]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[TcSigInfo]]
ty_sigs_s
             poly_ids :: [TcId]
poly_ids = (TcSigInfo -> Maybe TcId) -> [TcSigInfo] -> [TcId]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe TcSigInfo -> Maybe TcId
completeSigPolyId_maybe [TcSigInfo]
ty_sigs
                        -- The returned [TcId] are the ones for which we have
                        -- a complete type signature.
                        -- See Note [Complete and partial type signatures]
             env :: NameEnv TcSigInfo
env = [(Name, TcSigInfo)] -> NameEnv TcSigInfo
forall a. [(Name, a)] -> NameEnv a
mkNameEnv [(TcSigInfo -> Name
tcSigInfoName TcSigInfo
sig, TcSigInfo
sig) | TcSigInfo
sig <- [TcSigInfo]
ty_sigs]

       ; ([TcId], TcSigFun) -> TcM ([TcId], TcSigFun)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([TcId]
poly_ids, NameEnv TcSigInfo -> TcSigFun
forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv NameEnv TcSigInfo
env) }

tcTySig :: LSig GhcRn -> TcM [TcSigInfo]
tcTySig :: LSig GhcRn -> TcRn [TcSigInfo]
tcTySig (L SrcSpanAnn' (EpAnn AnnListItem)
_ (IdSig XIdSig GhcRn
_ TcId
id))
  = do { let ctxt :: UserTypeCtxt
ctxt = Name -> ReportRedundantConstraints -> UserTypeCtxt
FunSigCtxt (TcId -> Name
idName TcId
id) ReportRedundantConstraints
NoRRC
                    -- NoRRC: do not report redundant constraints
                    -- The user has no control over the signature!
             sig :: TcIdSigInfo
sig = UserTypeCtxt -> TcId -> TcIdSigInfo
completeSigFromId UserTypeCtxt
ctxt TcId
id
       ; [TcSigInfo] -> TcRn [TcSigInfo]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return [TcIdSigInfo -> TcSigInfo
TcIdSig TcIdSigInfo
sig] }

tcTySig (L SrcSpanAnn' (EpAnn AnnListItem)
loc (TypeSig XTypeSig GhcRn
_ [LIdP GhcRn]
names LHsSigWcType GhcRn
sig_ty))
  = SrcSpanAnn' (EpAnn AnnListItem)
-> TcRn [TcSigInfo] -> TcRn [TcSigInfo]
forall ann a. SrcSpanAnn' ann -> TcRn a -> TcRn a
setSrcSpanA SrcSpanAnn' (EpAnn AnnListItem)
loc (TcRn [TcSigInfo] -> TcRn [TcSigInfo])
-> TcRn [TcSigInfo] -> TcRn [TcSigInfo]
forall a b. (a -> b) -> a -> b
$
    do { [TcIdSigInfo]
sigs <- [IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo]
-> IOEnv (Env TcGblEnv TcLclEnv) [TcIdSigInfo]
forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
forall (m :: * -> *) a. Monad m => [m a] -> m [a]
sequence [ SrcSpan
-> LHsSigWcType GhcRn
-> Maybe Name
-> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo
tcUserTypeSig (SrcSpanAnn' (EpAnn AnnListItem) -> SrcSpan
forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnn' (EpAnn AnnListItem)
loc) LHsSigWcType GhcRn
sig_ty (Name -> Maybe Name
forall a. a -> Maybe a
Just Name
name)
                          | L SrcSpanAnnN
_ Name
name <- [LIdP GhcRn]
[GenLocated SrcSpanAnnN Name]
names ]
       ; [TcSigInfo] -> TcRn [TcSigInfo]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ((TcIdSigInfo -> TcSigInfo) -> [TcIdSigInfo] -> [TcSigInfo]
forall a b. (a -> b) -> [a] -> [b]
map TcIdSigInfo -> TcSigInfo
TcIdSig [TcIdSigInfo]
sigs) }

tcTySig (L SrcSpanAnn' (EpAnn AnnListItem)
loc (PatSynSig XPatSynSig GhcRn
_ [LIdP GhcRn]
names LHsSigType GhcRn
sig_ty))
  = SrcSpanAnn' (EpAnn AnnListItem)
-> TcRn [TcSigInfo] -> TcRn [TcSigInfo]
forall ann a. SrcSpanAnn' ann -> TcRn a -> TcRn a
setSrcSpanA SrcSpanAnn' (EpAnn AnnListItem)
loc (TcRn [TcSigInfo] -> TcRn [TcSigInfo])
-> TcRn [TcSigInfo] -> TcRn [TcSigInfo]
forall a b. (a -> b) -> a -> b
$
    do { [TcPatSynInfo]
tpsigs <- [IOEnv (Env TcGblEnv TcLclEnv) TcPatSynInfo]
-> IOEnv (Env TcGblEnv TcLclEnv) [TcPatSynInfo]
forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
forall (m :: * -> *) a. Monad m => [m a] -> m [a]
sequence [ Name
-> LHsSigType GhcRn -> IOEnv (Env TcGblEnv TcLclEnv) TcPatSynInfo
tcPatSynSig Name
name LHsSigType GhcRn
sig_ty
                            | L SrcSpanAnnN
_ Name
name <- [LIdP GhcRn]
[GenLocated SrcSpanAnnN Name]
names ]
       ; [TcSigInfo] -> TcRn [TcSigInfo]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ((TcPatSynInfo -> TcSigInfo) -> [TcPatSynInfo] -> [TcSigInfo]
forall a b. (a -> b) -> [a] -> [b]
map TcPatSynInfo -> TcSigInfo
TcPatSynSig [TcPatSynInfo]
tpsigs) }

tcTySig LSig GhcRn
_ = [TcSigInfo] -> TcRn [TcSigInfo]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return []


tcUserTypeSig :: SrcSpan -> LHsSigWcType GhcRn -> Maybe Name
              -> TcM TcIdSigInfo
-- A function or expression type signature
-- Returns a fully quantified type signature; even the wildcards
-- are quantified with ordinary skolems that should be instantiated
--
-- The SrcSpan is what to declare as the binding site of the
-- any skolems in the signature. For function signatures we
-- use the whole `f :: ty' signature; for expression signatures
-- just the type part.
--
-- Just n  => Function type signature       name :: type
-- Nothing => Expression type signature   <expr> :: type
tcUserTypeSig :: SrcSpan
-> LHsSigWcType GhcRn
-> Maybe Name
-> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo
tcUserTypeSig SrcSpan
loc LHsSigWcType GhcRn
hs_sig_ty Maybe Name
mb_name
  | LHsSigWcType GhcRn -> Bool
isCompleteHsSig LHsSigWcType GhcRn
hs_sig_ty
  = do { Kind
sigma_ty <- UserTypeCtxt -> LHsSigWcType GhcRn -> TcM Kind
tcHsSigWcType UserTypeCtxt
ctxt_no_rrc LHsSigWcType GhcRn
hs_sig_ty
       ; String -> SDoc -> TcRn ()
traceTc String
"tcuser" (Kind -> SDoc
forall a. Outputable a => a -> SDoc
ppr Kind
sigma_ty)
       ; TcIdSigInfo -> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TcIdSigInfo -> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo)
-> TcIdSigInfo -> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo
forall a b. (a -> b) -> a -> b
$
         CompleteSig { sig_bndr :: TcId
sig_bndr  = (() :: Constraint) => Name -> Kind -> Kind -> TcId
Name -> Kind -> Kind -> TcId
mkLocalId Name
name Kind
Many Kind
sigma_ty
                                   -- We use `Many' as the multiplicity here,
                                   -- as if this identifier corresponds to
                                   -- anything, it is a top-level
                                   -- definition. Which are all unrestricted in
                                   -- the current implementation.
                     , sig_ctxt :: UserTypeCtxt
sig_ctxt  = UserTypeCtxt
ctxt_rrc  -- Report redundant constraints
                     , sig_loc :: SrcSpan
sig_loc   = SrcSpan
loc } }
                       -- Location of the <type> in   f :: <type>

  -- Partial sig with wildcards
  | Bool
otherwise
  = TcIdSigInfo -> IOEnv (Env TcGblEnv TcLclEnv) TcIdSigInfo
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (PartialSig { psig_name :: Name
psig_name = Name
name, psig_hs_ty :: LHsSigWcType GhcRn
psig_hs_ty = LHsSigWcType GhcRn
hs_sig_ty
                       , sig_ctxt :: UserTypeCtxt
sig_ctxt = UserTypeCtxt
ctxt_no_rrc, sig_loc :: SrcSpan
sig_loc = SrcSpan
loc })
  where
    name :: Name
name   = case Maybe Name
mb_name of
               Just Name
n  -> Name
n
               Maybe Name
Nothing -> OccName -> Name
mkUnboundName (String -> OccName
mkVarOcc String
"<expression>")

    ctxt_rrc :: UserTypeCtxt
ctxt_rrc    = ReportRedundantConstraints -> UserTypeCtxt
ctxt_fn (LHsSigWcType GhcRn -> ReportRedundantConstraints
lhsSigWcTypeContextSpan LHsSigWcType GhcRn
hs_sig_ty)
    ctxt_no_rrc :: UserTypeCtxt
ctxt_no_rrc = ReportRedundantConstraints -> UserTypeCtxt
ctxt_fn ReportRedundantConstraints
NoRRC

    ctxt_fn :: ReportRedundantConstraints -> UserTypeCtxt
    ctxt_fn :: ReportRedundantConstraints -> UserTypeCtxt
ctxt_fn ReportRedundantConstraints
rcc = case Maybe Name
mb_name of
               Just Name
n  -> Name -> ReportRedundantConstraints -> UserTypeCtxt
FunSigCtxt Name
n ReportRedundantConstraints
rcc
               Maybe Name
Nothing -> ReportRedundantConstraints -> UserTypeCtxt
ExprSigCtxt ReportRedundantConstraints
rcc

lhsSigWcTypeContextSpan :: LHsSigWcType GhcRn -> ReportRedundantConstraints
-- | Find the location of the top-level context of a HsType.  For example:
--
-- @
--   forall a b. (Eq a, Ord b) => blah
--               ^^^^^^^^^^^^^
-- @
-- If there is none, return Nothing
lhsSigWcTypeContextSpan :: LHsSigWcType GhcRn -> ReportRedundantConstraints
lhsSigWcTypeContextSpan (HsWC { hswc_body :: forall pass thing. HsWildCardBndrs pass thing -> thing
hswc_body = LHsSigType GhcRn
sigType }) = LHsSigType GhcRn -> ReportRedundantConstraints
lhsSigTypeContextSpan LHsSigType GhcRn
sigType

lhsSigTypeContextSpan :: LHsSigType GhcRn -> ReportRedundantConstraints
lhsSigTypeContextSpan :: LHsSigType GhcRn -> ReportRedundantConstraints
lhsSigTypeContextSpan (L SrcSpanAnn' (EpAnn AnnListItem)
_ HsSig { sig_body :: forall pass. HsSigType pass -> LHsType pass
sig_body = XRec GhcRn (HsType GhcRn)
sig_ty }) = GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
-> ReportRedundantConstraints
forall {pass} {l} {a}.
(XRec pass (HsType pass) ~ GenLocated l (HsType pass),
 XRec pass [GenLocated l (HsType pass)]
 ~ GenLocated (SrcSpanAnn' a) [GenLocated l (HsType pass)]) =>
GenLocated l (HsType pass) -> ReportRedundantConstraints
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
sig_ty
  where
    go :: GenLocated l (HsType pass) -> ReportRedundantConstraints
go (L l
_ (HsQualTy { hst_ctxt :: forall pass. HsType pass -> LHsContext pass
hst_ctxt = L SrcSpanAnn' a
span [XRec pass (HsType pass)]
_ })) = SrcSpan -> ReportRedundantConstraints
WantRRC (SrcSpan -> ReportRedundantConstraints)
-> SrcSpan -> ReportRedundantConstraints
forall a b. (a -> b) -> a -> b
$ SrcSpanAnn' a -> SrcSpan
forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnn' a
span -- Found it!
    go (L l
_ (HsForAllTy { hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = XRec pass (HsType pass)
hs_ty })) = GenLocated l (HsType pass) -> ReportRedundantConstraints
go XRec pass (HsType pass)
GenLocated l (HsType pass)
hs_ty  -- Look under foralls
    go (L l
_ (HsParTy XParTy pass
_ XRec pass (HsType pass)
hs_ty)) = GenLocated l (HsType pass) -> ReportRedundantConstraints
go XRec pass (HsType pass)
GenLocated l (HsType pass)
hs_ty  -- Look under parens
    go GenLocated l (HsType pass)
_ = ReportRedundantConstraints
NoRRC  -- Did not find it

completeSigFromId :: UserTypeCtxt -> Id -> TcIdSigInfo
-- Used for instance methods and record selectors
completeSigFromId :: UserTypeCtxt -> TcId -> TcIdSigInfo
completeSigFromId UserTypeCtxt
ctxt TcId
id
  = CompleteSig { sig_bndr :: TcId
sig_bndr = TcId
id
                , sig_ctxt :: UserTypeCtxt
sig_ctxt = UserTypeCtxt
ctxt
                , sig_loc :: SrcSpan
sig_loc  = TcId -> SrcSpan
forall a. NamedThing a => a -> SrcSpan
getSrcSpan TcId
id }

isCompleteHsSig :: LHsSigWcType GhcRn -> Bool
-- ^ If there are no wildcards, return a LHsSigWcType
isCompleteHsSig :: LHsSigWcType GhcRn -> Bool
isCompleteHsSig (HsWC { hswc_ext :: forall pass thing. HsWildCardBndrs pass thing -> XHsWC pass thing
hswc_ext = XHsWC GhcRn (LHsSigType GhcRn)
wcs, hswc_body :: forall pass thing. HsWildCardBndrs pass thing -> thing
hswc_body = LHsSigType GhcRn
hs_sig_ty })
   = [Name] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Name]
XHsWC GhcRn (LHsSigType GhcRn)
wcs Bool -> Bool -> Bool
&& LHsSigType GhcRn -> Bool
no_anon_wc_sig_ty LHsSigType GhcRn
hs_sig_ty

no_anon_wc_sig_ty :: LHsSigType GhcRn -> Bool
no_anon_wc_sig_ty :: LHsSigType GhcRn -> Bool
no_anon_wc_sig_ty (L SrcSpanAnn' (EpAnn AnnListItem)
_ (HsSig{sig_bndrs :: forall pass. HsSigType pass -> HsOuterSigTyVarBndrs pass
sig_bndrs = HsOuterSigTyVarBndrs GhcRn
outer_bndrs, sig_body :: forall pass. HsSigType pass -> LHsType pass
sig_body = XRec GhcRn (HsType GhcRn)
body}))
  =  (GenLocated
   (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr Specificity GhcRn)
 -> Bool)
-> [GenLocated
      (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr Specificity GhcRn)]
-> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all LHsTyVarBndr Specificity GhcRn -> Bool
GenLocated
  (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr Specificity GhcRn)
-> Bool
forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb (HsOuterSigTyVarBndrs GhcRn
-> [LHsTyVarBndr Specificity (NoGhcTc GhcRn)]
forall flag (p :: Pass).
HsOuterTyVarBndrs flag (GhcPass p)
-> [LHsTyVarBndr flag (NoGhcTc (GhcPass p))]
hsOuterExplicitBndrs HsOuterSigTyVarBndrs GhcRn
outer_bndrs)
  Bool -> Bool -> Bool
&& XRec GhcRn (HsType GhcRn) -> Bool
no_anon_wc_ty XRec GhcRn (HsType GhcRn)
body

no_anon_wc_ty :: LHsType GhcRn -> Bool
no_anon_wc_ty :: XRec GhcRn (HsType GhcRn) -> Bool
no_anon_wc_ty XRec GhcRn (HsType GhcRn)
lty = GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
lty
  where
    go :: GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go (L SrcSpanAnn' (EpAnn AnnListItem)
_ HsType GhcRn
ty) = case HsType GhcRn
ty of
      HsWildCardTy XWildCardTy GhcRn
_                 -> Bool
False
      HsAppTy XAppTy GhcRn
_ XRec GhcRn (HsType GhcRn)
ty1 XRec GhcRn (HsType GhcRn)
ty2              -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty1 Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty2
      HsAppKindTy XAppKindTy GhcRn
_ XRec GhcRn (HsType GhcRn)
ty XRec GhcRn (HsType GhcRn)
ki            -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ki
      HsFunTy XFunTy GhcRn
_ HsArrow GhcRn
w XRec GhcRn (HsType GhcRn)
ty1 XRec GhcRn (HsType GhcRn)
ty2            -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty1 Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty2 Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go (HsArrow GhcRn -> XRec GhcRn (HsType GhcRn)
arrowToHsType HsArrow GhcRn
w)
      HsListTy XListTy GhcRn
_ XRec GhcRn (HsType GhcRn)
ty                  -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty
      HsTupleTy XTupleTy GhcRn
_ HsTupleSort
_ [XRec GhcRn (HsType GhcRn)]
tys              -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
gos [XRec GhcRn (HsType GhcRn)]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
tys
      HsSumTy XSumTy GhcRn
_ [XRec GhcRn (HsType GhcRn)]
tys                  -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
gos [XRec GhcRn (HsType GhcRn)]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
tys
      HsOpTy XOpTy GhcRn
_ PromotionFlag
_ XRec GhcRn (HsType GhcRn)
ty1 LIdP GhcRn
_ XRec GhcRn (HsType GhcRn)
ty2           -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty1 Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty2
      HsParTy XParTy GhcRn
_ XRec GhcRn (HsType GhcRn)
ty                   -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty
      HsIParamTy XIParamTy GhcRn
_ XRec GhcRn HsIPName
_ XRec GhcRn (HsType GhcRn)
ty              -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty
      HsKindSig XKindSig GhcRn
_ XRec GhcRn (HsType GhcRn)
ty XRec GhcRn (HsType GhcRn)
kind            -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
kind
      HsDocTy XDocTy GhcRn
_ XRec GhcRn (HsType GhcRn)
ty LHsDoc GhcRn
_                 -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty
      HsBangTy XBangTy GhcRn
_ HsSrcBang
_ XRec GhcRn (HsType GhcRn)
ty                -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty
      HsRecTy XRecTy GhcRn
_ [LConDeclField GhcRn]
flds                 -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
gos ([GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
 -> Bool)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
forall a b. (a -> b) -> a -> b
$ (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (ConDeclField GhcRn)
 -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn))
-> [GenLocated
      (SrcSpanAnn' (EpAnn AnnListItem)) (ConDeclField GhcRn)]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
forall a b. (a -> b) -> [a] -> [b]
map (ConDeclField GhcRn -> XRec GhcRn (HsType GhcRn)
ConDeclField GhcRn
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
forall pass. ConDeclField pass -> LBangType pass
cd_fld_type (ConDeclField GhcRn
 -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn))
-> (GenLocated
      (SrcSpanAnn' (EpAnn AnnListItem)) (ConDeclField GhcRn)
    -> ConDeclField GhcRn)
-> GenLocated
     (SrcSpanAnn' (EpAnn AnnListItem)) (ConDeclField GhcRn)
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (ConDeclField GhcRn)
-> ConDeclField GhcRn
forall l e. GenLocated l e -> e
unLoc) [LConDeclField GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (ConDeclField GhcRn)]
flds
      HsExplicitListTy XExplicitListTy GhcRn
_ PromotionFlag
_ [XRec GhcRn (HsType GhcRn)]
tys       -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
gos [XRec GhcRn (HsType GhcRn)]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
tys
      HsExplicitTupleTy XExplicitTupleTy GhcRn
_ [XRec GhcRn (HsType GhcRn)]
tys        -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
gos [XRec GhcRn (HsType GhcRn)]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
tys
      HsForAllTy { hst_tele :: forall pass. HsType pass -> HsForAllTelescope pass
hst_tele = HsForAllTelescope GhcRn
tele
                 , hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = XRec GhcRn (HsType GhcRn)
ty } -> HsForAllTelescope GhcRn -> Bool
no_anon_wc_tele HsForAllTelescope GhcRn
tele
                                        Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty
      HsQualTy { hst_ctxt :: forall pass. HsType pass -> LHsContext pass
hst_ctxt = LHsContext GhcRn
ctxt
               , hst_body :: forall pass. HsType pass -> LHsType pass
hst_body = XRec GhcRn (HsType GhcRn)
ty }  -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
gos (GenLocated
  (SrcSpanAnn' (EpAnn AnnContext))
  [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
forall l e. GenLocated l e -> e
unLoc LHsContext GhcRn
GenLocated
  (SrcSpanAnn' (EpAnn AnnContext))
  [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
ctxt) Bool -> Bool -> Bool
&& GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go XRec GhcRn (HsType GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
ty
      HsSpliceTy XSpliceTy GhcRn
_ (HsSpliced XSpliced GhcRn
_ ThModFinalizers
_ (HsSplicedTy HsType GhcRn
ty)) -> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
 -> Bool)
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
-> Bool
forall a b. (a -> b) -> a -> b
$ SrcSpanAnn' (EpAnn AnnListItem)
-> HsType GhcRn
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn AnnListItem)
forall ann. SrcAnn ann
noSrcSpanA HsType GhcRn
ty
      HsSpliceTy{} -> Bool
True
      HsTyLit{} -> Bool
True
      HsTyVar{} -> Bool
True
      HsStarTy{} -> Bool
True
      XHsType{} -> Bool
True       -- HsCoreTy, which does not have any wildcard

    gos :: [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
gos = (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)
 -> Bool)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn)]
-> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsType GhcRn) -> Bool
go

no_anon_wc_tele :: HsForAllTelescope GhcRn -> Bool
no_anon_wc_tele :: HsForAllTelescope GhcRn -> Bool
no_anon_wc_tele HsForAllTelescope GhcRn
tele = case HsForAllTelescope GhcRn
tele of
  HsForAllVis   { hsf_vis_bndrs :: forall pass. HsForAllTelescope pass -> [LHsTyVarBndr () pass]
hsf_vis_bndrs   = [LHsTyVarBndr () GhcRn]
ltvs } -> (GenLocated
   (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr () GhcRn)
 -> Bool)
-> [GenLocated
      (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr () GhcRn)]
-> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all LHsTyVarBndr () GhcRn -> Bool
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr () GhcRn)
-> Bool
forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb [LHsTyVarBndr () GhcRn]
[GenLocated
   (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr () GhcRn)]
ltvs
  HsForAllInvis { hsf_invis_bndrs :: forall pass.
HsForAllTelescope pass -> [LHsTyVarBndr Specificity pass]
hsf_invis_bndrs = [LHsTyVarBndr Specificity GhcRn]
ltvs } -> (GenLocated
   (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr Specificity GhcRn)
 -> Bool)
-> [GenLocated
      (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr Specificity GhcRn)]
-> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all LHsTyVarBndr Specificity GhcRn -> Bool
GenLocated
  (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr Specificity GhcRn)
-> Bool
forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb [LHsTyVarBndr Specificity GhcRn]
[GenLocated
   (SrcSpanAnn' (EpAnn AnnListItem)) (HsTyVarBndr Specificity GhcRn)]
ltvs

no_anon_wc_tvb :: LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb :: forall flag. LHsTyVarBndr flag GhcRn -> Bool
no_anon_wc_tvb (L SrcSpanAnn' (EpAnn AnnListItem)
_ HsTyVarBndr flag GhcRn
tvb) = case HsTyVarBndr flag GhcRn
tvb of
  UserTyVar XUserTyVar GhcRn
_ flag
_ LIdP GhcRn
_      -> Bool
True
  KindedTyVar XKindedTyVar GhcRn
_ flag
_ LIdP GhcRn
_ XRec GhcRn (HsType GhcRn)
ki -> XRec GhcRn (HsType GhcRn) -> Bool
no_anon_wc_ty XRec GhcRn (HsType GhcRn)
ki

{- Note [Fail eagerly on bad signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If a type signature is wrong, fail immediately:

 * the type sigs may bind type variables, so proceeding without them
   can lead to a cascade of errors

 * the type signature might be ambiguous, in which case checking
   the code against the signature will give a very similar error
   to the ambiguity error.

ToDo: this means we fall over if any top-level type signature in the
module is wrong, because we typecheck all the signatures together
(see GHC.Tc.Gen.Bind.tcValBinds).  Moreover, because of top-level
captureTopConstraints, only insoluble constraints will be reported.
We typecheck all signatures at the same time because a signature
like   f,g :: blah   might have f and g from different SCCs.

So it's a bit awkward to get better error recovery, and no one
has complained!
-}

{- *********************************************************************
*                                                                      *
        Type checking a pattern synonym signature
*                                                                      *
************************************************************************

Note [Pattern synonym signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Pattern synonym signatures are surprisingly tricky (see #11224 for example).
In general they look like this:

   pattern P :: forall univ_tvs. req_theta
             => forall ex_tvs. prov_theta
             => arg1 -> .. -> argn -> res_ty

For parsing and renaming we treat the signature as an ordinary LHsSigType.

Once we get to type checking, we decompose it into its parts, in tcPatSynSig.

* Note that 'forall univ_tvs' and 'req_theta =>'
        and 'forall ex_tvs'   and 'prov_theta =>'
  are all optional.  We gather the pieces at the top of tcPatSynSig

* Initially the implicitly-bound tyvars (added by the renamer) include both
  universal and existential vars.

* After we kind-check the pieces and convert to Types, we do kind generalisation.

Note [Report unsolved equalities in tcPatSynSig]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It's important that we solve /all/ the equalities in a pattern
synonym signature, because we are going to zonk the signature to
a Type (not a TcType), in GHC.Tc.TyCl.PatSyn.tc_patsyn_finish, and that
fails if there are un-filled-in coercion variables mentioned
in the type (#15694).

So we solve all the equalities we can, and report any unsolved ones,
rather than leaving them in the ambient constraints to be solved
later.  Pattern synonyms are top-level, so there's no problem with
completely solving them.
-}

tcPatSynSig :: Name -> LHsSigType GhcRn -> TcM TcPatSynInfo
-- See Note [Pattern synonym signatures]
-- See Note [Recipe for checking a signature] in GHC.Tc.Gen.HsType
tcPatSynSig :: Name
-> LHsSigType GhcRn -> IOEnv (Env TcGblEnv TcLclEnv) TcPatSynInfo
tcPatSynSig Name
name sig_ty :: LHsSigType GhcRn
sig_ty@(L SrcSpanAnn' (EpAnn AnnListItem)
_ (HsSig{sig_bndrs :: forall pass. HsSigType pass -> HsOuterSigTyVarBndrs pass
sig_bndrs = HsOuterSigTyVarBndrs GhcRn
hs_outer_bndrs, sig_body :: forall pass. HsSigType pass -> LHsType pass
sig_body = XRec GhcRn (HsType GhcRn)
hs_ty}))
  | (Maybe (LHsContext GhcRn)
hs_req, XRec GhcRn (HsType GhcRn)
hs_ty1) <- XRec GhcRn (HsType GhcRn)
-> (Maybe (LHsContext GhcRn), XRec GhcRn (HsType GhcRn))
forall (pass :: Pass).
LHsType (GhcPass pass)
-> (Maybe (LHsContext (GhcPass pass)), LHsType (GhcPass pass))
splitLHsQualTy XRec GhcRn (HsType GhcRn)
hs_ty
  , ([LHsTyVarBndr Specificity GhcRn]
ex_hs_tvbndrs, Maybe (LHsContext GhcRn)
hs_prov, XRec GhcRn (HsType GhcRn)
hs_body_ty) <- XRec GhcRn (HsType GhcRn)
-> ([LHsTyVarBndr Specificity GhcRn], Maybe (LHsContext GhcRn),
    XRec GhcRn (HsType GhcRn))
forall (p :: Pass).
LHsType (GhcPass p)
-> ([LHsTyVarBndr Specificity (GhcPass p)],
    Maybe (LHsContext (GhcPass p)), LHsType (GhcPass p))
splitLHsSigmaTyInvis XRec GhcRn (HsType GhcRn)
hs_ty1
  = do { String -> SDoc -> TcRn ()
traceTc String
"tcPatSynSig 1" (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
-> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsSigType GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
sig_ty)

       ; SkolemInfo
skol_info <- SkolemInfoAnon -> IOEnv (Env TcGblEnv TcLclEnv) SkolemInfo
forall (m :: * -> *). MonadIO m => SkolemInfoAnon -> m SkolemInfo
mkSkolemInfo (Name -> SkolemInfoAnon
DataConSkol Name
name)
       ; (TcLevel
tclvl, WantedConstraints
wanted, (HsOuterTyVarBndrs Specificity GhcTc
outer_bndrs, ([VarBndr TcId Specificity]
ex_bndrs, ([Kind]
req, [Kind]
prov, Kind
body_ty))))
           <- String
-> TcM
     (HsOuterTyVarBndrs Specificity GhcTc,
      ([VarBndr TcId Specificity], ([Kind], [Kind], Kind)))
-> TcM
     (TcLevel, WantedConstraints,
      (HsOuterTyVarBndrs Specificity GhcTc,
       ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))))
forall a. String -> TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndSolveEqualitiesX String
"tcPatSynSig"           (TcM
   (HsOuterTyVarBndrs Specificity GhcTc,
    ([VarBndr TcId Specificity], ([Kind], [Kind], Kind)))
 -> TcM
      (TcLevel, WantedConstraints,
       (HsOuterTyVarBndrs Specificity GhcTc,
        ([VarBndr TcId Specificity], ([Kind], [Kind], Kind)))))
-> TcM
     (HsOuterTyVarBndrs Specificity GhcTc,
      ([VarBndr TcId Specificity], ([Kind], [Kind], Kind)))
-> TcM
     (TcLevel, WantedConstraints,
      (HsOuterTyVarBndrs Specificity GhcTc,
       ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))))
forall a b. (a -> b) -> a -> b
$
                     -- See Note [Report unsolved equalities in tcPatSynSig]
              SkolemInfo
-> HsOuterSigTyVarBndrs GhcRn
-> TcM ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))
-> TcM
     (HsOuterTyVarBndrs Specificity GhcTc,
      ([VarBndr TcId Specificity], ([Kind], [Kind], Kind)))
forall flag a.
OutputableBndrFlag flag 'Renamed =>
SkolemInfo
-> HsOuterTyVarBndrs flag GhcRn
-> TcM a
-> TcM (HsOuterTyVarBndrs flag GhcTc, a)
tcOuterTKBndrs SkolemInfo
skol_info HsOuterSigTyVarBndrs GhcRn
hs_outer_bndrs   (TcM ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))
 -> TcM
      (HsOuterTyVarBndrs Specificity GhcTc,
       ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))))
-> TcM ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))
-> TcM
     (HsOuterTyVarBndrs Specificity GhcTc,
      ([VarBndr TcId Specificity], ([Kind], [Kind], Kind)))
forall a b. (a -> b) -> a -> b
$
              SkolemInfo
-> [LHsTyVarBndr Specificity GhcRn]
-> TcM ([Kind], [Kind], Kind)
-> TcM ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))
forall flag a.
OutputableBndrFlag flag 'Renamed =>
SkolemInfo
-> [LHsTyVarBndr flag GhcRn]
-> TcM a
-> TcM ([VarBndr TcId flag], a)
tcExplicitTKBndrs SkolemInfo
skol_info [LHsTyVarBndr Specificity GhcRn]
ex_hs_tvbndrs (TcM ([Kind], [Kind], Kind)
 -> TcM ([VarBndr TcId Specificity], ([Kind], [Kind], Kind)))
-> TcM ([Kind], [Kind], Kind)
-> TcM ([VarBndr TcId Specificity], ([Kind], [Kind], Kind))
forall a b. (a -> b) -> a -> b
$
              do { [Kind]
req     <- Maybe (LHsContext GhcRn) -> TcM [Kind]
tcHsContext Maybe (LHsContext GhcRn)
hs_req
                 ; [Kind]
prov    <- Maybe (LHsContext GhcRn) -> TcM [Kind]
tcHsContext Maybe (LHsContext GhcRn)
hs_prov
                 ; Kind
body_ty <- XRec GhcRn (HsType GhcRn) -> TcM Kind
tcHsOpenType XRec GhcRn (HsType GhcRn)
hs_body_ty
                     -- A (literal) pattern can be unlifted;
                     -- e.g. pattern Zero <- 0#   (#12094)
                 ; ([Kind], [Kind], Kind) -> TcM ([Kind], [Kind], Kind)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Kind]
req, [Kind]
prov, Kind
body_ty) }

       ; let implicit_tvs :: [TcTyVar]
             univ_bndrs   :: [TcInvisTVBinder]
             ([TcId]
implicit_tvs, [VarBndr TcId Specificity]
univ_bndrs) = case HsOuterTyVarBndrs Specificity GhcTc
outer_bndrs of
               HsOuterImplicit{hso_ximplicit :: forall flag pass.
HsOuterTyVarBndrs flag pass -> XHsOuterImplicit pass
hso_ximplicit = XHsOuterImplicit GhcTc
implicit_tvs} -> ([TcId]
XHsOuterImplicit GhcTc
implicit_tvs, [])
               HsOuterExplicit{hso_xexplicit :: forall flag pass.
HsOuterTyVarBndrs flag pass -> XHsOuterExplicit pass flag
hso_xexplicit = XHsOuterExplicit GhcTc Specificity
univ_bndrs}   -> ([], [VarBndr TcId Specificity]
XHsOuterExplicit GhcTc Specificity
univ_bndrs)

       ; [TcId]
implicit_tvs <- [TcId] -> TcM [TcId]
zonkAndScopedSort [TcId]
implicit_tvs
       ; let implicit_bndrs :: [VarBndr TcId Specificity]
implicit_bndrs = Specificity -> [TcId] -> [VarBndr TcId Specificity]
forall vis. vis -> [TcId] -> [VarBndr TcId vis]
mkTyVarBinders Specificity
SpecifiedSpec [TcId]
implicit_tvs

       -- Kind generalisation
       ; let ungen_patsyn_ty :: Kind
ungen_patsyn_ty = [VarBndr TcId Specificity]
-> [VarBndr TcId Specificity]
-> [Kind]
-> [VarBndr TcId Specificity]
-> [Kind]
-> Kind
-> Kind
build_patsyn_type [VarBndr TcId Specificity]
implicit_bndrs [VarBndr TcId Specificity]
univ_bndrs
                                                 [Kind]
req [VarBndr TcId Specificity]
ex_bndrs [Kind]
prov Kind
body_ty
       ; String -> SDoc -> TcRn ()
traceTc String
"tcPatSynSig" (Kind -> SDoc
forall a. Outputable a => a -> SDoc
ppr Kind
ungen_patsyn_ty)
       ; [TcId]
kvs <- SkolemInfo -> Kind -> TcM [TcId]
kindGeneralizeAll SkolemInfo
skol_info Kind
ungen_patsyn_ty
       ; SkolemInfo -> [TcId] -> TcLevel -> WantedConstraints -> TcRn ()
reportUnsolvedEqualities SkolemInfo
skol_info [TcId]
kvs TcLevel
tclvl WantedConstraints
wanted
               -- See Note [Report unsolved equalities in tcPatSynSig]

       -- These are /signatures/ so we zonk to squeeze out any kind
       -- unification variables.  Do this after kindGeneralizeAll which may
       -- default kind variables to *.
       ; ZonkEnv
ze                   <- ZonkFlexi -> TcM ZonkEnv
mkEmptyZonkEnv ZonkFlexi
NoFlexi
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
kv_bndrs)       <- ZonkEnv
-> [VarBndr TcId Specificity]
-> TcM (ZonkEnv, [VarBndr TcId Specificity])
forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze (Specificity -> [TcId] -> [VarBndr TcId Specificity]
forall vis. vis -> [TcId] -> [VarBndr TcId vis]
mkTyVarBinders Specificity
InferredSpec [TcId]
kvs)
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
implicit_bndrs) <- ZonkEnv
-> [VarBndr TcId Specificity]
-> TcM (ZonkEnv, [VarBndr TcId Specificity])
forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze [VarBndr TcId Specificity]
implicit_bndrs
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
univ_bndrs)     <- ZonkEnv
-> [VarBndr TcId Specificity]
-> TcM (ZonkEnv, [VarBndr TcId Specificity])
forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze [VarBndr TcId Specificity]
univ_bndrs
       ; (ZonkEnv
ze, [VarBndr TcId Specificity]
ex_bndrs)       <- ZonkEnv
-> [VarBndr TcId Specificity]
-> TcM (ZonkEnv, [VarBndr TcId Specificity])
forall vis.
ZonkEnv -> [VarBndr TcId vis] -> TcM (ZonkEnv, [VarBndr TcId vis])
zonkTyVarBindersX   ZonkEnv
ze [VarBndr TcId Specificity]
ex_bndrs
       ; [Kind]
req                  <- ZonkEnv -> [Kind] -> TcM [Kind]
zonkTcTypesToTypesX ZonkEnv
ze [Kind]
req
       ; [Kind]
prov                 <- ZonkEnv -> [Kind] -> TcM [Kind]
zonkTcTypesToTypesX ZonkEnv
ze [Kind]
prov
       ; Kind
body_ty              <- ZonkEnv -> Kind -> TcM Kind
zonkTcTypeToTypeX   ZonkEnv
ze Kind
body_ty

       -- Now do validity checking
       ; UserTypeCtxt -> Kind -> TcRn ()
checkValidType UserTypeCtxt
ctxt (Kind -> TcRn ()) -> Kind -> TcRn ()
forall a b. (a -> b) -> a -> b
$
         [VarBndr TcId Specificity]
-> [VarBndr TcId Specificity]
-> [Kind]
-> [VarBndr TcId Specificity]
-> [Kind]
-> Kind
-> Kind
build_patsyn_type [VarBndr TcId Specificity]
implicit_bndrs [VarBndr TcId Specificity]
univ_bndrs [Kind]
req [VarBndr TcId Specificity]
ex_bndrs [Kind]
prov Kind
body_ty

       -- Neither argument types nor the return type may be representation polymorphic.
       -- This is because, when creating a matcher:
       --   - the argument types become the the binder types (see test RepPolyPatySynArg),
       --   - the return type becomes the scrutinee type (see test RepPolyPatSynRes).
       ; let ([Scaled Kind]
arg_tys, Kind
res_ty) = Kind -> ([Scaled Kind], Kind)
tcSplitFunTys Kind
body_ty
       ; (Scaled Kind -> TcRn ()) -> [Scaled Kind] -> TcRn ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_
           (\(Scaled Kind
_ Kind
arg_ty) -> FixedRuntimeRepProvenance -> Kind -> TcRn ()
checkTypeHasFixedRuntimeRep FixedRuntimeRepProvenance
FixedRuntimeRepPatSynSigArg Kind
arg_ty)
           [Scaled Kind]
arg_tys
       ; FixedRuntimeRepProvenance -> Kind -> TcRn ()
checkTypeHasFixedRuntimeRep FixedRuntimeRepProvenance
FixedRuntimeRepPatSynSigRes Kind
res_ty

       ; String -> SDoc -> TcRn ()
traceTc String
"tcTySig }" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"kvs"          SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs ([VarBndr TcId Specificity] -> [TcId]
forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
kv_bndrs)
              , String -> SDoc
text String
"implicit_tvs" SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs ([VarBndr TcId Specificity] -> [TcId]
forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
implicit_bndrs)
              , String -> SDoc
text String
"univ_tvs"     SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs ([VarBndr TcId Specificity] -> [TcId]
forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
univ_bndrs)
              , String -> SDoc
text String
"req" SDoc -> SDoc -> SDoc
<+> [Kind] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Kind]
req
              , String -> SDoc
text String
"ex_tvs" SDoc -> SDoc -> SDoc
<+> [TcId] -> SDoc
ppr_tvs ([VarBndr TcId Specificity] -> [TcId]
forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [VarBndr TcId Specificity]
ex_bndrs)
              , String -> SDoc
text String
"prov" SDoc -> SDoc -> SDoc
<+> [Kind] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Kind]
prov
              , String -> SDoc
text String
"body_ty" SDoc -> SDoc -> SDoc
<+> Kind -> SDoc
forall a. Outputable a => a -> SDoc
ppr Kind
body_ty ]
       ; TcPatSynInfo -> IOEnv (Env TcGblEnv TcLclEnv) TcPatSynInfo
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TPSI { patsig_name :: Name
patsig_name = Name
name
                      , patsig_implicit_bndrs :: [VarBndr TcId Specificity]
patsig_implicit_bndrs = [VarBndr TcId Specificity]
kv_bndrs [VarBndr TcId Specificity]
-> [VarBndr TcId Specificity] -> [VarBndr TcId Specificity]
forall a. [a] -> [a] -> [a]
++ [VarBndr TcId Specificity]
implicit_bndrs
                      , patsig_univ_bndrs :: [VarBndr TcId Specificity]
patsig_univ_bndrs     = [VarBndr TcId Specificity]
univ_bndrs
                      , patsig_req :: [Kind]
patsig_req            = [Kind]
req
                      , patsig_ex_bndrs :: [VarBndr TcId Specificity]
patsig_ex_bndrs       = [VarBndr TcId Specificity]
ex_bndrs
                      , patsig_prov :: [Kind]
patsig_prov           = [Kind]
prov
                      , patsig_body_ty :: Kind
patsig_body_ty        = Kind
body_ty }) }
  where
    ctxt :: UserTypeCtxt
ctxt = Name -> UserTypeCtxt
PatSynCtxt Name
name

    build_patsyn_type :: [VarBndr TcId Specificity]
-> [VarBndr TcId Specificity]
-> [Kind]
-> [VarBndr TcId Specificity]
-> [Kind]
-> Kind
-> Kind
build_patsyn_type [VarBndr TcId Specificity]
implicit_bndrs [VarBndr TcId Specificity]
univ_bndrs [Kind]
req [VarBndr TcId Specificity]
ex_bndrs [Kind]
prov Kind
body
      = [VarBndr TcId Specificity] -> Kind -> Kind
mkInvisForAllTys [VarBndr TcId Specificity]
implicit_bndrs (Kind -> Kind) -> Kind -> Kind
forall a b. (a -> b) -> a -> b
$
        [VarBndr TcId Specificity] -> Kind -> Kind
mkInvisForAllTys [VarBndr TcId Specificity]
univ_bndrs (Kind -> Kind) -> Kind -> Kind
forall a b. (a -> b) -> a -> b
$
        [Kind] -> Kind -> Kind
mkPhiTy [Kind]
req (Kind -> Kind) -> Kind -> Kind
forall a b. (a -> b) -> a -> b
$
        [VarBndr TcId Specificity] -> Kind -> Kind
mkInvisForAllTys [VarBndr TcId Specificity]
ex_bndrs (Kind -> Kind) -> Kind -> Kind
forall a b. (a -> b) -> a -> b
$
        [Kind] -> Kind -> Kind
mkPhiTy [Kind]
prov (Kind -> Kind) -> Kind -> Kind
forall a b. (a -> b) -> a -> b
$
        Kind
body

ppr_tvs :: [TyVar] -> SDoc
ppr_tvs :: [TcId] -> SDoc
ppr_tvs [TcId]
tvs = SDoc -> SDoc
braces ([SDoc] -> SDoc
vcat [ TcId -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcId
tv SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> Kind -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TcId -> Kind
tyVarKind TcId
tv)
                           | TcId
tv <- [TcId]
tvs])


{- *********************************************************************
*                                                                      *
               Instantiating user signatures
*                                                                      *
********************************************************************* -}


tcInstSig :: TcIdSigInfo -> TcM TcIdSigInst
-- Instantiate a type signature; only used with plan InferGen
tcInstSig :: TcIdSigInfo -> TcM TcIdSigInst
tcInstSig sig :: TcIdSigInfo
sig@(CompleteSig { sig_bndr :: TcIdSigInfo -> TcId
sig_bndr = TcId
poly_id, sig_loc :: TcIdSigInfo -> SrcSpan
sig_loc = SrcSpan
loc })
  = SrcSpan -> TcM TcIdSigInst -> TcM TcIdSigInst
forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc (TcM TcIdSigInst -> TcM TcIdSigInst)
-> TcM TcIdSigInst -> TcM TcIdSigInst
forall a b. (a -> b) -> a -> b
$  -- Set the binding site of the tyvars
    do { ([(Name, VarBndr TcId Specificity)]
tv_prs, [Kind]
theta, Kind
tau) <- TcId -> TcM ([(Name, VarBndr TcId Specificity)], [Kind], Kind)
tcInstTypeBndrs TcId
poly_id
              -- See Note [Pattern bindings and complete signatures]

       ; TcIdSigInst -> TcM TcIdSigInst
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TISI { sig_inst_sig :: TcIdSigInfo
sig_inst_sig   = TcIdSigInfo
sig
                      , sig_inst_skols :: [(Name, VarBndr TcId Specificity)]
sig_inst_skols = [(Name, VarBndr TcId Specificity)]
tv_prs
                      , sig_inst_wcs :: [(Name, TcId)]
sig_inst_wcs   = []
                      , sig_inst_wcx :: Maybe Kind
sig_inst_wcx   = Maybe Kind
forall a. Maybe a
Nothing
                      , sig_inst_theta :: [Kind]
sig_inst_theta = [Kind]
theta
                      , sig_inst_tau :: Kind
sig_inst_tau   = Kind
tau }) }

tcInstSig hs_sig :: TcIdSigInfo
hs_sig@(PartialSig { psig_hs_ty :: TcIdSigInfo -> LHsSigWcType GhcRn
psig_hs_ty = LHsSigWcType GhcRn
hs_ty
                             , sig_ctxt :: TcIdSigInfo -> UserTypeCtxt
sig_ctxt = UserTypeCtxt
ctxt
                             , sig_loc :: TcIdSigInfo -> SrcSpan
sig_loc = SrcSpan
loc })
  = SrcSpan -> TcM TcIdSigInst -> TcM TcIdSigInst
forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc (TcM TcIdSigInst -> TcM TcIdSigInst)
-> TcM TcIdSigInst -> TcM TcIdSigInst
forall a b. (a -> b) -> a -> b
$  -- Set the binding site of the tyvars
    do { String -> SDoc -> TcRn ()
traceTc String
"Staring partial sig {" (TcIdSigInfo -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcIdSigInfo
hs_sig)
       ; ([(Name, TcId)]
wcs, Maybe Kind
wcx, [(Name, VarBndr TcId Specificity)]
tv_prs, [Kind]
theta, Kind
tau) <- UserTypeCtxt
-> LHsSigWcType GhcRn
-> TcM
     ([(Name, TcId)], Maybe Kind, [(Name, VarBndr TcId Specificity)],
      [Kind], Kind)
tcHsPartialSigType UserTypeCtxt
ctxt LHsSigWcType GhcRn
hs_ty
         -- See Note [Checking partial type signatures] in GHC.Tc.Gen.HsType
       ; let inst_sig :: TcIdSigInst
inst_sig = TISI { sig_inst_sig :: TcIdSigInfo
sig_inst_sig   = TcIdSigInfo
hs_sig
                             , sig_inst_skols :: [(Name, VarBndr TcId Specificity)]
sig_inst_skols = [(Name, VarBndr TcId Specificity)]
tv_prs
                             , sig_inst_wcs :: [(Name, TcId)]
sig_inst_wcs   = [(Name, TcId)]
wcs
                             , sig_inst_wcx :: Maybe Kind
sig_inst_wcx   = Maybe Kind
wcx
                             , sig_inst_theta :: [Kind]
sig_inst_theta = [Kind]
theta
                             , sig_inst_tau :: Kind
sig_inst_tau   = Kind
tau }
       ; String -> SDoc -> TcRn ()
traceTc String
"End partial sig }" (TcIdSigInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcIdSigInst
inst_sig)
       ; TcIdSigInst -> TcM TcIdSigInst
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return TcIdSigInst
inst_sig }


{- Note [Pattern bindings and complete signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
      data T a = MkT a a
      f :: forall a. a->a
      g :: forall b. b->b
      MkT f g = MkT (\x->x) (\y->y)
Here we'll infer a type from the pattern of 'T a', but if we feed in
the signature types for f and g, we'll end up unifying 'a' and 'b'

So we instantiate f and g's signature with TyVarTv skolems
(newMetaTyVarTyVars) that can unify with each other.  If too much
unification takes place, we'll find out when we do the final
impedance-matching check in GHC.Tc.Gen.Bind.mkExport

See Note [TyVarTv] in GHC.Tc.Utils.TcMType

None of this applies to a function binding with a complete
signature, which doesn't use tcInstSig.  See GHC.Tc.Gen.Bind.tcPolyCheck.
-}

{- *********************************************************************
*                                                                      *
                   Pragmas and PragEnv
*                                                                      *
********************************************************************* -}

type TcPragEnv = NameEnv [LSig GhcRn]

emptyPragEnv :: TcPragEnv
emptyPragEnv :: TcPragEnv
emptyPragEnv = TcPragEnv
NameEnv [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a. NameEnv a
emptyNameEnv

lookupPragEnv :: TcPragEnv -> Name -> [LSig GhcRn]
lookupPragEnv :: TcPragEnv -> Name -> [LSig GhcRn]
lookupPragEnv TcPragEnv
prag_fn Name
n = NameEnv [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> Name
-> Maybe [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv TcPragEnv
NameEnv [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
prag_fn Name
n Maybe [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a. Maybe a -> a -> a
`orElse` []

extendPragEnv :: TcPragEnv -> (Name, LSig GhcRn) -> TcPragEnv
extendPragEnv :: TcPragEnv -> (Name, LSig GhcRn) -> TcPragEnv
extendPragEnv TcPragEnv
prag_fn (Name
n, LSig GhcRn
sig) = (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
 -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
 -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)])
-> (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
    -> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)])
-> NameEnv
     [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> Name
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> NameEnv
     [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a b.
(a -> b -> b) -> (a -> b) -> NameEnv b -> Name -> a -> NameEnv b
extendNameEnv_Acc (:) GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a. a -> [a]
Utils.singleton TcPragEnv
NameEnv [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
prag_fn Name
n LSig GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
sig

---------------
mkPragEnv :: [LSig GhcRn] -> LHsBinds GhcRn -> TcPragEnv
mkPragEnv :: [LSig GhcRn] -> LHsBinds GhcRn -> TcPragEnv
mkPragEnv [LSig GhcRn]
sigs LHsBinds GhcRn
binds
  = (NameEnv [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
 -> (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
 -> NameEnv
      [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)])
-> NameEnv
     [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> [(Name,
     GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))]
-> NameEnv
     [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' TcPragEnv -> (Name, LSig GhcRn) -> TcPragEnv
NameEnv [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
-> NameEnv
     [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
extendPragEnv NameEnv [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a. NameEnv a
emptyNameEnv [(Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))]
prs
  where
    prs :: [(Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))]
prs = (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
 -> Maybe
      (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)))
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> [(Name,
     GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe LSig GhcRn -> Maybe (Name, LSig GhcRn)
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> Maybe
     (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
get_sig [LSig GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
sigs

    get_sig :: LSig GhcRn -> Maybe (Name, LSig GhcRn)
    get_sig :: LSig GhcRn -> Maybe (Name, LSig GhcRn)
get_sig sig :: LSig GhcRn
sig@(L SrcSpanAnn' (EpAnn AnnListItem)
_ (SpecSig XSpecSig GhcRn
_ (L SrcSpanAnnN
_ Name
nm) [LHsSigType GhcRn]
_ InlinePragma
_))   = (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
-> Maybe
     (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
forall a. a -> Maybe a
Just (Name
nm, Name
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
add_arity Name
nm LSig GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
sig)
    get_sig sig :: LSig GhcRn
sig@(L SrcSpanAnn' (EpAnn AnnListItem)
_ (InlineSig XInlineSig GhcRn
_ (L SrcSpanAnnN
_ Name
nm) InlinePragma
_))   = (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
-> Maybe
     (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
forall a. a -> Maybe a
Just (Name
nm, Name
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
add_arity Name
nm LSig GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
sig)
    get_sig sig :: LSig GhcRn
sig@(L SrcSpanAnn' (EpAnn AnnListItem)
_ (SCCFunSig XSCCFunSig GhcRn
_ SourceText
_ (L SrcSpanAnnN
_ Name
nm) Maybe (XRec GhcRn StringLiteral)
_)) = (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
-> Maybe
     (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
forall a. a -> Maybe a
Just (Name
nm, LSig GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
sig)
    get_sig LSig GhcRn
_ = Maybe (Name, LSig GhcRn)
Maybe
  (Name, GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn))
forall a. Maybe a
Nothing

    add_arity :: Name
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> LSig GhcRn
add_arity Name
n GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
sig  -- Adjust inl_sat field to match visible arity of function
      = case NameEnv Arity -> Name -> Maybe Arity
forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv NameEnv Arity
ar_env Name
n of
          Just Arity
ar -> Arity -> LSig GhcRn -> LSig GhcRn
addInlinePragArity Arity
ar LSig GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
sig
          Maybe Arity
Nothing -> LSig GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
sig -- See Note [Pattern synonym inline arity]

    -- ar_env maps a local to the arity of its definition
    ar_env :: NameEnv Arity
    ar_env :: NameEnv Arity
ar_env = (GenLocated
   (SrcSpanAnn' (EpAnn AnnListItem)) (HsBindLR GhcRn GhcRn)
 -> NameEnv Arity -> NameEnv Arity)
-> NameEnv Arity
-> Bag
     (GenLocated
        (SrcSpanAnn' (EpAnn AnnListItem)) (HsBindLR GhcRn GhcRn))
-> NameEnv Arity
forall a b. (a -> b -> b) -> b -> Bag a -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr LHsBind GhcRn -> NameEnv Arity -> NameEnv Arity
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsBindLR GhcRn GhcRn)
-> NameEnv Arity -> NameEnv Arity
lhsBindArity NameEnv Arity
forall a. NameEnv a
emptyNameEnv LHsBinds GhcRn
Bag
  (GenLocated
     (SrcSpanAnn' (EpAnn AnnListItem)) (HsBindLR GhcRn GhcRn))
binds

addInlinePragArity :: Arity -> LSig GhcRn -> LSig GhcRn
addInlinePragArity :: Arity -> LSig GhcRn -> LSig GhcRn
addInlinePragArity Arity
ar (L SrcSpanAnn' (EpAnn AnnListItem)
l (InlineSig XInlineSig GhcRn
x LIdP GhcRn
nm InlinePragma
inl))  = SrcSpanAnn' (EpAnn AnnListItem)
-> Sig GhcRn
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn AnnListItem)
l (XInlineSig GhcRn -> LIdP GhcRn -> InlinePragma -> Sig GhcRn
forall pass.
XInlineSig pass -> LIdP pass -> InlinePragma -> Sig pass
InlineSig XInlineSig GhcRn
x LIdP GhcRn
nm (Arity -> InlinePragma -> InlinePragma
add_inl_arity Arity
ar InlinePragma
inl))
addInlinePragArity Arity
ar (L SrcSpanAnn' (EpAnn AnnListItem)
l (SpecSig XSpecSig GhcRn
x LIdP GhcRn
nm [LHsSigType GhcRn]
ty InlinePragma
inl)) = SrcSpanAnn' (EpAnn AnnListItem)
-> Sig GhcRn
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn AnnListItem)
l (XSpecSig GhcRn
-> LIdP GhcRn -> [LHsSigType GhcRn] -> InlinePragma -> Sig GhcRn
forall pass.
XSpecSig pass
-> LIdP pass -> [LHsSigType pass] -> InlinePragma -> Sig pass
SpecSig XSpecSig GhcRn
x LIdP GhcRn
nm [LHsSigType GhcRn]
ty (Arity -> InlinePragma -> InlinePragma
add_inl_arity Arity
ar InlinePragma
inl))
addInlinePragArity Arity
_ LSig GhcRn
sig = LSig GhcRn
sig

add_inl_arity :: Arity -> InlinePragma -> InlinePragma
add_inl_arity :: Arity -> InlinePragma -> InlinePragma
add_inl_arity Arity
ar prag :: InlinePragma
prag@(InlinePragma { inl_inline :: InlinePragma -> InlineSpec
inl_inline = InlineSpec
inl_spec })
  | Inline {} <- InlineSpec
inl_spec  -- Add arity only for real INLINE pragmas, not INLINABLE
  = InlinePragma
prag { inl_sat :: Maybe Arity
inl_sat = Arity -> Maybe Arity
forall a. a -> Maybe a
Just Arity
ar }
  | Bool
otherwise
  = InlinePragma
prag

lhsBindArity :: LHsBind GhcRn -> NameEnv Arity -> NameEnv Arity
lhsBindArity :: LHsBind GhcRn -> NameEnv Arity -> NameEnv Arity
lhsBindArity (L SrcSpanAnn' (EpAnn AnnListItem)
_ (FunBind { fun_id :: forall idL idR. HsBindLR idL idR -> LIdP idL
fun_id = LIdP GhcRn
id, fun_matches :: forall idL idR. HsBindLR idL idR -> MatchGroup idR (LHsExpr idR)
fun_matches = MatchGroup GhcRn (LHsExpr GhcRn)
ms })) NameEnv Arity
env
  = NameEnv Arity -> Name -> Arity -> NameEnv Arity
forall a. NameEnv a -> Name -> a -> NameEnv a
extendNameEnv NameEnv Arity
env (GenLocated SrcSpanAnnN Name -> Name
forall l e. GenLocated l e -> e
unLoc LIdP GhcRn
GenLocated SrcSpanAnnN Name
id) (MatchGroup
  GhcRn (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsExpr GhcRn))
-> Arity
forall (id :: Pass) body. MatchGroup (GhcPass id) body -> Arity
matchGroupArity MatchGroup GhcRn (LHsExpr GhcRn)
MatchGroup
  GhcRn (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsExpr GhcRn))
ms)
lhsBindArity LHsBind GhcRn
_ NameEnv Arity
env = NameEnv Arity
env        -- PatBind/VarBind


-----------------
addInlinePrags :: TcId -> [LSig GhcRn] -> TcM TcId
addInlinePrags :: TcId -> [LSig GhcRn] -> TcM TcId
addInlinePrags TcId
poly_id [LSig GhcRn]
prags_for_me
  | inl :: GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
inl@(L SrcSpanAnn' (EpAnn AnnListItem)
_ InlinePragma
prag) : [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inls <- [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inl_prags
  = do { String -> SDoc -> TcRn ()
traceTc String
"addInlinePrag" (TcId -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcId
poly_id SDoc -> SDoc -> SDoc
$$ InlinePragma -> SDoc
forall a. Outputable a => a -> SDoc
ppr InlinePragma
prag)
       ; Bool -> TcRn () -> TcRn ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless ([GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inls) (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
-> TcRn ()
warn_multiple_inlines GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
inl [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inls)
       ; TcId -> TcM TcId
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TcId
poly_id TcId -> InlinePragma -> TcId
`setInlinePragma` InlinePragma
prag) }
  | Bool
otherwise
  = TcId -> TcM TcId
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return TcId
poly_id
  where
    inl_prags :: [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inl_prags = [SrcSpanAnn' (EpAnn AnnListItem)
-> InlinePragma
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn AnnListItem)
loc InlinePragma
prag | L SrcSpanAnn' (EpAnn AnnListItem)
loc (InlineSig XInlineSig GhcRn
_ LIdP GhcRn
_ InlinePragma
prag) <- [LSig GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
prags_for_me]

    warn_multiple_inlines :: GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
-> TcRn ()
warn_multiple_inlines GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
_ [] = () -> TcRn ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ()

    warn_multiple_inlines inl1 :: GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
inl1@(L SrcSpanAnn' (EpAnn AnnListItem)
loc InlinePragma
prag1) (inl2 :: GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
inl2@(L SrcSpanAnn' (EpAnn AnnListItem)
_ InlinePragma
prag2) : [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inls)
       | InlinePragma -> Activation
inlinePragmaActivation InlinePragma
prag1 Activation -> Activation -> Bool
forall a. Eq a => a -> a -> Bool
== InlinePragma -> Activation
inlinePragmaActivation InlinePragma
prag2
       , InlineSpec -> Bool
noUserInlineSpec (InlinePragma -> InlineSpec
inlinePragmaSpec InlinePragma
prag1)
       =    -- Tiresome: inl1 is put there by virtue of being in a hs-boot loop
            -- and inl2 is a user NOINLINE pragma; we don't want to complain
         GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
-> TcRn ()
warn_multiple_inlines GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
inl2 [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inls
       | Bool
otherwise
       = SrcSpanAnn' (EpAnn AnnListItem) -> TcRn () -> TcRn ()
forall ann a. SrcSpanAnn' ann -> TcRn a -> TcRn a
setSrcSpanA SrcSpanAnn' (EpAnn AnnListItem)
loc (TcRn () -> TcRn ()) -> TcRn () -> TcRn ()
forall a b. (a -> b) -> a -> b
$
         let dia :: TcRnMessage
dia = DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$
               DiagnosticReason -> [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainDiagnostic DiagnosticReason
WarningWithoutFlag [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
                 (SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"Multiple INLINE pragmas for" SDoc -> SDoc -> SDoc
<+> TcId -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcId
poly_id)
                   Arity
2 ([SDoc] -> SDoc
vcat (String -> SDoc
text String
"Ignoring all but the first"
                            SDoc -> [SDoc] -> [SDoc]
forall a. a -> [a] -> [a]
: (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma -> SDoc)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
-> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma -> SDoc
forall {a} {a}.
(Outputable a, Outputable a) =>
GenLocated a a -> SDoc
pp_inl (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
inl1GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
forall a. a -> [a] -> [a]
:GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
inl2GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
forall a. a -> [a] -> [a]
:[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) InlinePragma]
inls))))
         in TcRnMessage -> TcRn ()
addDiagnosticTc TcRnMessage
dia

    pp_inl :: GenLocated a a -> SDoc
pp_inl (L a
loc a
prag) = a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
prag SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
parens (a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
loc)


{- Note [Pattern synonym inline arity]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
    {-# INLINE P #-}
    pattern P x = (x, True)

The INLINE pragma attaches to both the /matcher/ and the /builder/ for
the pattern synonym; see Note [Pragmas for pattern synonyms] in
GHC.Tc.TyCl.PatSyn.  But they have different inline arities (i.e. number
of binders to which we apply the function before inlining), and we don't
know what those arities are yet.  So for pattern synonyms we don't set
the inl_sat field yet; instead we do so (via addInlinePragArity) in
GHC.Tc.TyCl.PatSyn.tcPatSynMatcher and tcPatSynBuilderBind.

It's a bit messy that we set the arities in different ways.  Perhaps we
should add the arity later for all binders.  But it works fine like this.
-}


{- *********************************************************************
*                                                                      *
                   SPECIALISE pragmas
*                                                                      *
************************************************************************

Note [Handling SPECIALISE pragmas]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The basic idea is this:

   foo :: Num a => a -> b -> a
   {-# SPECIALISE foo :: Int -> b -> Int #-}

We check that
   (forall a b. Num a => a -> b -> a)
      is more polymorphic than
   forall b. Int -> b -> Int
(for which we could use tcSubType, but see below), generating a HsWrapper
to connect the two, something like
      wrap = /\b. <hole> Int b dNumInt
This wrapper is put in the TcSpecPrag, in the ABExport record of
the AbsBinds.


        f :: (Eq a, Ix b) => a -> b -> Bool
        {-# SPECIALISE f :: (Ix p, Ix q) => Int -> (p,q) -> Bool #-}
        f = <poly_rhs>

From this the typechecker generates

    AbsBinds [ab] [d1,d2] [([ab], f, f_mono, prags)] binds

    SpecPrag (wrap_fn :: forall a b. (Eq a, Ix b) => XXX
                      -> forall p q. (Ix p, Ix q) => XXX[ Int/a, (p,q)/b ])

From these we generate:

    Rule:       forall p, q, (dp:Ix p), (dq:Ix q).
                    f Int (p,q) dInt ($dfInPair dp dq) = f_spec p q dp dq

    Spec bind:  f_spec = wrap_fn <poly_rhs>

Note that

  * The LHS of the rule may mention dictionary *expressions* (eg
    $dfIxPair dp dq), and that is essential because the dp, dq are
    needed on the RHS.

  * The RHS of f_spec, <poly_rhs> has a *copy* of 'binds', so that it
    can fully specialise it.

From the TcSpecPrag, in GHC.HsToCore.Binds we generate a binding for f_spec and a RULE:

   f_spec :: Int -> b -> Int
   f_spec = wrap<f rhs>

   RULE: forall b (d:Num b). f b d = f_spec b

The RULE is generated by taking apart the HsWrapper, which is a little
delicate, but works.

Some wrinkles

1. In tcSpecWrapper, rather than calling tcSubType, we directly call
   skolemise/instantiate.  That is mainly because of wrinkle (2).

   Historical note: in the past, tcSubType did co/contra stuff, which
   could generate too complex a LHS for the RULE, which was another
   reason for not using tcSubType.  But that reason has gone away
   with simple subsumption (#17775).

2. We need to take care with type families (#5821).  Consider
      type instance F Int = Bool
      f :: Num a => a -> F a
      {-# SPECIALISE foo :: Int -> Bool #-}

  We *could* try to generate an f_spec with precisely the declared type:
      f_spec :: Int -> Bool
      f_spec = <f rhs> Int dNumInt |> co

      RULE: forall d. f Int d = f_spec |> sym co

  but the 'co' and 'sym co' are (a) playing no useful role, and (b) are
  hard to generate.  At all costs we must avoid this:
      RULE: forall d. f Int d |> co = f_spec
  because the LHS will never match (indeed it's rejected in
  decomposeRuleLhs).

  So we simply do this:
    - Generate a constraint to check that the specialised type (after
      skolemisation) is equal to the instantiated function type.
    - But *discard* the evidence (coercion) for that constraint,
      so that we ultimately generate the simpler code
          f_spec :: Int -> F Int
          f_spec = <f rhs> Int dNumInt

          RULE: forall d. f Int d = f_spec
      You can see this discarding happening in tcSpecPrag

3. Note that the HsWrapper can transform *any* function with the right
   type prefix
       forall ab. (Eq a, Ix b) => XXX
   regardless of XXX.  It's sort of polymorphic in XXX.  This is
   useful: we use the same wrapper to transform each of the class ops, as
   well as the dict.  That's what goes on in GHC.Tc.TyCl.Instance.mk_meth_spec_prags
-}

tcSpecPrags :: Id -> [LSig GhcRn]
            -> TcM [LTcSpecPrag]
-- Add INLINE and SPECIALSE pragmas
--    INLINE prags are added to the (polymorphic) Id directly
--    SPECIALISE prags are passed to the desugarer via TcSpecPrags
-- Pre-condition: the poly_id is zonked
-- Reason: required by tcSubExp
tcSpecPrags :: TcId -> [LSig GhcRn] -> TcM [LTcSpecPrag]
tcSpecPrags TcId
poly_id [LSig GhcRn]
prag_sigs
  = do { String -> SDoc -> TcRn ()
traceTc String
"tcSpecPrags" (TcId -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcId
poly_id SDoc -> SDoc -> SDoc
<+> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
spec_sigs)
       ; Bool -> TcRn () -> TcRn ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless ([GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
bad_sigs) TcRn ()
warn_discarded_sigs
       ; [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
pss <- (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
 -> TcRn
      (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]))
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> TcRn [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
forall a b. (a -> TcRn b) -> [a] -> TcRn [b]
mapAndRecoverM ((Sig GhcRn -> TcM [TcSpecPrag])
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> TcRn (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag])
forall a b ann.
(a -> TcM b)
-> GenLocated (SrcSpanAnn' ann) a
-> TcRn (GenLocated (SrcSpanAnn' ann) b)
wrapLocMA (TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag TcId
poly_id)) [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
spec_sigs
       ; [LTcSpecPrag] -> TcM [LTcSpecPrag]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([LTcSpecPrag] -> TcM [LTcSpecPrag])
-> [LTcSpecPrag] -> TcM [LTcSpecPrag]
forall a b. (a -> b) -> a -> b
$ (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]
 -> [LTcSpecPrag])
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
-> [LTcSpecPrag]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(L SrcSpanAnn' (EpAnn AnnListItem)
l [TcSpecPrag]
ps) -> (TcSpecPrag -> LTcSpecPrag) -> [TcSpecPrag] -> [LTcSpecPrag]
forall a b. (a -> b) -> [a] -> [b]
map (SrcSpan -> TcSpecPrag -> LTcSpecPrag
forall l e. l -> e -> GenLocated l e
L (SrcSpanAnn' (EpAnn AnnListItem) -> SrcSpan
forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnn' (EpAnn AnnListItem)
l)) [TcSpecPrag]
ps) [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
pss }
  where
    spec_sigs :: [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
spec_sigs = (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn) -> Bool)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a. (a -> Bool) -> [a] -> [a]
filter LSig GhcRn -> Bool
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn) -> Bool
forall p. UnXRec p => LSig p -> Bool
isSpecLSig [LSig GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
prag_sigs
    bad_sigs :: [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
bad_sigs  = (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn) -> Bool)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
forall a. (a -> Bool) -> [a] -> [a]
filter LSig GhcRn -> Bool
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn) -> Bool
forall p. UnXRec p => LSig p -> Bool
is_bad_sig [LSig GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
prag_sigs
    is_bad_sig :: XRec p (Sig p) -> Bool
is_bad_sig XRec p (Sig p)
s = Bool -> Bool
not (XRec p (Sig p) -> Bool
forall p. UnXRec p => LSig p -> Bool
isSpecLSig XRec p (Sig p)
s Bool -> Bool -> Bool
|| XRec p (Sig p) -> Bool
forall p. UnXRec p => LSig p -> Bool
isInlineLSig XRec p (Sig p)
s Bool -> Bool -> Bool
|| XRec p (Sig p) -> Bool
forall p. UnXRec p => LSig p -> Bool
isSCCFunSig XRec p (Sig p)
s)

    warn_discarded_sigs :: TcRn ()
warn_discarded_sigs
      = let dia :: TcRnMessage
dia = DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$
              DiagnosticReason -> [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainDiagnostic DiagnosticReason
WarningWithoutFlag [GhcHint]
noHints (SDoc -> DiagnosticMessage) -> SDoc -> DiagnosticMessage
forall a b. (a -> b) -> a -> b
$
                (SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"Discarding unexpected pragmas for" SDoc -> SDoc -> SDoc
<+> TcId -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcId
poly_id)
                    Arity
2 ([SDoc] -> SDoc
vcat ((GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn) -> SDoc)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
-> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (SrcSpanAnn' (EpAnn AnnListItem) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (SrcSpanAnn' (EpAnn AnnListItem) -> SDoc)
-> (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
    -> SrcSpanAnn' (EpAnn AnnListItem))
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)
-> SrcSpanAnn' (EpAnn AnnListItem)
forall l e. GenLocated l e -> l
getLoc) [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
bad_sigs)))
        in TcRnMessage -> TcRn ()
addDiagnosticTc TcRnMessage
dia

--------------
tcSpecPrag :: TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag :: TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag TcId
poly_id prag :: Sig GhcRn
prag@(SpecSig XSpecSig GhcRn
_ LIdP GhcRn
fun_name [LHsSigType GhcRn]
hs_tys InlinePragma
inl)
-- See Note [Handling SPECIALISE pragmas]
--
-- The Name fun_name in the SpecSig may not be the same as that of the poly_id
-- Example: SPECIALISE for a class method: the Name in the SpecSig is
--          for the selector Id, but the poly_id is something like $cop
-- However we want to use fun_name in the error message, since that is
-- what the user wrote (#8537)
  = SDoc -> TcM [TcSpecPrag] -> TcM [TcSpecPrag]
forall a. SDoc -> TcM a -> TcM a
addErrCtxt (Sig GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
spec_ctxt Sig GhcRn
prag) (TcM [TcSpecPrag] -> TcM [TcSpecPrag])
-> TcM [TcSpecPrag] -> TcM [TcSpecPrag]
forall a b. (a -> b) -> a -> b
$
    do  { Bool -> TcRnMessage -> TcRn ()
warnIf (Bool -> Bool
not (Kind -> Bool
isOverloadedTy Kind
poly_ty Bool -> Bool -> Bool
|| InlinePragma -> Bool
isInlinePragma InlinePragma
inl)) (TcRnMessage -> TcRn ()) -> TcRnMessage -> TcRn ()
forall a b. (a -> b) -> a -> b
$
                 DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ DiagnosticReason -> [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainDiagnostic DiagnosticReason
WarningWithoutFlag [GhcHint]
noHints
                   (String -> SDoc
text String
"SPECIALISE pragma for non-overloaded function"
                    SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (GenLocated SrcSpanAnnN Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr LIdP GhcRn
GenLocated SrcSpanAnnN Name
fun_name))
                    -- Note [SPECIALISE pragmas]
        ; [TcSpecPrag]
spec_prags <- (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
 -> IOEnv (Env TcGblEnv TcLclEnv) TcSpecPrag)
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)]
-> TcM [TcSpecPrag]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
-> IOEnv (Env TcGblEnv TcLclEnv) TcSpecPrag
tc_one [LHsSigType GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)]
hs_tys
        ; String -> SDoc -> TcRn ()
traceTc String
"tcSpecPrag" (TcId -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcId
poly_id SDoc -> SDoc -> SDoc
$$ Arity -> SDoc -> SDoc
nest Arity
2 ([SDoc] -> SDoc
vcat ((TcSpecPrag -> SDoc) -> [TcSpecPrag] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map TcSpecPrag -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcSpecPrag]
spec_prags)))
        ; [TcSpecPrag] -> TcM [TcSpecPrag]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return [TcSpecPrag]
spec_prags }
  where
    name :: Name
name      = TcId -> Name
idName TcId
poly_id
    poly_ty :: Kind
poly_ty   = TcId -> Kind
idType TcId
poly_id
    spec_ctxt :: a -> SDoc
spec_ctxt a
prag = SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"In the pragma:") Arity
2 (a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
prag)

    tc_one :: GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
-> IOEnv (Env TcGblEnv TcLclEnv) TcSpecPrag
tc_one GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
hs_ty
      = do { Kind
spec_ty <- UserTypeCtxt -> LHsSigType GhcRn -> TcM Kind
tcHsSigType   (Name -> ReportRedundantConstraints -> UserTypeCtxt
FunSigCtxt Name
name ReportRedundantConstraints
NoRRC) LHsSigType GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
hs_ty
           ; HsWrapper
wrap    <- UserTypeCtxt -> Kind -> Kind -> TcM HsWrapper
tcSpecWrapper (Name -> ReportRedundantConstraints -> UserTypeCtxt
FunSigCtxt Name
name (LHsSigType GhcRn -> ReportRedundantConstraints
lhsSigTypeContextSpan LHsSigType GhcRn
GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (HsSigType GhcRn)
hs_ty)) Kind
poly_ty Kind
spec_ty
           ; TcSpecPrag -> IOEnv (Env TcGblEnv TcLclEnv) TcSpecPrag
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TcId -> HsWrapper -> InlinePragma -> TcSpecPrag
SpecPrag TcId
poly_id HsWrapper
wrap InlinePragma
inl) }

tcSpecPrag TcId
_ Sig GhcRn
prag = String -> SDoc -> TcM [TcSpecPrag]
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"tcSpecPrag" (Sig GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr Sig GhcRn
prag)

--------------
tcSpecWrapper :: UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
-- A simpler variant of tcSubType, used for SPECIALISE pragmas
-- See Note [Handling SPECIALISE pragmas], wrinkle 1
tcSpecWrapper :: UserTypeCtxt -> Kind -> Kind -> TcM HsWrapper
tcSpecWrapper UserTypeCtxt
ctxt Kind
poly_ty Kind
spec_ty
  = do { (HsWrapper
sk_wrap, HsWrapper
inst_wrap)
               <- UserTypeCtxt
-> Kind -> (Kind -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall result.
UserTypeCtxt
-> Kind -> (Kind -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctxt Kind
spec_ty ((Kind -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper))
-> (Kind -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall a b. (a -> b) -> a -> b
$ \ Kind
spec_tau ->
                  do { (HsWrapper
inst_wrap, Kind
tau) <- CtOrigin -> Kind -> TcM (HsWrapper, Kind)
topInstantiate CtOrigin
orig Kind
poly_ty
                     ; TcCoercionN
_ <- Maybe TypedThing -> Kind -> Kind -> TcM TcCoercionN
unifyType Maybe TypedThing
forall a. Maybe a
Nothing Kind
spec_tau Kind
tau
                            -- Deliberately ignore the evidence
                            -- See Note [Handling SPECIALISE pragmas],
                            --   wrinkle (2)
                     ; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return HsWrapper
inst_wrap }
       ; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inst_wrap) }
  where
    orig :: CtOrigin
orig = UserTypeCtxt -> CtOrigin
SpecPragOrigin UserTypeCtxt
ctxt

--------------
tcImpPrags :: [LSig GhcRn] -> TcM [LTcSpecPrag]
-- SPECIALISE pragmas for imported things
tcImpPrags :: [LSig GhcRn] -> TcM [LTcSpecPrag]
tcImpPrags [LSig GhcRn]
prags
  = do { Module
this_mod <- IOEnv (Env TcGblEnv TcLclEnv) Module
forall (m :: * -> *). HasModule m => m Module
getModule
       ; DynFlags
dflags <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; if (DynFlags -> Bool
not_specialising DynFlags
dflags) then
            [LTcSpecPrag] -> TcM [LTcSpecPrag]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return []
         else do
            { [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
pss <- (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Name, Sig GhcRn)
 -> TcRn
      (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]))
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Name, Sig GhcRn)]
-> TcRn [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
forall a b. (a -> TcRn b) -> [a] -> TcRn [b]
mapAndRecoverM (((Name, Sig GhcRn) -> TcM [TcSpecPrag])
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Name, Sig GhcRn)
-> TcRn (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag])
forall a b ann.
(a -> TcM b)
-> GenLocated (SrcSpanAnn' ann) a
-> TcRn (GenLocated (SrcSpanAnn' ann) b)
wrapLocMA (Name, Sig GhcRn) -> TcM [TcSpecPrag]
tcImpSpec)
                     [SrcSpanAnn' (EpAnn AnnListItem)
-> (Name, Sig GhcRn)
-> GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Name, Sig GhcRn)
forall l e. l -> e -> GenLocated l e
L SrcSpanAnn' (EpAnn AnnListItem)
loc (Name
name,Sig GhcRn
prag)
                             | (L SrcSpanAnn' (EpAnn AnnListItem)
loc prag :: Sig GhcRn
prag@(SpecSig XSpecSig GhcRn
_ (L SrcSpanAnnN
_ Name
name) [LHsSigType GhcRn]
_ InlinePragma
_)) <- [LSig GhcRn]
[GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) (Sig GhcRn)]
prags
                             , Bool -> Bool
not (Module -> Name -> Bool
nameIsLocalOrFrom Module
this_mod Name
name) ]
            ; [LTcSpecPrag] -> TcM [LTcSpecPrag]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([LTcSpecPrag] -> TcM [LTcSpecPrag])
-> [LTcSpecPrag] -> TcM [LTcSpecPrag]
forall a b. (a -> b) -> a -> b
$ (GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]
 -> [LTcSpecPrag])
-> [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
-> [LTcSpecPrag]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (\(L SrcSpanAnn' (EpAnn AnnListItem)
l [TcSpecPrag]
ps) -> (TcSpecPrag -> LTcSpecPrag) -> [TcSpecPrag] -> [LTcSpecPrag]
forall a b. (a -> b) -> [a] -> [b]
map (SrcSpan -> TcSpecPrag -> LTcSpecPrag
forall l e. l -> e -> GenLocated l e
L (SrcSpanAnn' (EpAnn AnnListItem) -> SrcSpan
forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnn' (EpAnn AnnListItem)
l)) [TcSpecPrag]
ps) [GenLocated (SrcSpanAnn' (EpAnn AnnListItem)) [TcSpecPrag]]
pss } }
  where
    -- Ignore SPECIALISE pragmas for imported things
    -- when we aren't specialising, or when we aren't generating
    -- code.  The latter happens when Haddocking the base library;
    -- we don't want complaints about lack of INLINABLE pragmas
    not_specialising :: DynFlags -> Bool
not_specialising DynFlags
dflags
      | Bool -> Bool
not (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_Specialise DynFlags
dflags) = Bool
True
      | Bool
otherwise = case DynFlags -> Backend
backend DynFlags
dflags of
                      Backend
NoBackend   -> Bool
True
                      Backend
Interpreter -> Bool
True
                      Backend
_other      -> Bool
False

tcImpSpec :: (Name, Sig GhcRn) -> TcM [TcSpecPrag]
tcImpSpec :: (Name, Sig GhcRn) -> TcM [TcSpecPrag]
tcImpSpec (Name
name, Sig GhcRn
prag)
 = do { TcId
id <- Name -> TcM TcId
tcLookupId Name
name
      ; if Unfolding -> Bool
hasSomeUnfolding (TcId -> Unfolding
realIdUnfolding TcId
id)
           -- See Note [SPECIALISE pragmas for imported Ids]
        then TcId -> Sig GhcRn -> TcM [TcSpecPrag]
tcSpecPrag TcId
id Sig GhcRn
prag
        else do { let dia :: TcRnMessage
dia = DiagnosticMessage -> TcRnMessage
forall a. (Diagnostic a, Typeable a) => a -> TcRnMessage
TcRnUnknownMessage (DiagnosticMessage -> TcRnMessage)
-> DiagnosticMessage -> TcRnMessage
forall a b. (a -> b) -> a -> b
$
                        DiagnosticReason -> [GhcHint] -> SDoc -> DiagnosticMessage
mkPlainDiagnostic DiagnosticReason
WarningWithoutFlag [GhcHint]
noHints (Name -> SDoc
impSpecErr Name
name)
                ; TcRnMessage -> TcRn ()
addDiagnosticTc TcRnMessage
dia
                ; [TcSpecPrag] -> TcM [TcSpecPrag]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return [] } }

impSpecErr :: Name -> SDoc
impSpecErr :: Name -> SDoc
impSpecErr Name
name
  = SDoc -> Arity -> SDoc -> SDoc
hang (String -> SDoc
text String
"You cannot SPECIALISE" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr Name
name))
       Arity
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"because its definition is not visible in this module"
               , String -> SDoc
text String
"Hint: make sure" SDoc -> SDoc -> SDoc
<+> Module -> SDoc
forall a. Outputable a => a -> SDoc
ppr Module
mod SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"is compiled with -O"
               , String -> SDoc
text String
"      and that" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (Name -> SDoc
forall a. Outputable a => a -> SDoc
ppr Name
name)
                 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"has an INLINABLE pragma" ])
  where
    mod :: Module
mod = (() :: Constraint) => Name -> Module
Name -> Module
nameModule Name
name

{- Note [SPECIALISE pragmas for imported Ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An imported Id may or may not have an unfolding.  If not, we obviously
can't specialise it here; indeed the desugar falls over (#18118).

We used to test whether it had a user-specified INLINABLE pragma but,
because of Note [Worker/wrapper for INLINABLE functions] in
GHC.Core.Opt.WorkWrap, even an INLINABLE function may end up with
a wrapper that has no pragma, just an unfolding (#19246).  So now
we just test whether the function has an unfolding.

There's a risk that a pragma-free function may have an unfolding now
(because it is fairly small), and then gets a bit bigger, and no
longer has an unfolding in the future.  But then you'll get a helpful
error message suggesting an INLINABLE pragma, which you can follow.
That seems enough for now.
-}