{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE RecursiveDo #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE RecordWildCards #-}
module GHC.Tc.Utils.Unify (
tcWrapResult, tcWrapResultO, tcWrapResultMono,
tcTopSkolemise, tcSkolemiseScoped, tcSkolemiseExpType,
tcSubType, tcSubTypeSigma, tcSubTypePat, tcSubTypeDS,
tcSubTypeAmbiguity, tcSubMult,
checkConstraints, checkTvConstraints,
buildImplicationFor, buildTvImplication, emitResidualTvConstraint,
unifyType, unifyKind, unifyInvisibleType, unifyExpectedType,
unifyTypeAndEmit, promoteTcType,
swapOverTyVars, touchabilityAndShapeTest,
UnifyEnv(..), updUEnvLoc, setUEnvRole,
uType,
tcInfer,
matchExpectedListTy,
matchExpectedTyConApp,
matchExpectedAppTy,
matchExpectedFunTys,
matchExpectedFunKind,
matchActualFunTySigma, matchActualFunTysRho,
checkTyEqRhs, recurseIntoTyConApp,
PuResult(..), failCheckWith, okCheckRefl, mapCheck,
TyEqFlags(..), TyEqFamApp(..), AreUnifying(..), LevelCheck(..), FamAppBreaker,
famAppArgFlags, simpleUnifyCheck, checkPromoteFreeVars,
) where
import GHC.Prelude
import GHC.Hs
import GHC.Tc.Utils.Concrete ( hasFixedRuntimeRep, hasFixedRuntimeRep_syntactic )
import GHC.Tc.Utils.Env
import GHC.Tc.Utils.Instantiate
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.TcType
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Constraint
import GHC.Tc.Types.Origin
import GHC.Tc.Zonk.TcType
import GHC.Core.Type
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.FVs( isInjectiveInType )
import GHC.Core.TyCo.Ppr( debugPprType )
import GHC.Core.TyCon
import GHC.Core.Coercion
import GHC.Core.Multiplicity
import GHC.Core.Reduction
import qualified GHC.LanguageExtensions as LangExt
import GHC.Builtin.Types
import GHC.Types.Name
import GHC.Types.Var as Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Types.Basic
import GHC.Types.Unique.Set (nonDetEltsUniqSet)
import GHC.Utils.Error
import GHC.Utils.Misc
import GHC.Utils.Outputable as Outputable
import GHC.Utils.Panic
import GHC.Utils.Panic.Plain
import GHC.Driver.DynFlags
import GHC.Data.Bag
import GHC.Data.FastString( fsLit )
import Control.Monad
import Data.Monoid as DM ( Any(..) )
import qualified Data.Semigroup as S ( (<>) )
matchActualFunTySigma
:: ExpectedFunTyOrigin
-> Maybe TypedThing
-> (Arity, [Scaled TcSigmaType])
-> TcRhoType
-> TcM (HsWrapper, Scaled TcSigmaTypeFRR, TcSigmaType)
matchActualFunTySigma :: ExpectedFunTyOrigin
-> Maybe TypedThing
-> (Int, [Scaled Type])
-> Type
-> TcM (HsWrapper, Scaled Type, Type)
matchActualFunTySigma ExpectedFunTyOrigin
herald Maybe TypedThing
mb_thing (Int, [Scaled Type])
err_info Type
fun_ty
= Bool
-> SDoc
-> TcM (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type)
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Type -> Bool
isRhoTy Type
fun_ty) (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
fun_ty) (TcM (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type))
-> TcM (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type)
forall a b. (a -> b) -> a -> b
$
Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
fun_ty
where
go :: TcRhoType
-> TcM (HsWrapper, Scaled TcSigmaTypeFRR, TcSigmaType)
go :: Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
ty | Just Type
ty' <- Type -> Maybe Type
coreView Type
ty = Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
ty'
go (FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af, ft_mult :: Type -> Type
ft_mult = Type
w, ft_arg :: Type -> Type
ft_arg = Type
arg_ty, ft_res :: Type -> Type
ft_res = Type
res_ty })
= Bool
-> TcM (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type)
forall a. HasCallStack => Bool -> a -> a
assert (FunTyFlag -> Bool
isVisibleFunArg FunTyFlag
af) (TcM (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type))
-> TcM (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type)
forall a b. (a -> b) -> a -> b
$
do { HasDebugCallStack => FixedRuntimeRepContext -> Type -> TcM ()
FixedRuntimeRepContext -> Type -> TcM ()
hasFixedRuntimeRep_syntactic (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
1) Type
arg_ty
; (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, Type -> Type -> Scaled Type
forall a. Type -> a -> Scaled a
Scaled Type
w Type
arg_ty, Type
res_ty) }
go ty :: Type
ty@(TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) MetaDetails
forall (m :: * -> *). MonadIO m => TcTyVar -> m MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty' -> Type -> TcM (HsWrapper, Scaled Type, Type)
go Type
ty'
MetaDetails
Flexi -> Type -> TcM (HsWrapper, Scaled Type, Type)
defer Type
ty }
go Type
ty = (TidyEnv -> ZonkM (TidyEnv, SDoc))
-> TcM (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type)
forall a. (TidyEnv -> ZonkM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM (Type -> TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_ctxt Type
ty) (Type -> TcM (HsWrapper, Scaled Type, Type)
defer Type
ty)
defer :: Type -> TcM (HsWrapper, Scaled Type, Type)
defer Type
fun_ty
= do { Type
arg_ty <- TcM Type
newOpenFlexiTyVarTy
; Type
res_ty <- TcM Type
newOpenFlexiTyVarTy
; Type
mult <- Type -> TcM Type
newFlexiTyVarTy Type
multiplicityTy
; let unif_fun_ty :: Type
unif_fun_ty = Type -> Type -> Type -> Type
tcMkVisFunTy Type
mult Type
arg_ty Type
res_ty
; Coercion
co <- Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
mb_thing Type
fun_ty Type
unif_fun_ty
; HasDebugCallStack => FixedRuntimeRepContext -> Type -> TcM ()
FixedRuntimeRepContext -> Type -> TcM ()
hasFixedRuntimeRep_syntactic (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
1) Type
arg_ty
; (HsWrapper, Scaled Type, Type)
-> TcM (HsWrapper, Scaled Type, Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co, Type -> Type -> Scaled Type
forall a. Type -> a -> Scaled a
Scaled Type
mult Type
arg_ty, Type
res_ty) }
mk_ctxt :: TcType -> TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_ctxt :: Type -> TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_ctxt Type
res_ty TidyEnv
env = TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled Type]
-> Type
-> Int
-> ZonkM (TidyEnv, SDoc)
mkFunTysMsg TidyEnv
env ExpectedFunTyOrigin
herald ([Scaled Type] -> [Scaled Type]
forall a. [a] -> [a]
reverse [Scaled Type]
arg_tys_so_far)
Type
res_ty Int
n_val_args_in_call
(Int
n_val_args_in_call, [Scaled Type]
arg_tys_so_far) = (Int, [Scaled Type])
err_info
matchActualFunTysRho :: ExpectedFunTyOrigin
-> CtOrigin
-> Maybe TypedThing
-> Arity
-> TcSigmaType
-> TcM (HsWrapper, [Scaled TcSigmaTypeFRR], TcRhoType)
matchActualFunTysRho :: ExpectedFunTyOrigin
-> CtOrigin
-> Maybe TypedThing
-> Int
-> Type
-> TcM (HsWrapper, [Scaled Type], Type)
matchActualFunTysRho ExpectedFunTyOrigin
herald CtOrigin
ct_orig Maybe TypedThing
mb_thing Int
n_val_args_wanted Type
fun_ty
= Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go Int
n_val_args_wanted [] Type
fun_ty
where
go :: Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go Int
n [Scaled Type]
so_far Type
fun_ty
| Bool -> Bool
not (Type -> Bool
isRhoTy Type
fun_ty)
= do { (HsWrapper
wrap1, Type
rho) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
ct_orig Type
fun_ty
; (HsWrapper
wrap2, [Scaled Type]
arg_tys, Type
res_ty) <- Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go Int
n [Scaled Type]
so_far Type
rho
; (HsWrapper, [Scaled Type], Type)
-> TcM (HsWrapper, [Scaled Type], Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap1, [Scaled Type]
arg_tys, Type
res_ty) }
go Int
0 [Scaled Type]
_ Type
fun_ty = (HsWrapper, [Scaled Type], Type)
-> TcM (HsWrapper, [Scaled Type], Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, [], Type
fun_ty)
go Int
n [Scaled Type]
so_far Type
fun_ty
= do { (HsWrapper
wrap_fun1, Scaled Type
arg_ty1, Type
res_ty1) <- ExpectedFunTyOrigin
-> Maybe TypedThing
-> (Int, [Scaled Type])
-> Type
-> TcM (HsWrapper, Scaled Type, Type)
matchActualFunTySigma
ExpectedFunTyOrigin
herald Maybe TypedThing
mb_thing
(Int
n_val_args_wanted, [Scaled Type]
so_far)
Type
fun_ty
; (HsWrapper
wrap_res, [Scaled Type]
arg_tys, Type
res_ty) <- Int
-> [Scaled Type] -> Type -> TcM (HsWrapper, [Scaled Type], Type)
go (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) (Scaled Type
arg_ty1Scaled Type -> [Scaled Type] -> [Scaled Type]
forall a. a -> [a] -> [a]
:[Scaled Type]
so_far) Type
res_ty1
; let wrap_fun2 :: HsWrapper
wrap_fun2 = HsWrapper -> HsWrapper -> Scaled Type -> Type -> HsWrapper
mkWpFun HsWrapper
idHsWrapper HsWrapper
wrap_res Scaled Type
arg_ty1 Type
res_ty
; (HsWrapper, [Scaled Type], Type)
-> TcM (HsWrapper, [Scaled Type], Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_fun2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_fun1, Scaled Type
arg_ty1Scaled Type -> [Scaled Type] -> [Scaled Type]
forall a. a -> [a] -> [a]
:[Scaled Type]
arg_tys, Type
res_ty) }
matchExpectedFunTys :: forall a.
ExpectedFunTyOrigin
-> UserTypeCtxt
-> Arity
-> ExpRhoType
-> ([Scaled ExpSigmaTypeFRR] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchExpectedFunTys :: forall a.
ExpectedFunTyOrigin
-> UserTypeCtxt
-> Int
-> ExpRhoType
-> ([Scaled ExpRhoType] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchExpectedFunTys ExpectedFunTyOrigin
herald UserTypeCtxt
ctx Int
arity ExpRhoType
orig_ty [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside
= case ExpRhoType
orig_ty of
Check Type
ty -> [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [] Int
arity Type
ty
ExpRhoType
_ -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [] Int
arity ExpRhoType
orig_ty
where
go :: [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty
| ([TcTyVar]
tvs, [Type]
theta, Type
_) <- Type -> ([TcTyVar], [Type], Type)
tcSplitSigmaTy Type
ty
, Bool -> Bool
not ([TcTyVar] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& [Type] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
theta)
= do { (HsWrapper
wrap_gen, (HsWrapper
wrap_res, a
result)) <- UserTypeCtxt
-> Type
-> (Type -> TcM (HsWrapper, a))
-> TcM (HsWrapper, (HsWrapper, a))
forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise UserTypeCtxt
ctx Type
ty ((Type -> TcM (HsWrapper, a)) -> TcM (HsWrapper, (HsWrapper, a)))
-> (Type -> TcM (HsWrapper, a)) -> TcM (HsWrapper, (HsWrapper, a))
forall a b. (a -> b) -> a -> b
$ \Type
ty' ->
[Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty'
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_gen HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_res, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
0 Type
rho_ty
= do { a
result <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys) (Type -> ExpRhoType
mkCheckExpType Type
rho_ty)
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty
| Just Type
ty' <- Type -> Maybe Type
coreView Type
ty = [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty'
go [Scaled ExpRhoType]
acc_arg_tys Int
n (FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af, ft_mult :: Type -> Type
ft_mult = Type
mult, ft_arg :: Type -> Type
ft_arg = Type
arg_ty, ft_res :: Type -> Type
ft_res = Type
res_ty })
= Bool -> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. HasCallStack => Bool -> a -> a
assert (FunTyFlag -> Bool
isVisibleFunArg FunTyFlag
af) (TcM (HsWrapper, a) -> TcM (HsWrapper, a))
-> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a b. (a -> b) -> a -> b
$
do { let arg_pos :: Int
arg_pos = Int
1 Int -> Int -> Int
forall a. Num a => a -> a -> a
+ [Scaled ExpRhoType] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled ExpRhoType]
acc_arg_tys
; (Coercion
arg_co, Type
arg_ty) <- HasDebugCallStack =>
FixedRuntimeRepContext -> Type -> TcM (Coercion, Type)
FixedRuntimeRepContext -> Type -> TcM (Coercion, Type)
hasFixedRuntimeRep (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
arg_pos) Type
arg_ty
; (HsWrapper
wrap_res, a
result) <- [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go ((Type -> ExpRhoType -> Scaled ExpRhoType
forall a. Type -> a -> Scaled a
Scaled Type
mult (ExpRhoType -> Scaled ExpRhoType)
-> ExpRhoType -> Scaled ExpRhoType
forall a b. (a -> b) -> a -> b
$ Type -> ExpRhoType
mkCheckExpType Type
arg_ty) Scaled ExpRhoType -> [Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. a -> [a] -> [a]
: [Scaled ExpRhoType]
acc_arg_tys)
(Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Type
res_ty
; let wrap_arg :: HsWrapper
wrap_arg = Coercion -> HsWrapper
mkWpCastN Coercion
arg_co
fun_wrap :: HsWrapper
fun_wrap = HsWrapper -> HsWrapper -> Scaled Type -> Type -> HsWrapper
mkWpFun HsWrapper
wrap_arg HsWrapper
wrap_res (Type -> Type -> Scaled Type
forall a. Type -> a -> Scaled a
Scaled Type
mult Type
arg_ty) Type
res_ty
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
fun_wrap, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n ty :: Type
ty@(TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) MetaDetails
forall (m :: * -> *). MonadIO m => TcTyVar -> m MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty' -> [Scaled ExpRhoType] -> Int -> Type -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty'
MetaDetails
Flexi -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (Type -> ExpRhoType
mkCheckExpType Type
ty) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n Type
ty = (TidyEnv -> ZonkM (TidyEnv, SDoc))
-> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. (TidyEnv -> ZonkM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM ([Scaled ExpRhoType] -> Type -> TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
acc_arg_tys Type
ty) (TcM (HsWrapper, a) -> TcM (HsWrapper, a))
-> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a b. (a -> b) -> a -> b
$
[Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (Type -> ExpRhoType
mkCheckExpType Type
ty)
defer :: [Scaled ExpSigmaTypeFRR] -> Arity -> ExpRhoType -> TcM (HsWrapper, a)
defer :: [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n ExpRhoType
fun_ty
= do { let last_acc_arg_pos :: Int
last_acc_arg_pos = [Scaled ExpRhoType] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled ExpRhoType]
acc_arg_tys
; [Scaled ExpRhoType]
more_arg_tys <- (Int -> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType))
-> [Int] -> IOEnv (Env TcGblEnv TcLclEnv) [Scaled ExpRhoType]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM Int -> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType)
new_exp_arg_ty [Int
last_acc_arg_pos Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1 .. Int
last_acc_arg_pos Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n]
; ExpRhoType
res_ty <- TcM ExpRhoType
newInferExpType
; a
result <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys [Scaled ExpRhoType] -> [Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a] -> [a]
++ [Scaled ExpRhoType]
more_arg_tys) ExpRhoType
res_ty
; [Scaled Type]
more_arg_tys <- (Scaled ExpRhoType -> IOEnv (Env TcGblEnv TcLclEnv) (Scaled Type))
-> [Scaled ExpRhoType]
-> IOEnv (Env TcGblEnv TcLclEnv) [Scaled Type]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM (\(Scaled Type
m ExpRhoType
t) -> Type -> Type -> Scaled Type
forall a. Type -> a -> Scaled a
Scaled Type
m (Type -> Scaled Type)
-> TcM Type -> IOEnv (Env TcGblEnv TcLclEnv) (Scaled Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> TcM Type
forall (m :: * -> *). MonadIO m => ExpRhoType -> m Type
readExpType ExpRhoType
t) [Scaled ExpRhoType]
more_arg_tys
; Type
res_ty <- ExpRhoType -> TcM Type
forall (m :: * -> *). MonadIO m => ExpRhoType -> m Type
readExpType ExpRhoType
res_ty
; let unif_fun_ty :: Type
unif_fun_ty = [Scaled Type] -> Type -> Type
HasDebugCallStack => [Scaled Type] -> Type -> Type
mkScaledFunTys [Scaled Type]
more_arg_tys Type
res_ty
; HsWrapper
wrap <- CtOrigin -> UserTypeCtxt -> Type -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
AppOrigin UserTypeCtxt
ctx Type
unif_fun_ty ExpRhoType
fun_ty
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap, a
result) }
new_exp_arg_ty :: Int -> TcM (Scaled ExpSigmaTypeFRR)
new_exp_arg_ty :: Int -> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType)
new_exp_arg_ty Int
arg_pos
= Type -> ExpRhoType -> Scaled ExpRhoType
forall a. Type -> a -> Scaled a
mkScaled (Type -> ExpRhoType -> Scaled ExpRhoType)
-> TcM Type
-> IOEnv (Env TcGblEnv TcLclEnv) (ExpRhoType -> Scaled ExpRhoType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Type -> TcM Type
newFlexiTyVarTy Type
multiplicityTy
IOEnv (Env TcGblEnv TcLclEnv) (ExpRhoType -> Scaled ExpRhoType)
-> TcM ExpRhoType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType)
forall a b.
IOEnv (Env TcGblEnv TcLclEnv) (a -> b)
-> IOEnv (Env TcGblEnv TcLclEnv) a
-> IOEnv (Env TcGblEnv TcLclEnv) b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> FixedRuntimeRepContext -> TcM ExpRhoType
newInferExpTypeFRR (ExpectedFunTyOrigin -> Int -> FixedRuntimeRepContext
FRRExpectedFunTy ExpectedFunTyOrigin
herald Int
arg_pos)
mk_ctxt :: [Scaled ExpSigmaTypeFRR] -> TcType -> TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_ctxt :: [Scaled ExpRhoType] -> Type -> TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
arg_tys Type
res_ty TidyEnv
env
= TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled Type]
-> Type
-> Int
-> ZonkM (TidyEnv, SDoc)
mkFunTysMsg TidyEnv
env ExpectedFunTyOrigin
herald [Scaled Type]
arg_tys' Type
res_ty Int
arity
where
arg_tys' :: [Scaled Type]
arg_tys' = (Scaled ExpRhoType -> Scaled Type)
-> [Scaled ExpRhoType] -> [Scaled Type]
forall a b. (a -> b) -> [a] -> [b]
map (\(Scaled Type
u ExpRhoType
v) -> Type -> Type -> Scaled Type
forall a. Type -> a -> Scaled a
Scaled Type
u (String -> ExpRhoType -> Type
checkingExpType String
"matchExpectedFunTys" ExpRhoType
v)) ([Scaled ExpRhoType] -> [Scaled Type])
-> [Scaled ExpRhoType] -> [Scaled Type]
forall a b. (a -> b) -> a -> b
$
[Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
arg_tys
mkFunTysMsg :: TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled TcType] -> TcType -> Arity
-> ZonkM (TidyEnv, SDoc)
mkFunTysMsg :: TidyEnv
-> ExpectedFunTyOrigin
-> [Scaled Type]
-> Type
-> Int
-> ZonkM (TidyEnv, SDoc)
mkFunTysMsg TidyEnv
env ExpectedFunTyOrigin
herald [Scaled Type]
arg_tys Type
res_ty Int
n_val_args_in_call
= do { (TidyEnv
env', Type
fun_rho) <- TidyEnv -> Type -> ZonkM (TidyEnv, Type)
zonkTidyTcType TidyEnv
env (Type -> ZonkM (TidyEnv, Type)) -> Type -> ZonkM (TidyEnv, Type)
forall a b. (a -> b) -> a -> b
$
[Scaled Type] -> Type -> Type
HasDebugCallStack => [Scaled Type] -> Type -> Type
mkScaledFunTys [Scaled Type]
arg_tys Type
res_ty
; let ([Scaled Type]
all_arg_tys, Type
_) = Type -> ([Scaled Type], Type)
splitFunTys Type
fun_rho
n_fun_args :: Int
n_fun_args = [Scaled Type] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled Type]
all_arg_tys
msg :: SDoc
msg | Int
n_val_args_in_call Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
n_fun_args
= String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"In the result of a function call"
| Bool
otherwise
= SDoc -> Int -> SDoc -> SDoc
hang (SDoc
full_herald SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
forall doc. IsLine doc => doc
comma)
Int
2 ([SDoc] -> SDoc
forall doc. IsLine doc => [doc] -> doc
sep [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"but its type" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc -> SDoc
quotes (Type -> SDoc
pprType Type
fun_rho)
, if Int
n_fun_args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"has none"
else String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"has only" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Int -> SDoc
speakN Int
n_fun_args])
; (TidyEnv, SDoc) -> ZonkM (TidyEnv, SDoc)
forall a. a -> ZonkM a
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
env', SDoc
msg) }
where
full_herald :: SDoc
full_herald = ExpectedFunTyOrigin -> SDoc
pprExpectedFunTyHerald ExpectedFunTyOrigin
herald
SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Int -> SDoc -> SDoc
speakNOf Int
n_val_args_in_call (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"value argument")
matchExpectedListTy :: TcRhoType -> TcM (TcCoercionN, TcRhoType)
matchExpectedListTy :: Type -> TcM (Coercion, Type)
matchExpectedListTy Type
exp_ty
= do { (Coercion
co, [Type
elt_ty]) <- TyCon -> Type -> TcM (Coercion, [Type])
matchExpectedTyConApp TyCon
listTyCon Type
exp_ty
; (Coercion, Type) -> TcM (Coercion, Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, Type
elt_ty) }
matchExpectedTyConApp :: TyCon
-> TcRhoType
-> TcM (TcCoercionN,
[TcSigmaType])
matchExpectedTyConApp :: TyCon -> Type -> TcM (Coercion, [Type])
matchExpectedTyConApp TyCon
tc Type
orig_ty
= Bool -> SDoc -> TcM (Coercion, [Type]) -> TcM (Coercion, [Type])
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (TyCon -> Bool
isAlgTyCon TyCon
tc) (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc) (TcM (Coercion, [Type]) -> TcM (Coercion, [Type]))
-> TcM (Coercion, [Type]) -> TcM (Coercion, [Type])
forall a b. (a -> b) -> a -> b
$
Type -> TcM (Coercion, [Type])
go Type
orig_ty
where
go :: Type -> TcM (Coercion, [Type])
go Type
ty
| Just Type
ty' <- Type -> Maybe Type
coreView Type
ty
= Type -> TcM (Coercion, [Type])
go Type
ty'
go ty :: Type
ty@(TyConApp TyCon
tycon [Type]
args)
| TyCon
tc TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tycon
= (Coercion, [Type]) -> TcM (Coercion, [Type])
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
ty, [Type]
args)
go (TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) MetaDetails
forall (m :: * -> *). MonadIO m => TcTyVar -> m MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty -> Type -> TcM (Coercion, [Type])
go Type
ty
MetaDetails
Flexi -> TcM (Coercion, [Type])
defer }
go Type
_ = TcM (Coercion, [Type])
defer
defer :: TcM (Coercion, [Type])
defer
= do { (Subst
_, [TcTyVar]
arg_tvs) <- [TcTyVar] -> TcM (Subst, [TcTyVar])
newMetaTyVars (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc)
; String -> SDoc -> TcM ()
traceTc String
"matchExpectedTyConApp" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc) SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
arg_tvs)
; let args :: [Type]
args = [TcTyVar] -> [Type]
mkTyVarTys [TcTyVar]
arg_tvs
tc_template :: Type
tc_template = TyCon -> [Type] -> Type
mkTyConApp TyCon
tc [Type]
args
; Coercion
co <- Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
forall a. Maybe a
Nothing Type
tc_template Type
orig_ty
; (Coercion, [Type]) -> TcM (Coercion, [Type])
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, [Type]
args) }
matchExpectedAppTy :: TcRhoType
-> TcM (TcCoercion,
(TcSigmaType, TcSigmaType))
matchExpectedAppTy :: Type -> TcM (Coercion, (Type, Type))
matchExpectedAppTy Type
orig_ty
= Type -> TcM (Coercion, (Type, Type))
go Type
orig_ty
where
go :: Type -> TcM (Coercion, (Type, Type))
go Type
ty
| Just Type
ty' <- Type -> Maybe Type
coreView Type
ty = Type -> TcM (Coercion, (Type, Type))
go Type
ty'
| Just (Type
fun_ty, Type
arg_ty) <- Type -> Maybe (Type, Type)
tcSplitAppTy_maybe Type
ty
= (Coercion, (Type, Type)) -> TcM (Coercion, (Type, Type))
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
orig_ty, (Type
fun_ty, Type
arg_ty))
go (TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) MetaDetails
forall (m :: * -> *). MonadIO m => TcTyVar -> m MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect Type
ty -> Type -> TcM (Coercion, (Type, Type))
go Type
ty
MetaDetails
Flexi -> TcM (Coercion, (Type, Type))
defer }
go Type
_ = TcM (Coercion, (Type, Type))
defer
defer :: TcM (Coercion, (Type, Type))
defer
= do { Type
ty1 <- Type -> TcM Type
newFlexiTyVarTy Type
kind1
; Type
ty2 <- Type -> TcM Type
newFlexiTyVarTy Type
kind2
; Coercion
co <- Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
forall a. Maybe a
Nothing (Type -> Type -> Type
mkAppTy Type
ty1 Type
ty2) Type
orig_ty
; (Coercion, (Type, Type)) -> TcM (Coercion, (Type, Type))
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, (Type
ty1, Type
ty2)) }
orig_kind :: Type
orig_kind = HasDebugCallStack => Type -> Type
Type -> Type
typeKind Type
orig_ty
kind1 :: Type
kind1 = HasDebugCallStack => Type -> Type -> Type
Type -> Type -> Type
mkVisFunTyMany Type
liftedTypeKind Type
orig_kind
kind2 :: Type
kind2 = Type
liftedTypeKind
fillInferResult :: TcType -> InferResult -> TcM TcCoercionN
fillInferResult :: Type -> InferResult -> TcM Coercion
fillInferResult Type
act_res_ty (IR { ir_uniq :: InferResult -> Unique
ir_uniq = Unique
u
, ir_lvl :: InferResult -> TcLevel
ir_lvl = TcLevel
res_lvl
, ir_frr :: InferResult -> Maybe FixedRuntimeRepContext
ir_frr = Maybe FixedRuntimeRepContext
mb_frr
, ir_ref :: InferResult -> IORef (Maybe Type)
ir_ref = IORef (Maybe Type)
ref })
= do { Maybe Type
mb_exp_res_ty <- IORef (Maybe Type) -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe Type)
forall (m :: * -> *) a. MonadIO m => TcRef a -> m a
readTcRef IORef (Maybe Type)
ref
; case Maybe Type
mb_exp_res_ty of
Just Type
exp_res_ty
-> do { String -> SDoc -> TcM ()
traceTc String
"Joining inferred ExpType" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
Unique -> SDoc
forall a. Outputable a => a -> SDoc
ppr Unique
u SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
forall doc. IsLine doc => doc
colon SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
act_res_ty SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Char -> SDoc
forall doc. IsLine doc => Char -> doc
char Char
'~' SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
exp_res_ty
; TcLevel
cur_lvl <- TcM TcLevel
getTcLevel
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (TcLevel
cur_lvl TcLevel -> TcLevel -> Bool
`sameDepthAs` TcLevel
res_lvl) (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
Type -> TcM ()
ensureMonoType Type
act_res_ty
; Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
forall a. Maybe a
Nothing Type
act_res_ty Type
exp_res_ty }
Maybe Type
Nothing
-> do { String -> SDoc -> TcM ()
traceTc String
"Filling inferred ExpType" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
Unique -> SDoc
forall a. Outputable a => a -> SDoc
ppr Unique
u SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
":=" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
act_res_ty
; (Coercion
prom_co, Type
act_res_ty) <- TcLevel -> Type -> TcM (Coercion, Type)
promoteTcType TcLevel
res_lvl Type
act_res_ty
; (Coercion
frr_co, Type
act_res_ty) <-
case Maybe FixedRuntimeRepContext
mb_frr of
Maybe FixedRuntimeRepContext
Nothing -> (Coercion, Type) -> TcM (Coercion, Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
act_res_ty, Type
act_res_ty)
Just FixedRuntimeRepContext
frr_orig -> HasDebugCallStack =>
FixedRuntimeRepContext -> Type -> TcM (Coercion, Type)
FixedRuntimeRepContext -> Type -> TcM (Coercion, Type)
hasFixedRuntimeRep FixedRuntimeRepContext
frr_orig Type
act_res_ty
; let final_co :: Coercion
final_co = Coercion
prom_co Coercion -> Coercion -> Coercion
`mkTransCo` Coercion
frr_co
; IORef (Maybe Type) -> Maybe Type -> TcM ()
forall (m :: * -> *) a. MonadIO m => TcRef a -> a -> m ()
writeTcRef IORef (Maybe Type)
ref (Type -> Maybe Type
forall a. a -> Maybe a
Just Type
act_res_ty)
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
final_co }
}
tcWrapResult :: HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResult :: HsExpr GhcRn
-> HsExpr GhcTc -> Type -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResult HsExpr GhcRn
rn_expr = CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> Type
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO (HsExpr GhcRn -> CtOrigin
exprCtOrigin HsExpr GhcRn
rn_expr) HsExpr GhcRn
rn_expr
tcWrapResultO :: CtOrigin -> HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO :: CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> Type
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO CtOrigin
orig HsExpr GhcRn
rn_expr HsExpr GhcTc
expr Type
actual_ty ExpRhoType
res_ty
= do { String -> SDoc -> TcM ()
traceTc String
"tcWrapResult" ([SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Actual: " SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
actual_ty
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Expected:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
res_ty ])
; HsWrapper
wrap <- CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> Type
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
GenSigCtxt (TypedThing -> Maybe TypedThing
forall a. a -> Maybe a
Just (TypedThing -> Maybe TypedThing) -> TypedThing -> Maybe TypedThing
forall a b. (a -> b) -> a -> b
$ HsExpr GhcRn -> TypedThing
HsExprRnThing HsExpr GhcRn
rn_expr) Type
actual_ty ExpRhoType
res_ty
; HsExpr GhcTc -> TcM (HsExpr GhcTc)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap HsWrapper
wrap HsExpr GhcTc
expr) }
tcWrapResultMono :: HsExpr GhcRn -> HsExpr GhcTc
-> TcRhoType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultMono :: HsExpr GhcRn
-> HsExpr GhcTc -> Type -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResultMono HsExpr GhcRn
rn_expr HsExpr GhcTc
expr Type
act_ty ExpRhoType
res_ty
= Bool -> SDoc -> TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc)
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Type -> Bool
isRhoTy Type
act_ty) (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
act_ty SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ HsExpr GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr GhcRn
rn_expr) (TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc))
-> TcM (HsExpr GhcTc) -> TcM (HsExpr GhcTc)
forall a b. (a -> b) -> a -> b
$
do { Coercion
co <- HsExpr GhcRn -> Type -> ExpRhoType -> TcM Coercion
unifyExpectedType HsExpr GhcRn
rn_expr Type
act_ty ExpRhoType
res_ty
; HsExpr GhcTc -> TcM (HsExpr GhcTc)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCo Coercion
co HsExpr GhcTc
expr) }
unifyExpectedType :: HsExpr GhcRn
-> TcRhoType
-> ExpRhoType
-> TcM TcCoercionN
unifyExpectedType :: HsExpr GhcRn -> Type -> ExpRhoType -> TcM Coercion
unifyExpectedType HsExpr GhcRn
rn_expr Type
act_ty ExpRhoType
exp_ty
= case ExpRhoType
exp_ty of
Infer InferResult
inf_res -> Type -> InferResult -> TcM Coercion
fillInferResult Type
act_ty InferResult
inf_res
Check Type
exp_ty -> Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType (TypedThing -> Maybe TypedThing
forall a. a -> Maybe a
Just (TypedThing -> Maybe TypedThing) -> TypedThing -> Maybe TypedThing
forall a b. (a -> b) -> a -> b
$ HsExpr GhcRn -> TypedThing
HsExprRnThing HsExpr GhcRn
rn_expr) Type
act_ty Type
exp_ty
tcSubTypePat :: CtOrigin -> UserTypeCtxt
-> ExpSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypePat :: CtOrigin -> UserTypeCtxt -> ExpRhoType -> Type -> TcM HsWrapper
tcSubTypePat CtOrigin
inst_orig UserTypeCtxt
ctxt (Check Type
ty_actual) Type
ty_expected
= (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type Type -> Type -> TcM Coercion
unifyTypeET CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
tcSubTypePat CtOrigin
_ UserTypeCtxt
_ (Infer InferResult
inf_res) Type
ty_expected
= do { Coercion
co <- Type -> InferResult -> TcM Coercion
fillInferResult Type
ty_expected InferResult
inf_res
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN (Coercion -> Coercion
mkSymCo Coercion
co)) }
tcSubType :: CtOrigin -> UserTypeCtxt
-> TcSigmaType
-> ExpRhoType
-> TcM HsWrapper
tcSubType :: CtOrigin -> UserTypeCtxt -> Type -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
orig UserTypeCtxt
ctxt Type
ty_actual ExpRhoType
ty_expected
= Type -> ExpRhoType -> TcM HsWrapper -> TcM HsWrapper
forall a. Type -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt Type
ty_actual ExpRhoType
ty_expected (TcM HsWrapper -> TcM HsWrapper) -> TcM HsWrapper -> TcM HsWrapper
forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcM ()
traceTc String
"tcSubType" ([SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [UserTypeCtxt -> SDoc
pprUserTypeCtxt UserTypeCtxt
ctxt, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_actual, ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
ty_expected])
; CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> Type
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
ctxt Maybe TypedThing
forall a. Maybe a
Nothing Type
ty_actual ExpRhoType
ty_expected }
tcSubTypeDS :: HsExpr GhcRn
-> TcRhoType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeDS :: HsExpr GhcRn -> Type -> ExpRhoType -> TcM HsWrapper
tcSubTypeDS HsExpr GhcRn
rn_expr Type
act_rho ExpRhoType
res_ty
= case ExpRhoType
res_ty of
Check Type
exp_rho -> (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_deep (Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
m_thing) CtOrigin
orig
UserTypeCtxt
GenSigCtxt Type
act_rho Type
exp_rho
Infer InferResult
inf_res -> do { Coercion
co <- Type -> InferResult -> TcM Coercion
fillInferResult Type
act_rho InferResult
inf_res
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co) }
where
orig :: CtOrigin
orig = HsExpr GhcRn -> CtOrigin
exprCtOrigin HsExpr GhcRn
rn_expr
m_thing :: Maybe TypedThing
m_thing = TypedThing -> Maybe TypedThing
forall a. a -> Maybe a
Just (HsExpr GhcRn -> TypedThing
HsExprRnThing HsExpr GhcRn
rn_expr)
tcSubTypeNC :: CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> TcSigmaType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC :: CtOrigin
-> UserTypeCtxt
-> Maybe TypedThing
-> Type
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
inst_orig UserTypeCtxt
ctxt Maybe TypedThing
m_thing Type
ty_actual ExpRhoType
res_ty
= case ExpRhoType
res_ty of
Check Type
ty_expected -> (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type (Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
m_thing) CtOrigin
inst_orig UserTypeCtxt
ctxt
Type
ty_actual Type
ty_expected
Infer InferResult
inf_res -> do { (HsWrapper
wrap, Type
rho) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
inst_orig Type
ty_actual
; Coercion
co <- Type -> InferResult -> TcM Coercion
fillInferResult Type
rho InferResult
inf_res
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }
tcSubTypeSigma :: CtOrigin
-> UserTypeCtxt
-> TcSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypeSigma :: CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tcSubTypeSigma CtOrigin
orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type (Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
forall a. Maybe a
Nothing) CtOrigin
orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
tcSubTypeAmbiguity :: UserTypeCtxt
-> TcSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypeAmbiguity :: UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tcSubTypeAmbiguity UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_shallow (Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
forall a. Maybe a
Nothing)
(UserTypeCtxt -> CtOrigin
AmbiguityCheckOrigin UserTypeCtxt
ctxt)
UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
addSubTypeCtxt :: TcType -> ExpType -> TcM a -> TcM a
addSubTypeCtxt :: forall a. Type -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt Type
ty_actual ExpRhoType
ty_expected TcM a
thing_inside
| Type -> Bool
isRhoTy Type
ty_actual
, ExpRhoType -> Bool
isRhoExpTy ExpRhoType
ty_expected
= TcM a
thing_inside
| Bool
otherwise
= (TidyEnv -> ZonkM (TidyEnv, SDoc)) -> TcM a -> TcM a
forall a. (TidyEnv -> ZonkM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_msg TcM a
thing_inside
where
mk_msg :: TidyEnv -> ZonkM (TidyEnv, SDoc)
mk_msg TidyEnv
tidy_env
= do { (TidyEnv
tidy_env, Type
ty_actual) <- TidyEnv -> Type -> ZonkM (TidyEnv, Type)
zonkTidyTcType TidyEnv
tidy_env Type
ty_actual
; Type
ty_expected <- ExpRhoType -> ZonkM Type
forall (m :: * -> *). MonadIO m => ExpRhoType -> m Type
readExpType ExpRhoType
ty_expected
; (TidyEnv
tidy_env, Type
ty_expected) <- TidyEnv -> Type -> ZonkM (TidyEnv, Type)
zonkTidyTcType TidyEnv
tidy_env Type
ty_expected
; let msg :: SDoc
msg = [SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"When checking that:")
Int
4 (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_actual)
, Int -> SDoc -> SDoc
nest Int
2 (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"is more polymorphic than:")
Int
2 (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_expected)) ]
; (TidyEnv, SDoc) -> ZonkM (TidyEnv, SDoc)
forall a. a -> ZonkM a
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env, SDoc
msg) }
tc_sub_type, tc_sub_type_deep, tc_sub_type_shallow
:: (TcType -> TcType -> TcM TcCoercionN)
-> CtOrigin
-> UserTypeCtxt
-> TcSigmaType
-> TcSigmaType
-> TcM HsWrapper
tc_sub_type :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= do { Bool
deep_subsumption <- Extension -> TcRnIf TcGblEnv TcLclEnv Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.DeepSubsumption
; if Bool
deep_subsumption
then (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_deep Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
else (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_shallow Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
}
tc_sub_type_shallow :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_shallow Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
| Type -> Bool
definitely_poly Type
ty_expected
, Type -> Bool
definitely_mono_shallow Type
ty_actual
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type (drop to equality)" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; Coercion -> HsWrapper
mkWpCastN (Coercion -> HsWrapper) -> TcM Coercion -> TcM HsWrapper
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
Type -> Type -> TcM Coercion
unify Type
ty_actual Type
ty_expected }
| Bool
otherwise
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type (general case)" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; (HsWrapper
sk_wrap, HsWrapper
inner_wrap)
<- UserTypeCtxt
-> Type -> (Type -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise UserTypeCtxt
ctxt Type
ty_expected ((Type -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper))
-> (Type -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall a b. (a -> b) -> a -> b
$ \ Type
sk_rho ->
do { (HsWrapper
wrap, Type
rho_a) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
inst_orig Type
ty_actual
; Coercion
cow <- Type -> Type -> TcM Coercion
unify Type
rho_a Type
sk_rho
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
cow HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inner_wrap) }
tc_sub_type_deep :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_deep Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
| Type -> Bool
definitely_poly Type
ty_expected
, Type -> Bool
definitely_mono_deep Type
ty_actual
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_deep (drop to equality)" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; Coercion -> HsWrapper
mkWpCastN (Coercion -> HsWrapper) -> TcM Coercion -> TcM HsWrapper
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
Type -> Type -> TcM Coercion
unify Type
ty_actual Type
ty_expected }
| Bool
otherwise
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_deep (general case)" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; (HsWrapper
sk_wrap, HsWrapper
inner_wrap)
<- UserTypeCtxt
-> Type -> (Type -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcDeeplySkolemise UserTypeCtxt
ctxt Type
ty_expected ((Type -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper))
-> (Type -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall a b. (a -> b) -> a -> b
$ \ Type
sk_rho ->
(Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
sk_rho
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inner_wrap) }
definitely_mono_shallow :: TcType -> Bool
definitely_mono_shallow :: Type -> Bool
definitely_mono_shallow Type
ty = Type -> Bool
isRhoTy Type
ty
definitely_mono_deep :: TcType -> Bool
definitely_mono_deep :: Type -> Bool
definitely_mono_deep Type
ty
| Bool -> Bool
not (Type -> Bool
definitely_mono_shallow Type
ty) = Bool
False
| Just (Scaled Type
_, Type
res) <- Type -> Maybe (Scaled Type, Type)
tcSplitFunTy_maybe Type
ty = Type -> Bool
definitely_mono_deep Type
res
| Bool
otherwise = Bool
True
definitely_poly :: TcType -> Bool
definitely_poly :: Type -> Bool
definitely_poly Type
ty
| ([TcTyVar]
tvs, [Type]
theta, Type
tau) <- Type -> ([TcTyVar], [Type], Type)
tcSplitSigmaTy Type
ty
, (TcTyVar
tv:[TcTyVar]
_) <- [TcTyVar]
tvs
, [Type] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
theta
, TcTyVar
tv TcTyVar -> Type -> Bool
`isInjectiveInType` Type
tau
= Bool
True
| Bool
otherwise
= Bool
False
tcSubMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcSubMult :: CtOrigin -> Type -> Type -> TcM HsWrapper
tcSubMult CtOrigin
origin Type
w_actual Type
w_expected
| Just (Type
w1, Type
w2) <- Type -> Maybe (Type, Type)
isMultMul Type
w_actual =
do { HsWrapper
w1 <- CtOrigin -> Type -> Type -> TcM HsWrapper
tcSubMult CtOrigin
origin Type
w1 Type
w_expected
; HsWrapper
w2 <- CtOrigin -> Type -> Type -> TcM HsWrapper
tcSubMult CtOrigin
origin Type
w2 Type
w_expected
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
w1 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
w2) }
tcSubMult CtOrigin
origin Type
w_actual Type
w_expected =
case Type -> Type -> IsSubmult
submult Type
w_actual Type
w_expected of
IsSubmult
Submult -> HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return HsWrapper
WpHole
IsSubmult
Unknown -> CtOrigin -> Type -> Type -> TcM HsWrapper
tcEqMult CtOrigin
origin Type
w_actual Type
w_expected
tcEqMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcEqMult :: CtOrigin -> Type -> Type -> TcM HsWrapper
tcEqMult CtOrigin
origin Type
w_actual Type
w_expected = do
{
; Coercion
coercion <- TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
unifyTypeAndEmit TypeOrKind
TypeLevel CtOrigin
origin Type
w_actual Type
w_expected
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> TcM HsWrapper) -> HsWrapper -> TcM HsWrapper
forall a b. (a -> b) -> a -> b
$ if Coercion -> Bool
isReflCo Coercion
coercion then HsWrapper
WpHole else Coercion -> HsWrapper
WpMultCoercion Coercion
coercion }
tc_sub_type_ds :: (TcType -> TcType -> TcM TcCoercionN)
-> CtOrigin
-> UserTypeCtxt
-> TcSigmaType
-> TcRhoType
-> TcM HsWrapper
tc_sub_type_ds :: (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_actual Type
ty_expected
= do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_ds" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_actual
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_expected ]
; Type -> Type -> TcM HsWrapper
go Type
ty_actual Type
ty_expected }
where
go :: Type -> Type -> TcM HsWrapper
go Type
ty_a Type
ty_e | Just Type
ty_a' <- Type -> Maybe Type
coreView Type
ty_a = Type -> Type -> TcM HsWrapper
go Type
ty_a' Type
ty_e
| Just Type
ty_e' <- Type -> Maybe Type
coreView Type
ty_e = Type -> Type -> TcM HsWrapper
go Type
ty_a Type
ty_e'
go (TyVarTy TcTyVar
tv_a) Type
ty_e
= do { Maybe Type
lookup_res <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
tv_a
; case Maybe Type
lookup_res of
Just Type
ty_a' ->
do { String -> SDoc -> TcM ()
traceTc String
"tc_sub_type_ds following filled meta-tyvar:"
(TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv_a SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"-->" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty_a')
; (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
ty_a' Type
ty_e }
Maybe Type
Nothing -> Type -> Type -> TcM HsWrapper
just_unify Type
ty_actual Type
ty_expected }
go ty_a :: Type
ty_a@(FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af1, ft_mult :: Type -> Type
ft_mult = Type
act_mult, ft_arg :: Type -> Type
ft_arg = Type
act_arg, ft_res :: Type -> Type
ft_res = Type
act_res })
ty_e :: Type
ty_e@(FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af2, ft_mult :: Type -> Type
ft_mult = Type
exp_mult, ft_arg :: Type -> Type
ft_arg = Type
exp_arg, ft_res :: Type -> Type
ft_res = Type
exp_res })
| FunTyFlag -> Bool
isVisibleFunArg FunTyFlag
af1, FunTyFlag -> Bool
isVisibleFunArg FunTyFlag
af2
= if (Type -> Bool
isTauTy Type
ty_a Bool -> Bool -> Bool
&& Type -> Bool
isTauTy Type
ty_e)
then Type -> Type -> TcM HsWrapper
just_unify Type
ty_actual Type
ty_expected
else
do { HsWrapper
arg_wrap <- (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_deep Type -> Type -> TcM Coercion
unify CtOrigin
given_orig UserTypeCtxt
GenSigCtxt Type
exp_arg Type
act_arg
; HsWrapper
res_wrap <- (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
act_res Type
exp_res
; HsWrapper
mult_wrap <- CtOrigin -> Type -> Type -> TcM HsWrapper
tcEqMult CtOrigin
inst_orig Type
act_mult Type
exp_mult
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
mult_wrap HsWrapper -> HsWrapper -> HsWrapper
<.>
HsWrapper -> HsWrapper -> Scaled Type -> Type -> HsWrapper
mkWpFun HsWrapper
arg_wrap HsWrapper
res_wrap (Type -> Type -> Scaled Type
forall a. Type -> a -> Scaled a
Scaled Type
exp_mult Type
exp_arg) Type
exp_res) }
where
given_orig :: CtOrigin
given_orig = SkolemInfoAnon -> CtOrigin
GivenOrigin (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
GenSigCtxt Type
exp_arg [])
go Type
ty_a Type
ty_e
| let ([TcTyVar]
tvs, [Type]
theta, Type
_) = Type -> ([TcTyVar], [Type], Type)
tcSplitSigmaTy Type
ty_a
, Bool -> Bool
not ([TcTyVar] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& [Type] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
theta)
= do { (HsWrapper
in_wrap, Type
in_rho) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
topInstantiate CtOrigin
inst_orig Type
ty_a
; HsWrapper
body_wrap <- (Type -> Type -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> Type -> Type -> TcM HsWrapper
tc_sub_type_ds Type -> Type -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt Type
in_rho Type
ty_e
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
body_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
in_wrap) }
| Bool
otherwise
= do {
(HsWrapper
inst_wrap, Type
rho_a) <- CtOrigin -> Type -> TcM (HsWrapper, Type)
deeplyInstantiate CtOrigin
inst_orig Type
ty_actual
; HsWrapper
unify_wrap <- Type -> Type -> TcM HsWrapper
just_unify Type
rho_a Type
ty_expected
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
unify_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inst_wrap) }
just_unify :: Type -> Type -> TcM HsWrapper
just_unify Type
ty_a Type
ty_e = do { Coercion
cow <- Type -> Type -> TcM Coercion
unify Type
ty_a Type
ty_e
; HsWrapper -> TcM HsWrapper
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
cow) }
tcDeeplySkolemise
:: UserTypeCtxt -> TcSigmaType
-> (TcType -> TcM result)
-> TcM (HsWrapper, result)
tcDeeplySkolemise :: forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcDeeplySkolemise UserTypeCtxt
ctxt Type
expected_ty Type -> TcM result
thing_inside
| Type -> Bool
isTauTy Type
expected_ty
= do { result
res <- Type -> TcM result
thing_inside Type
expected_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, result
res) }
| Bool
otherwise
= do {
rec { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, Type
rho_ty) <- SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
deeplySkolemise SkolemInfo
skol_info Type
expected_ty
; SkolemInfo
skol_info <- SkolemInfoAnon -> IOEnv (Env TcGblEnv TcLclEnv) SkolemInfo
forall (m :: * -> *). MonadIO m => SkolemInfoAnon -> m SkolemInfo
mkSkolemInfo (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
ctxt Type
expected_ty [(Name, TcTyVar)]
tv_prs) }
; String -> SDoc -> TcM ()
traceTc String
"tcDeeplySkolemise" (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
expected_ty SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
rho_ty SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ [(Name, TcTyVar)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [(Name, TcTyVar)]
tv_prs)
; let skol_tvs :: [TcTyVar]
skol_tvs = ((Name, TcTyVar) -> TcTyVar) -> [(Name, TcTyVar)] -> [TcTyVar]
forall a b. (a -> b) -> [a] -> [b]
map (Name, TcTyVar) -> TcTyVar
forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
result)
<- SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints (SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info) [TcTyVar]
skol_tvs [TcTyVar]
given (TcM result -> TcM (TcEvBinds, result))
-> TcM result -> TcM (TcEvBinds, result)
forall a b. (a -> b) -> a -> b
$
Type -> TcM result
thing_inside Type
rho_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
result) }
deeplySkolemise :: SkolemInfo -> TcSigmaType
-> TcM ( HsWrapper
, [(Name,TyVar)]
, [EvVar]
, TcRhoType )
deeplySkolemise :: SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
deeplySkolemise SkolemInfo
skol_info Type
ty
= Subst
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
go Subst
init_subst Type
ty
where
init_subst :: Subst
init_subst = InScopeSet -> Subst
mkEmptySubst (VarSet -> InScopeSet
mkInScopeSet (Type -> VarSet
tyCoVarsOfType Type
ty))
go :: Subst
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
go Subst
subst Type
ty
| Just ([Scaled Type]
arg_tys, [TcTyVar]
tvs, [Type]
theta, Type
ty') <- Type -> Maybe ([Scaled Type], [TcTyVar], [Type], Type)
tcDeepSplitSigmaTy_maybe Type
ty
= do { let arg_tys' :: [Scaled Type]
arg_tys' = HasDebugCallStack => Subst -> [Scaled Type] -> [Scaled Type]
Subst -> [Scaled Type] -> [Scaled Type]
substScaledTys Subst
subst [Scaled Type]
arg_tys
; [TcTyVar]
ids1 <- FastString -> [Scaled Type] -> TcRnIf TcGblEnv TcLclEnv [TcTyVar]
forall gbl lcl.
FastString -> [Scaled Type] -> TcRnIf gbl lcl [TcTyVar]
newSysLocalIds (String -> FastString
fsLit String
"dk") [Scaled Type]
arg_tys'
; (Subst
subst', [TcTyVar]
tvs1) <- SkolemInfo -> Subst -> [TcTyVar] -> TcM (Subst, [TcTyVar])
tcInstSkolTyVarsX SkolemInfo
skol_info Subst
subst [TcTyVar]
tvs
; [TcTyVar]
ev_vars1 <- [Type] -> TcRnIf TcGblEnv TcLclEnv [TcTyVar]
newEvVars (HasDebugCallStack => Subst -> [Type] -> [Type]
Subst -> [Type] -> [Type]
substTheta Subst
subst' [Type]
theta)
; (HsWrapper
wrap, [(Name, TcTyVar)]
tvs_prs2, [TcTyVar]
ev_vars2, Type
rho) <- Subst
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
go Subst
subst' Type
ty'
; let tv_prs1 :: [(Name, TcTyVar)]
tv_prs1 = (TcTyVar -> Name) -> [TcTyVar] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map TcTyVar -> Name
tyVarName [TcTyVar]
tvs [Name] -> [TcTyVar] -> [(Name, TcTyVar)]
forall a b. [a] -> [b] -> [(a, b)]
`zip` [TcTyVar]
tvs1
; (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
-> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ( [TcTyVar] -> HsWrapper -> HsWrapper
mkWpEta [TcTyVar]
ids1 ([TcTyVar] -> HsWrapper
mkWpTyLams [TcTyVar]
tvs1
HsWrapper -> HsWrapper -> HsWrapper
<.> [TcTyVar] -> HsWrapper
mkWpEvLams [TcTyVar]
ev_vars1
HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap)
, [(Name, TcTyVar)]
tv_prs1 [(Name, TcTyVar)] -> [(Name, TcTyVar)] -> [(Name, TcTyVar)]
forall a. [a] -> [a] -> [a]
++ [(Name, TcTyVar)]
tvs_prs2
, [TcTyVar]
ev_vars1 [TcTyVar] -> [TcTyVar] -> [TcTyVar]
forall a. [a] -> [a] -> [a]
++ [TcTyVar]
ev_vars2
, [Scaled Type] -> Type -> Type
HasDebugCallStack => [Scaled Type] -> Type -> Type
mkScaledFunTys [Scaled Type]
arg_tys' Type
rho ) }
| Bool
otherwise
= (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
-> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, [], [], HasDebugCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty)
deeplyInstantiate :: CtOrigin -> TcType -> TcM (HsWrapper, Type)
deeplyInstantiate :: CtOrigin -> Type -> TcM (HsWrapper, Type)
deeplyInstantiate CtOrigin
orig Type
ty
= Subst -> Type -> TcM (HsWrapper, Type)
go Subst
init_subst Type
ty
where
init_subst :: Subst
init_subst = InScopeSet -> Subst
mkEmptySubst (VarSet -> InScopeSet
mkInScopeSet (Type -> VarSet
tyCoVarsOfType Type
ty))
go :: Subst -> Type -> TcM (HsWrapper, Type)
go Subst
subst Type
ty
| Just ([Scaled Type]
arg_tys, [TcTyVar]
tvs, [Type]
theta, Type
rho) <- Type -> Maybe ([Scaled Type], [TcTyVar], [Type], Type)
tcDeepSplitSigmaTy_maybe Type
ty
= do { (Subst
subst', [TcTyVar]
tvs') <- Subst -> [TcTyVar] -> TcM (Subst, [TcTyVar])
newMetaTyVarsX Subst
subst [TcTyVar]
tvs
; let arg_tys' :: [Scaled Type]
arg_tys' = HasDebugCallStack => Subst -> [Scaled Type] -> [Scaled Type]
Subst -> [Scaled Type] -> [Scaled Type]
substScaledTys Subst
subst' [Scaled Type]
arg_tys
theta' :: [Type]
theta' = HasDebugCallStack => Subst -> [Type] -> [Type]
Subst -> [Type] -> [Type]
substTheta Subst
subst' [Type]
theta
; [TcTyVar]
ids1 <- FastString -> [Scaled Type] -> TcRnIf TcGblEnv TcLclEnv [TcTyVar]
forall gbl lcl.
FastString -> [Scaled Type] -> TcRnIf gbl lcl [TcTyVar]
newSysLocalIds (String -> FastString
fsLit String
"di") [Scaled Type]
arg_tys'
; HsWrapper
wrap1 <- CtOrigin -> [Type] -> [Type] -> TcM HsWrapper
instCall CtOrigin
orig ([TcTyVar] -> [Type]
mkTyVarTys [TcTyVar]
tvs') [Type]
theta'
; (HsWrapper
wrap2, Type
rho2) <- Subst -> Type -> TcM (HsWrapper, Type)
go Subst
subst' Type
rho
; (HsWrapper, Type) -> TcM (HsWrapper, Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([TcTyVar] -> HsWrapper -> HsWrapper
mkWpEta [TcTyVar]
ids1 (HsWrapper
wrap2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap1),
[Scaled Type] -> Type -> Type
HasDebugCallStack => [Scaled Type] -> Type -> Type
mkScaledFunTys [Scaled Type]
arg_tys' Type
rho2) }
| Bool
otherwise
= do { let ty' :: Type
ty' = HasDebugCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty
; (HsWrapper, Type) -> TcM (HsWrapper, Type)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, Type
ty') }
tcDeepSplitSigmaTy_maybe
:: TcSigmaType -> Maybe ([Scaled TcType], [TyVar], ThetaType, TcSigmaType)
tcDeepSplitSigmaTy_maybe :: Type -> Maybe ([Scaled Type], [TcTyVar], [Type], Type)
tcDeepSplitSigmaTy_maybe Type
ty
| Just (Scaled Type
arg_ty, Type
res_ty) <- Type -> Maybe (Scaled Type, Type)
tcSplitFunTy_maybe Type
ty
, Just ([Scaled Type]
arg_tys, [TcTyVar]
tvs, [Type]
theta, Type
rho) <- Type -> Maybe ([Scaled Type], [TcTyVar], [Type], Type)
tcDeepSplitSigmaTy_maybe Type
res_ty
= ([Scaled Type], [TcTyVar], [Type], Type)
-> Maybe ([Scaled Type], [TcTyVar], [Type], Type)
forall a. a -> Maybe a
Just (Scaled Type
arg_tyScaled Type -> [Scaled Type] -> [Scaled Type]
forall a. a -> [a] -> [a]
:[Scaled Type]
arg_tys, [TcTyVar]
tvs, [Type]
theta, Type
rho)
| ([TcTyVar]
tvs, [Type]
theta, Type
rho) <- Type -> ([TcTyVar], [Type], Type)
tcSplitSigmaTy Type
ty
, Bool -> Bool
not ([TcTyVar] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& [Type] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
theta)
= ([Scaled Type], [TcTyVar], [Type], Type)
-> Maybe ([Scaled Type], [TcTyVar], [Type], Type)
forall a. a -> Maybe a
Just ([], [TcTyVar]
tvs, [Type]
theta, Type
rho)
| Bool
otherwise = Maybe ([Scaled Type], [TcTyVar], [Type], Type)
forall a. Maybe a
Nothing
tcTopSkolemise, tcSkolemiseScoped
:: UserTypeCtxt -> TcSigmaType
-> (TcType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseScoped :: forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcSkolemiseScoped UserTypeCtxt
ctxt Type
expected_ty Type -> TcM result
thing_inside
= do { Bool
deep_subsumption <- Extension -> TcRnIf TcGblEnv TcLclEnv Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.DeepSubsumption
; let skolemise :: SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
skolemise | Bool
deep_subsumption = SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
deeplySkolemise
| Bool
otherwise = SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
topSkolemise
;
rec { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, Type
rho_ty) <- SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
skolemise SkolemInfo
skol_info Type
expected_ty
; SkolemInfo
skol_info <- SkolemInfoAnon -> IOEnv (Env TcGblEnv TcLclEnv) SkolemInfo
forall (m :: * -> *). MonadIO m => SkolemInfoAnon -> m SkolemInfo
mkSkolemInfo (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
ctxt Type
expected_ty [(Name, TcTyVar)]
tv_prs) }
; let skol_tvs :: [TcTyVar]
skol_tvs = ((Name, TcTyVar) -> TcTyVar) -> [(Name, TcTyVar)] -> [TcTyVar]
forall a b. (a -> b) -> [a] -> [b]
map (Name, TcTyVar) -> TcTyVar
forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
res)
<- SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints (SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info) [TcTyVar]
skol_tvs [TcTyVar]
given (TcM result -> TcM (TcEvBinds, result))
-> TcM result -> TcM (TcEvBinds, result)
forall a b. (a -> b) -> a -> b
$
[(Name, TcTyVar)] -> TcM result -> TcM result
forall r. [(Name, TcTyVar)] -> TcM r -> TcM r
tcExtendNameTyVarEnv [(Name, TcTyVar)]
tv_prs (TcM result -> TcM result) -> TcM result -> TcM result
forall a b. (a -> b) -> a -> b
$
Type -> TcM result
thing_inside Type
rho_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
res) }
tcTopSkolemise :: forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise UserTypeCtxt
ctxt Type
expected_ty Type -> TcM result
thing_inside
| Type -> Bool
isRhoTy Type
expected_ty
= do { result
res <- Type -> TcM result
thing_inside Type
expected_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, result
res) }
| Bool
otherwise
= do {
rec { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, Type
rho_ty) <- SkolemInfo
-> Type -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], Type)
topSkolemise SkolemInfo
skol_info Type
expected_ty
; SkolemInfo
skol_info <- SkolemInfoAnon -> IOEnv (Env TcGblEnv TcLclEnv) SkolemInfo
forall (m :: * -> *). MonadIO m => SkolemInfoAnon -> m SkolemInfo
mkSkolemInfo (UserTypeCtxt -> Type -> [(Name, TcTyVar)] -> SkolemInfoAnon
SigSkol UserTypeCtxt
ctxt Type
expected_ty [(Name, TcTyVar)]
tv_prs) }
; let skol_tvs :: [TcTyVar]
skol_tvs = ((Name, TcTyVar) -> TcTyVar) -> [(Name, TcTyVar)] -> [TcTyVar]
forall a b. (a -> b) -> [a] -> [b]
map (Name, TcTyVar) -> TcTyVar
forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
result)
<- SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints (SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info) [TcTyVar]
skol_tvs [TcTyVar]
given (TcM result -> TcM (TcEvBinds, result))
-> TcM result -> TcM (TcEvBinds, result)
forall a b. (a -> b) -> a -> b
$
Type -> TcM result
thing_inside Type
rho_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
result) }
tcSkolemiseExpType :: UserTypeCtxt -> ExpSigmaType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseExpType :: forall result.
UserTypeCtxt
-> ExpRhoType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseExpType UserTypeCtxt
_ et :: ExpRhoType
et@(Infer {}) ExpRhoType -> TcM result
thing_inside
= (HsWrapper
idHsWrapper, ) (result -> (HsWrapper, result))
-> TcM result -> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> TcM result
thing_inside ExpRhoType
et
tcSkolemiseExpType UserTypeCtxt
ctxt (Check Type
ty) ExpRhoType -> TcM result
thing_inside
= do { Bool
deep_subsumption <- Extension -> TcRnIf TcGblEnv TcLclEnv Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.DeepSubsumption
; let skolemise :: UserTypeCtxt
-> Type
-> (Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
skolemise | Bool
deep_subsumption = UserTypeCtxt
-> Type
-> (Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcDeeplySkolemise
| Bool
otherwise = UserTypeCtxt
-> Type
-> (Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall result.
UserTypeCtxt
-> Type -> (Type -> TcM result) -> TcM (HsWrapper, result)
tcTopSkolemise
; UserTypeCtxt
-> Type
-> (Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
skolemise UserTypeCtxt
ctxt Type
ty ((Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result))
-> (Type -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall a b. (a -> b) -> a -> b
$ \Type
rho_ty ->
ExpRhoType -> TcM result
thing_inside (Type -> ExpRhoType
mkCheckExpType Type
rho_ty) }
checkConstraints :: SkolemInfoAnon
-> [TcTyVar]
-> [EvVar]
-> TcM result
-> TcM (TcEvBinds, result)
checkConstraints :: forall result.
SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given TcM result
thing_inside
= do { Bool
implication_needed <- SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcRnIf TcGblEnv TcLclEnv Bool
implicationNeeded SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given
; if Bool
implication_needed
then do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- TcM result -> TcM (TcLevel, WantedConstraints, result)
forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
; (Bag Implication
implics, TcEvBinds
ev_binds) <- TcLevel
-> SkolemInfoAnon
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
; String -> SDoc -> TcM ()
traceTc String
"checkConstraints" (TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs)
; Bag Implication -> TcM ()
emitImplications Bag Implication
implics
; (TcEvBinds, result) -> TcM (TcEvBinds, result)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
ev_binds, result
result) }
else
do { result
res <- TcM result
thing_inside
; (TcEvBinds, result) -> TcM (TcEvBinds, result)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
emptyTcEvBinds, result
res) } }
checkTvConstraints :: SkolemInfo
-> [TcTyVar]
-> TcM result
-> TcM result
checkTvConstraints :: forall result. SkolemInfo -> [TcTyVar] -> TcM result -> TcM result
checkTvConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs TcM result
thing_inside
= do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- TcM result -> TcM (TcLevel, WantedConstraints, result)
forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
; SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
; result -> TcM result
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return result
result }
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
| Bool -> Bool
not (WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted) Bool -> Bool -> Bool
||
SkolemInfoAnon -> Bool
checkTelescopeSkol SkolemInfoAnon
skol_info_anon
=
do { Implication
implic <- SkolemInfoAnon
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfoAnon
skol_info_anon [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
; Implication -> TcM ()
emitImplication Implication
implic }
| Bool
otherwise
= () -> TcM ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
where
skol_info_anon :: SkolemInfoAnon
skol_info_anon = SkolemInfo -> SkolemInfoAnon
getSkolemInfo SkolemInfo
skol_info
buildTvImplication :: SkolemInfoAnon -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication :: SkolemInfoAnon
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
= Bool -> SDoc -> TcM Implication -> TcM Implication
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr ((TcTyVar -> Bool) -> [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (TcTyVar -> Bool
isSkolemTyVar (TcTyVar -> Bool) -> (TcTyVar -> Bool) -> TcTyVar -> Bool
forall (f :: * -> *). Applicative f => f Bool -> f Bool -> f Bool
<||> TcTyVar -> Bool
isTyVarTyVar) [TcTyVar]
skol_tvs) ([TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs) (TcM Implication -> TcM Implication)
-> TcM Implication -> TcM Implication
forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds <- TcM EvBindsVar
newNoTcEvBinds
; Implication
implic <- TcM Implication
newImplication
; let implic' :: Implication
implic' = Implication
implic { ic_tclvl = tclvl
, ic_skols = skol_tvs
, ic_given_eqs = NoGivenEqs
, ic_wanted = wanted
, ic_binds = ev_binds
, ic_info = skol_info }
; Implication -> TcM ()
forall (m :: * -> *).
(HasCallStack, Applicative m) =>
Implication -> m ()
checkImplicationInvariants Implication
implic'
; Implication -> TcM Implication
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Implication
implic' }
implicationNeeded :: SkolemInfoAnon -> [TcTyVar] -> [EvVar] -> TcM Bool
implicationNeeded :: SkolemInfoAnon
-> [TcTyVar] -> [TcTyVar] -> TcRnIf TcGblEnv TcLclEnv Bool
implicationNeeded SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given
| [TcTyVar] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
skol_tvs
, [TcTyVar] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
, Bool -> Bool
not (SkolemInfoAnon -> Bool
alwaysBuildImplication SkolemInfoAnon
skol_info)
=
do { TcLevel
tc_lvl <- TcM TcLevel
getTcLevel
; if Bool -> Bool
not (TcLevel -> Bool
isTopTcLevel TcLevel
tc_lvl)
then Bool -> TcRnIf TcGblEnv TcLclEnv Bool
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
else
do { DynFlags
dflags <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcRnIf TcGblEnv TcLclEnv Bool
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypeErrors DynFlags
dflags Bool -> Bool -> Bool
||
GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypedHoles DynFlags
dflags Bool -> Bool -> Bool
||
GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferOutOfScopeVariables DynFlags
dflags) } }
| Bool
otherwise
= Bool -> TcRnIf TcGblEnv TcLclEnv Bool
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
alwaysBuildImplication :: SkolemInfoAnon -> Bool
alwaysBuildImplication :: SkolemInfoAnon -> Bool
alwaysBuildImplication SkolemInfoAnon
_ = Bool
False
buildImplicationFor :: TcLevel -> SkolemInfoAnon -> [TcTyVar]
-> [EvVar] -> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor :: TcLevel
-> SkolemInfoAnon
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfoAnon
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
| WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted Bool -> Bool -> Bool
&& [TcTyVar] -> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
= (Bag Implication, TcEvBinds) -> TcM (Bag Implication, TcEvBinds)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bag Implication
forall a. Bag a
emptyBag, TcEvBinds
emptyTcEvBinds)
| Bool
otherwise
= Bool
-> SDoc
-> TcM (Bag Implication, TcEvBinds)
-> TcM (Bag Implication, TcEvBinds)
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr ((TcTyVar -> Bool) -> [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (TcTyVar -> Bool
isSkolemTyVar (TcTyVar -> Bool) -> (TcTyVar -> Bool) -> TcTyVar -> Bool
forall (f :: * -> *). Applicative f => f Bool -> f Bool -> f Bool
<||> TcTyVar -> Bool
isTyVarTyVar) [TcTyVar]
skol_tvs) ([TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs) (TcM (Bag Implication, TcEvBinds)
-> TcM (Bag Implication, TcEvBinds))
-> TcM (Bag Implication, TcEvBinds)
-> TcM (Bag Implication, TcEvBinds)
forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
newTcEvBinds
; Implication
implic <- TcM Implication
newImplication
; let implic' :: Implication
implic' = Implication
implic { ic_tclvl = tclvl
, ic_skols = skol_tvs
, ic_given = given
, ic_wanted = wanted
, ic_binds = ev_binds_var
, ic_info = skol_info }
; Implication -> TcM ()
forall (m :: * -> *).
(HasCallStack, Applicative m) =>
Implication -> m ()
checkImplicationInvariants Implication
implic'
; (Bag Implication, TcEvBinds) -> TcM (Bag Implication, TcEvBinds)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication -> Bag Implication
forall a. a -> Bag a
unitBag Implication
implic', EvBindsVar -> TcEvBinds
TcEvBinds EvBindsVar
ev_binds_var) }
unifyType :: Maybe TypedThing
-> TcTauType -> TcTauType
-> TcM TcCoercionN
unifyType :: Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyType Maybe TypedThing
thing Type
ty1 Type
ty2
= TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
unifyTypeAndEmit TypeOrKind
TypeLevel CtOrigin
origin Type
ty1 Type
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
ty1
, uo_expected :: Type
uo_expected = Type
ty2
, uo_thing :: Maybe TypedThing
uo_thing = Maybe TypedThing
thing
, uo_visible :: Bool
uo_visible = Bool
True }
unifyInvisibleType :: TcTauType -> TcTauType
-> TcM TcCoercionN
unifyInvisibleType :: Type -> Type -> TcM Coercion
unifyInvisibleType Type
ty1 Type
ty2
= TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
unifyTypeAndEmit TypeOrKind
TypeLevel CtOrigin
origin Type
ty1 Type
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
ty1
, uo_expected :: Type
uo_expected = Type
ty2
, uo_thing :: Maybe TypedThing
uo_thing = Maybe TypedThing
forall a. Maybe a
Nothing
, uo_visible :: Bool
uo_visible = Bool
False }
unifyTypeET :: TcTauType -> TcTauType -> TcM CoercionN
unifyTypeET :: Type -> Type -> TcM Coercion
unifyTypeET Type
ty1 Type
ty2
= TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
unifyTypeAndEmit TypeOrKind
TypeLevel CtOrigin
origin Type
ty1 Type
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
ty2
, uo_expected :: Type
uo_expected = Type
ty1
, uo_thing :: Maybe TypedThing
uo_thing = Maybe TypedThing
forall a. Maybe a
Nothing
, uo_visible :: Bool
uo_visible = Bool
True }
unifyKind :: Maybe TypedThing -> TcKind -> TcKind -> TcM CoercionN
unifyKind :: Maybe TypedThing -> Type -> Type -> TcM Coercion
unifyKind Maybe TypedThing
mb_thing Type
ty1 Type
ty2
= TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
unifyTypeAndEmit TypeOrKind
KindLevel CtOrigin
origin Type
ty1 Type
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
ty1
, uo_expected :: Type
uo_expected = Type
ty2
, uo_thing :: Maybe TypedThing
uo_thing = Maybe TypedThing
mb_thing
, uo_visible :: Bool
uo_visible = Bool
True }
unifyTypeAndEmit :: TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM CoercionN
unifyTypeAndEmit :: TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
unifyTypeAndEmit TypeOrKind
t_or_k CtOrigin
orig Type
ty1 Type
ty2
= do { TcRef (Bag Ct)
ref <- Bag Ct -> IOEnv (Env TcGblEnv TcLclEnv) (TcRef (Bag Ct))
forall (m :: * -> *) a. MonadIO m => a -> m (TcRef a)
newTcRef Bag Ct
forall a. Bag a
emptyBag
; CtLoc
loc <- CtOrigin -> Maybe TypeOrKind -> TcM CtLoc
getCtLocM CtOrigin
orig (TypeOrKind -> Maybe TypeOrKind
forall a. a -> Maybe a
Just TypeOrKind
t_or_k)
; let env :: UnifyEnv
env = UE { u_loc :: CtLoc
u_loc = CtLoc
loc, u_role :: Role
u_role = Role
Nominal
, u_rewriters :: RewriterSet
u_rewriters = RewriterSet
emptyRewriterSet
, u_defer :: TcRef (Bag Ct)
u_defer = TcRef (Bag Ct)
ref, u_unified :: Maybe (TcRef [TcTyVar])
u_unified = Maybe (TcRef [TcTyVar])
forall a. Maybe a
Nothing }
; Coercion
co <- UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env Type
ty1 Type
ty2
; Bag Ct
cts <- TcRef (Bag Ct) -> IOEnv (Env TcGblEnv TcLclEnv) (Bag Ct)
forall (m :: * -> *) a. MonadIO m => TcRef a -> m a
readTcRef TcRef (Bag Ct)
ref
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Bag Ct -> Bool
forall a. Bag a -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null Bag Ct
cts) (Bag Ct -> TcM ()
emitSimples Bag Ct
cts)
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
data UnifyEnv
= UE { UnifyEnv -> Role
u_role :: Role
, UnifyEnv -> CtLoc
u_loc :: CtLoc
, UnifyEnv -> RewriterSet
u_rewriters :: RewriterSet
, UnifyEnv -> TcRef (Bag Ct)
u_defer :: TcRef (Bag Ct)
, UnifyEnv -> Maybe (TcRef [TcTyVar])
u_unified :: Maybe (TcRef [TcTyVar])
}
setUEnvRole :: UnifyEnv -> Role -> UnifyEnv
setUEnvRole :: UnifyEnv -> Role -> UnifyEnv
setUEnvRole UnifyEnv
uenv Role
role = UnifyEnv
uenv { u_role = role }
updUEnvLoc :: UnifyEnv -> (CtLoc -> CtLoc) -> UnifyEnv
updUEnvLoc :: UnifyEnv -> (CtLoc -> CtLoc) -> UnifyEnv
updUEnvLoc uenv :: UnifyEnv
uenv@(UE { u_loc :: UnifyEnv -> CtLoc
u_loc = CtLoc
loc }) CtLoc -> CtLoc
upd = UnifyEnv
uenv { u_loc = upd loc }
mkKindEnv :: UnifyEnv -> TcType -> TcType -> UnifyEnv
mkKindEnv :: UnifyEnv -> Type -> Type -> UnifyEnv
mkKindEnv env :: UnifyEnv
env@(UE { u_loc :: UnifyEnv -> CtLoc
u_loc = CtLoc
ctloc }) Type
ty1 Type
ty2
= UnifyEnv
env { u_role = Nominal, u_loc = mkKindEqLoc ty1 ty2 ctloc }
uType, uType_defer
:: UnifyEnv
-> TcType
-> TcType
-> TcM CoercionN
uType_defer :: UnifyEnv -> Type -> Type -> TcM Coercion
uType_defer (UE { u_loc :: UnifyEnv -> CtLoc
u_loc = CtLoc
loc, u_defer :: UnifyEnv -> TcRef (Bag Ct)
u_defer = TcRef (Bag Ct)
ref
, u_role :: UnifyEnv -> Role
u_role = Role
role, u_rewriters :: UnifyEnv -> RewriterSet
u_rewriters = RewriterSet
rewriters })
Type
ty1 Type
ty2
= do { let pred_ty :: Type
pred_ty = Role -> Type -> Type -> Type
mkPrimEqPredRole Role
role Type
ty1 Type
ty2
; CoercionHole
hole <- CtLoc -> Type -> TcM CoercionHole
newCoercionHole CtLoc
loc Type
pred_ty
; let ct :: Ct
ct = CtEvidence -> Ct
mkNonCanonical (CtEvidence -> Ct) -> CtEvidence -> Ct
forall a b. (a -> b) -> a -> b
$
CtWanted { ctev_pred :: Type
ctev_pred = Type
pred_ty
, ctev_dest :: TcEvDest
ctev_dest = CoercionHole -> TcEvDest
HoleDest CoercionHole
hole
, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc
, ctev_rewriters :: RewriterSet
ctev_rewriters = RewriterSet
rewriters }
co :: Coercion
co = CoercionHole -> Coercion
HoleCo CoercionHole
hole
; TcRef (Bag Ct) -> (Bag Ct -> Bag Ct) -> TcM ()
forall (m :: * -> *) a. MonadIO m => TcRef a -> (a -> a) -> m ()
updTcRef TcRef (Bag Ct)
ref (Bag Ct -> Ct -> Bag Ct
forall a. Bag a -> a -> Bag a
`snocBag` Ct
ct)
; DumpFlag -> TcM () -> TcM ()
forall gbl lcl. DumpFlag -> TcRnIf gbl lcl () -> TcRnIf gbl lcl ()
whenDOptM DumpFlag
Opt_D_dump_tc_trace (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
do { [ErrCtxt]
ctxt <- TcM [ErrCtxt]
getErrCtxt
; SDoc
doc <- TidyEnv -> [ErrCtxt] -> TcM SDoc
mkErrInfo TidyEnv
emptyTidyEnv [ErrCtxt]
ctxt
; String -> SDoc -> TcM ()
traceTc String
"utype_defer" ([SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ Role -> SDoc
forall a. Outputable a => a -> SDoc
ppr Role
role
, Type -> SDoc
debugPprType Type
ty1
, Type -> SDoc
debugPprType Type
ty2
, SDoc
doc])
; String -> SDoc -> TcM ()
traceTc String
"utype_defer2" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co) }
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
uType :: UnifyEnv -> Type -> Type -> TcM Coercion
uType env :: UnifyEnv
env@(UE { u_role :: UnifyEnv -> Role
u_role = Role
role }) Type
orig_ty1 Type
orig_ty2
| Role
Phantom <- Role
role
= do { Coercion
kind_co <- UnifyEnv -> Type -> Type -> TcM Coercion
uType (UnifyEnv -> Type -> Type -> UnifyEnv
mkKindEnv UnifyEnv
env Type
orig_ty1 Type
orig_ty2)
(HasDebugCallStack => Type -> Type
Type -> Type
typeKind Type
orig_ty1) (HasDebugCallStack => Type -> Type
Type -> Type
typeKind Type
orig_ty2)
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> Type -> Type -> Coercion
mkPhantomCo Coercion
kind_co Type
orig_ty1 Type
orig_ty2) }
| Bool
otherwise
= do { TcLevel
tclvl <- TcM TcLevel
getTcLevel
; String -> SDoc -> TcM ()
traceTc String
"u_tys" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat
[ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"tclvl" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl
, [SDoc] -> SDoc
forall doc. IsLine doc => [doc] -> doc
sep [ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
orig_ty1, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"~" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> Role -> SDoc
forall a. Outputable a => a -> SDoc
ppr Role
role, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
orig_ty2] ]
; Coercion
co <- Type -> Type -> TcM Coercion
go Type
orig_ty1 Type
orig_ty2
; if Coercion -> Bool
isReflCo Coercion
co
then String -> SDoc -> TcM ()
traceTc String
"u_tys yields no coercion" SDoc
forall doc. IsOutput doc => doc
Outputable.empty
else String -> SDoc -> TcM ()
traceTc String
"u_tys yields coercion:" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co)
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
where
go :: TcType -> TcType -> TcM CoercionN
go :: Type -> Type -> TcM Coercion
go (CastTy Type
t1 Coercion
co1) Type
t2
= do { Coercion
co_tys <- UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env Type
t1 Type
t2
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceLeftCo Role
role Type
t1 Coercion
co1 Coercion
co_tys) }
go Type
t1 (CastTy Type
t2 Coercion
co2)
= do { Coercion
co_tys <- UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env Type
t1 Type
t2
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Type -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
role Type
t2 Coercion
co2 Coercion
co_tys) }
go (TyVarTy TcTyVar
tv1) Type
ty2
= do { Maybe Type
lookup_res <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
tv1
; case Maybe Type
lookup_res of
Just Type
ty1 -> do { String -> SDoc -> TcM ()
traceTc String
"found filled tyvar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
":->" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty1)
; UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env Type
ty1 Type
orig_ty2 }
Maybe Type
Nothing -> UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar UnifyEnv
env SwapFlag
NotSwapped TcTyVar
tv1 Type
ty2 }
go Type
ty1 (TyVarTy TcTyVar
tv2)
= do { Maybe Type
lookup_res <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
tv2
; case Maybe Type
lookup_res of
Just Type
ty2 -> do { String -> SDoc -> TcM ()
traceTc String
"found filled tyvar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv2 SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
":->" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty2)
; UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env Type
orig_ty1 Type
ty2 }
Maybe Type
Nothing -> UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar UnifyEnv
env SwapFlag
IsSwapped TcTyVar
tv2 Type
ty1 }
go ty1 :: Type
ty1@(TyConApp TyCon
tc1 []) (TyConApp TyCon
tc2 [])
| TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2
= Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Type -> Coercion
mkReflCo Role
role Type
ty1
go Type
ty1 Type
ty2
| Just Type
ty1' <- Type -> Maybe Type
coreView Type
ty1 = Type -> Type -> TcM Coercion
go Type
ty1' Type
ty2
| Just Type
ty2' <- Type -> Maybe Type
coreView Type
ty2 = Type -> Type -> TcM Coercion
go Type
ty1 Type
ty2'
go (FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af1, ft_mult :: Type -> Type
ft_mult = Type
w1, ft_arg :: Type -> Type
ft_arg = Type
arg1, ft_res :: Type -> Type
ft_res = Type
res1 })
(FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af2, ft_mult :: Type -> Type
ft_mult = Type
w2, ft_arg :: Type -> Type
ft_arg = Type
arg2, ft_res :: Type -> Type
ft_res = Type
res2 })
| FunTyFlag -> Bool
isVisibleFunArg FunTyFlag
af1
, FunTyFlag
af1 FunTyFlag -> FunTyFlag -> Bool
forall a. Eq a => a -> a -> Bool
== FunTyFlag
af2
= do { Coercion
co_w <- UnifyEnv -> Type -> Type -> TcM Coercion
uType (UnifyEnv
env { u_role = funRole role SelMult }) Type
w1 Type
w2
; Coercion
co_l <- UnifyEnv -> Type -> Type -> TcM Coercion
uType (UnifyEnv
env { u_role = funRole role SelArg }) Type
arg1 Type
arg2
; Coercion
co_r <- UnifyEnv -> Type -> Type -> TcM Coercion
uType (UnifyEnv
env { u_role = funRole role SelRes }) Type
res1 Type
res2
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
mkNakedFunCo Role
role FunTyFlag
af1 Coercion
co_w Coercion
co_l Coercion
co_r }
go ty1 :: Type
ty1@(TyConApp TyCon
tc1 [Type]
_) Type
ty2
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc1 = Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
go Type
ty1 ty2 :: Type
ty2@(TyConApp TyCon
tc2 [Type]
_)
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc2 = Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
go (TyConApp TyCon
tc1 [Type]
tys1) (TyConApp TyCon
tc2 [Type]
tys2)
| TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2, [Type] -> [Type] -> Bool
forall a b. [a] -> [b] -> Bool
equalLength [Type]
tys1 [Type]
tys2
, TyCon -> Role -> Bool
isInjectiveTyCon TyCon
tc1 Role
role
= Bool -> SDoc -> TcM Coercion -> TcM Coercion
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (TyCon -> Role -> Bool
isGenerativeTyCon TyCon
tc1 Role
role) (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc1) (TcM Coercion -> TcM Coercion) -> TcM Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcM ()
traceTc String
"go-tycon" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc1 SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ [Type] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Type]
tys1 SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ [Type] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Type]
tys2 SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ [Role] -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Int -> [Role] -> [Role]
forall a. Int -> [a] -> [a]
take Int
10 (Role -> TyCon -> [Role]
tyConRoleListX Role
role TyCon
tc1)))
; [Coercion]
cos <- (Bool -> Role -> Type -> Type -> TcM Coercion)
-> [Bool]
-> [Role]
-> [Type]
-> [Type]
-> IOEnv (Env TcGblEnv TcLclEnv) [Coercion]
forall (m :: * -> *) a b c d e.
Monad m =>
(a -> b -> c -> d -> m e) -> [a] -> [b] -> [c] -> [d] -> m [e]
zipWith4M Bool -> Role -> Type -> Type -> TcM Coercion
u_tc_arg (TyCon -> [Bool]
tyConVisibilities TyCon
tc1)
(Role -> TyCon -> [Role]
tyConRoleListX Role
role TyCon
tc1)
[Type]
tys1 [Type]
tys2
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
role TyCon
tc1 [Coercion]
cos }
go (LitTy TyLit
m) ty :: Type
ty@(LitTy TyLit
n)
| TyLit
m TyLit -> TyLit -> Bool
forall a. Eq a => a -> a -> Bool
== TyLit
n
= Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Type -> Coercion
mkReflCo Role
role Type
ty
go ty1 :: Type
ty1@(AppTy Type
s1 Type
t1) ty2 :: Type
ty2@(AppTy Type
s2 Type
t2)
= Bool
-> Type -> Type -> Type -> Type -> Type -> Type -> TcM Coercion
go_app (Type -> Bool
isNextArgVisible Type
s1) Type
ty1 Type
s1 Type
t1 Type
ty2 Type
s2 Type
t2
go ty1 :: Type
ty1@(AppTy Type
s1 Type
t1) ty2 :: Type
ty2@(TyConApp TyCon
tc2 [Type]
ts2)
| Just ([Type]
ts2', Type
t2') <- [Type] -> Maybe ([Type], Type)
forall a. [a] -> Maybe ([a], a)
snocView [Type]
ts2
= Bool -> TcM Coercion -> TcM Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (TyCon -> Bool
tyConMustBeSaturated TyCon
tc2)) (TcM Coercion -> TcM Coercion) -> TcM Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$
Bool
-> Type -> Type -> Type -> Type -> Type -> Type -> TcM Coercion
go_app (TyCon -> [Type] -> Bool
isNextTyConArgVisible TyCon
tc2 [Type]
ts2')
Type
ty1 Type
s1 Type
t1 Type
ty2 (TyCon -> [Type] -> Type
TyConApp TyCon
tc2 [Type]
ts2') Type
t2'
go ty1 :: Type
ty1@(TyConApp TyCon
tc1 [Type]
ts1) ty2 :: Type
ty2@(AppTy Type
s2 Type
t2)
| Just ([Type]
ts1', Type
t1') <- [Type] -> Maybe ([Type], Type)
forall a. [a] -> Maybe ([a], a)
snocView [Type]
ts1
= Bool -> TcM Coercion -> TcM Coercion
forall a. HasCallStack => Bool -> a -> a
assert (Bool -> Bool
not (TyCon -> Bool
tyConMustBeSaturated TyCon
tc1)) (TcM Coercion -> TcM Coercion) -> TcM Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$
Bool
-> Type -> Type -> Type -> Type -> Type -> Type -> TcM Coercion
go_app (TyCon -> [Type] -> Bool
isNextTyConArgVisible TyCon
tc1 [Type]
ts1')
Type
ty1 (TyCon -> [Type] -> Type
TyConApp TyCon
tc1 [Type]
ts1') Type
t1' Type
ty2 Type
s2 Type
t2
go ty1 :: Type
ty1@(CoercionTy Coercion
co1) ty2 :: Type
ty2@(CoercionTy Coercion
co2)
= do { Coercion
kco <- UnifyEnv -> Type -> Type -> TcM Coercion
uType (UnifyEnv -> Type -> Type -> UnifyEnv
mkKindEnv UnifyEnv
env Type
ty1 Type
ty2)
(Coercion -> Type
coercionType Coercion
co1) (Coercion -> Type
coercionType Coercion
co2)
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
role Coercion
kco Coercion
co1 Coercion
co2 }
go Type
ty1 Type
ty2 = Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
defer :: Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
| Type
ty1 HasDebugCallStack => Type -> Type -> Bool
Type -> Type -> Bool
`tcEqType` Type
ty2 = Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Type -> Coercion
mkReflCo Role
role Type
ty1)
| Bool
otherwise = UnifyEnv -> Type -> Type -> TcM Coercion
uType_defer UnifyEnv
env Type
orig_ty1 Type
orig_ty2
u_tc_arg :: Bool -> Role -> Type -> Type -> TcM Coercion
u_tc_arg Bool
is_vis Role
role Type
ty1 Type
ty2
= do { String -> SDoc -> TcM ()
traceTc String
"u_tc_arg" (Role -> SDoc
forall a. Outputable a => a -> SDoc
ppr Role
role SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty1 SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty2)
; UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env_arg Type
ty1 Type
ty2 }
where
env_arg :: UnifyEnv
env_arg = UnifyEnv
env { u_loc = adjustCtLoc is_vis False (u_loc env)
, u_role = role }
go_app :: Bool
-> Type -> Type -> Type -> Type -> Type -> Type -> TcM Coercion
go_app Bool
vis Type
ty1 Type
s1 Type
t1 Type
ty2 Type
s2 Type
t2
| Role
Nominal <- Role
role
=
do { let env_arg :: UnifyEnv
env_arg = UnifyEnv
env { u_loc = adjustCtLoc vis False (u_loc env) }
; Coercion
co_t <- UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env_arg Type
t1 Type
t2
; Coercion
co_s <- UnifyEnv -> Type -> Type -> TcM Coercion
uType UnifyEnv
env Type
s1 Type
s2
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Coercion -> Coercion -> Coercion
mkAppCo Coercion
co_s Coercion
co_t }
| Bool
otherwise
= Type -> Type -> TcM Coercion
defer Type
ty1 Type
ty2
uUnfilledVar, uUnfilledVar1
:: UnifyEnv
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM CoercionN
uUnfilledVar :: UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar UnifyEnv
env SwapFlag
swapped TcTyVar
tv1 Type
ty2
| Role
Nominal <- UnifyEnv -> Role
u_role UnifyEnv
env
= do { Type
ty2 <- ZonkM Type -> TcM Type
forall a. ZonkM a -> TcM a
liftZonkM (ZonkM Type -> TcM Type) -> ZonkM Type -> TcM Type
forall a b. (a -> b) -> a -> b
$ Type -> ZonkM Type
zonkTcType Type
ty2
; UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar1 UnifyEnv
env SwapFlag
swapped TcTyVar
tv1 Type
ty2 }
| Bool
otherwise
= SwapFlag
-> (Type -> Type -> TcM Coercion) -> Type -> Type -> TcM Coercion
forall a b. SwapFlag -> (a -> a -> b) -> a -> a -> b
unSwap SwapFlag
swapped (UnifyEnv -> Type -> Type -> TcM Coercion
uType_defer UnifyEnv
env) (TcTyVar -> Type
mkTyVarTy TcTyVar
tv1) Type
ty2
uUnfilledVar1 :: UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar1 UnifyEnv
env
SwapFlag
swapped
TcTyVar
tv1
Type
ty2
| Just TcTyVar
tv2 <- Type -> Maybe TcTyVar
getTyVar_maybe Type
ty2
= TcTyVar -> TcM Coercion
go TcTyVar
tv2
| Bool
otherwise
= UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 UnifyEnv
env SwapFlag
swapped TcTyVar
tv1 Type
ty2
where
go :: TcTyVar -> TcM Coercion
go TcTyVar
tv2 | TcTyVar
tv1 TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv2
= Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo (TcTyVar -> Type
mkTyVarTy TcTyVar
tv1))
| Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
False TcTyVar
tv1 TcTyVar
tv2
= do { TcTyVar
tv1 <- ZonkM TcTyVar -> TcM TcTyVar
forall a. ZonkM a -> TcM a
liftZonkM (ZonkM TcTyVar -> TcM TcTyVar) -> ZonkM TcTyVar -> TcM TcTyVar
forall a b. (a -> b) -> a -> b
$ TcTyVar -> ZonkM TcTyVar
zonkTyCoVarKind TcTyVar
tv1
; UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 UnifyEnv
env (SwapFlag -> SwapFlag
flipSwap SwapFlag
swapped) TcTyVar
tv2 (TcTyVar -> Type
mkTyVarTy TcTyVar
tv1) }
| Bool
otherwise
= UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 UnifyEnv
env SwapFlag
swapped TcTyVar
tv1 Type
ty2
uUnfilledVar2 :: UnifyEnv
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM CoercionN
uUnfilledVar2 :: UnifyEnv -> SwapFlag -> TcTyVar -> Type -> TcM Coercion
uUnfilledVar2 env :: UnifyEnv
env@(UE { u_defer :: UnifyEnv -> TcRef (Bag Ct)
u_defer = TcRef (Bag Ct)
def_eq_ref }) SwapFlag
swapped TcTyVar
tv1 Type
ty2
= do { TcLevel
cur_lvl <- TcM TcLevel
getTcLevel
; if Bool -> Bool
not (TcLevel -> TcTyVar -> Type -> Bool
touchabilityAndShapeTest TcLevel
cur_lvl TcTyVar
tv1 Type
ty2
Bool -> Bool -> Bool
&& Bool -> TcTyVar -> Type -> Bool
simpleUnifyCheck Bool
False TcTyVar
tv1 Type
ty2)
then TcM Coercion
not_ok_so_defer
else
do { Bag Ct
def_eqs <- TcRef (Bag Ct) -> IOEnv (Env TcGblEnv TcLclEnv) (Bag Ct)
forall (m :: * -> *) a. MonadIO m => TcRef a -> m a
readTcRef TcRef (Bag Ct)
def_eq_ref
; Coercion
co_k <- UnifyEnv -> Type -> Type -> TcM Coercion
uType (UnifyEnv -> Type -> Type -> UnifyEnv
mkKindEnv UnifyEnv
env Type
ty1 Type
ty2) (HasDebugCallStack => Type -> Type
Type -> Type
typeKind Type
ty2) (TcTyVar -> Type
tyVarKind TcTyVar
tv1)
; String -> SDoc -> TcM ()
traceTc String
"uUnfilledVar2 ok" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TcTyVar -> Type
tyVarKind TcTyVar
tv1)
, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty2 SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HasDebugCallStack => Type -> Type
Type -> Type
typeKind Type
ty2)
, Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Coercion -> Bool
isReflCo Coercion
co_k), Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co_k ]
; if Coercion -> Bool
isReflCo Coercion
co_k
then do { ZonkM () -> TcM ()
forall a. ZonkM a -> TcM a
liftZonkM (ZonkM () -> TcM ()) -> ZonkM () -> TcM ()
forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => TcTyVar -> Type -> ZonkM ()
TcTyVar -> Type -> ZonkM ()
writeMetaTyVar TcTyVar
tv1 Type
ty2
; case UnifyEnv -> Maybe (TcRef [TcTyVar])
u_unified UnifyEnv
env of
Maybe (TcRef [TcTyVar])
Nothing -> () -> TcM ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Just TcRef [TcTyVar]
uref -> TcRef [TcTyVar] -> ([TcTyVar] -> [TcTyVar]) -> TcM ()
forall (m :: * -> *) a. MonadIO m => TcRef a -> (a -> a) -> m ()
updTcRef TcRef [TcTyVar]
uref (TcTyVar
tv1 TcTyVar -> [TcTyVar] -> [TcTyVar]
forall a. a -> [a] -> [a]
:)
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
ty2) }
else
do { TcRef (Bag Ct) -> Bag Ct -> TcM ()
forall (m :: * -> *) a. MonadIO m => TcRef a -> a -> m ()
writeTcRef TcRef (Bag Ct)
def_eq_ref Bag Ct
def_eqs
; TcM Coercion
defer }
}}
where
ty1 :: Type
ty1 = TcTyVar -> Type
mkTyVarTy TcTyVar
tv1
defer :: TcM Coercion
defer = SwapFlag
-> (Type -> Type -> TcM Coercion) -> Type -> Type -> TcM Coercion
forall a b. SwapFlag -> (a -> a -> b) -> a -> a -> b
unSwap SwapFlag
swapped (UnifyEnv -> Type -> Type -> TcM Coercion
uType_defer UnifyEnv
env) Type
ty1 Type
ty2
not_ok_so_defer :: TcM Coercion
not_ok_so_defer =
do { String -> SDoc -> TcM ()
traceTc String
"uUnfilledVar2 not ok" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty2)
; TcM Coercion
defer }
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
is_given TcTyVar
tv1 TcTyVar
tv2
| Bool -> Bool
not Bool
is_given, Int
pri1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
True
| Bool -> Bool
not Bool
is_given, Int
pri2 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
False
| TcLevel
lvl1 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl2 = Bool
False
| TcLevel
lvl2 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl1 = Bool
True
| Int
pri1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
pri2 = Bool
False
| Int
pri2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
pri1 = Bool
True
| Name -> Bool
isSystemName Name
tv2_name, Bool -> Bool
not (Name -> Bool
isSystemName Name
tv1_name) = Bool
True
| Bool
otherwise = Bool
False
where
lvl1 :: TcLevel
lvl1 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv1
lvl2 :: TcLevel
lvl2 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv2
pri1 :: Int
pri1 = TcTyVar -> Int
lhsPriority TcTyVar
tv1
pri2 :: Int
pri2 = TcTyVar -> Int
lhsPriority TcTyVar
tv2
tv1_name :: Name
tv1_name = TcTyVar -> Name
Var.varName TcTyVar
tv1
tv2_name :: Name
tv2_name = TcTyVar -> Name
Var.varName TcTyVar
tv2
lhsPriority :: TcTyVar -> Int
lhsPriority :: TcTyVar -> Int
lhsPriority TcTyVar
tv
= Bool -> SDoc -> Int -> Int
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (TcTyVar -> Bool
isTyVar TcTyVar
tv) (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv) (Int -> Int) -> Int -> Int
forall a b. (a -> b) -> a -> b
$
case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
TcTyVarDetails
RuntimeUnk -> Int
0
SkolemTv {} -> Int
0
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info } -> case MetaInfo
info of
MetaInfo
CycleBreakerTv -> Int
0
MetaInfo
TyVarTv -> Int
1
ConcreteTv {} -> Int
2
MetaInfo
TauTv -> Int
3
MetaInfo
RuntimeUnkTv -> Int
4
matchExpectedFunKind
:: TypedThing
-> Arity
-> TcKind
-> TcM Coercion
matchExpectedFunKind :: TypedThing -> Int -> Type -> TcM Coercion
matchExpectedFunKind TypedThing
hs_ty Int
n Type
k = Int -> Type -> TcM Coercion
go Int
n Type
k
where
go :: Int -> Type -> TcM Coercion
go Int
0 Type
k = Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
k)
go Int
n Type
k | Just Type
k' <- Type -> Maybe Type
coreView Type
k = Int -> Type -> TcM Coercion
go Int
n Type
k'
go Int
n k :: Type
k@(TyVarTy TcTyVar
kvar)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
kvar
= do { MetaDetails
maybe_kind <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) MetaDetails
forall (m :: * -> *). MonadIO m => TcTyVar -> m MetaDetails
readMetaTyVar TcTyVar
kvar
; case MetaDetails
maybe_kind of
Indirect Type
fun_kind -> Int -> Type -> TcM Coercion
go Int
n Type
fun_kind
MetaDetails
Flexi -> Int -> Type -> TcM Coercion
defer Int
n Type
k }
go Int
n (FunTy { ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af, ft_mult :: Type -> Type
ft_mult = Type
w, ft_arg :: Type -> Type
ft_arg = Type
arg, ft_res :: Type -> Type
ft_res = Type
res })
| FunTyFlag -> Bool
isVisibleFunArg FunTyFlag
af
= do { Coercion
co <- Int -> Type -> TcM Coercion
go (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) Type
res
; Coercion -> TcM Coercion
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> FunTyFlag -> Coercion -> Coercion -> Coercion -> Coercion
mkNakedFunCo Role
Nominal FunTyFlag
af (Type -> Coercion
mkNomReflCo Type
w) (Type -> Coercion
mkNomReflCo Type
arg) Coercion
co) }
go Int
n Type
other
= Int -> Type -> TcM Coercion
defer Int
n Type
other
defer :: Int -> Type -> TcM Coercion
defer Int
n Type
k
= do { [Type]
arg_kinds <- Int -> TcM [Type]
newMetaKindVars Int
n
; Type
res_kind <- TcM Type
newMetaKindVar
; let new_fun :: Type
new_fun = [Type] -> Type -> Type
mkVisFunTysMany [Type]
arg_kinds Type
res_kind
origin :: CtOrigin
origin = TypeEqOrigin { uo_actual :: Type
uo_actual = Type
k
, uo_expected :: Type
uo_expected = Type
new_fun
, uo_thing :: Maybe TypedThing
uo_thing = TypedThing -> Maybe TypedThing
forall a. a -> Maybe a
Just TypedThing
hs_ty
, uo_visible :: Bool
uo_visible = Bool
True
}
; TypeOrKind -> CtOrigin -> Type -> Type -> TcM Coercion
unifyTypeAndEmit TypeOrKind
KindLevel CtOrigin
origin Type
k Type
new_fun }
simpleUnifyCheck :: Bool -> TcTyVar -> TcType -> Bool
simpleUnifyCheck :: Bool -> TcTyVar -> Type -> Bool
simpleUnifyCheck Bool
fam_ok TcTyVar
lhs_tv Type
rhs
= Type -> Bool
go Type
rhs
where
!(Type -> Bool
occ_in_ty, Coercion -> Bool
occ_in_co) = TcTyVar -> (Type -> Bool, Coercion -> Bool)
mkOccFolders TcTyVar
lhs_tv
lhs_tv_lvl :: TcLevel
lhs_tv_lvl = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
lhs_tv
lhs_tv_is_concrete :: Bool
lhs_tv_is_concrete = TcTyVar -> Bool
isConcreteTyVar TcTyVar
lhs_tv
forall_ok :: Bool
forall_ok = case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
lhs_tv of
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
RuntimeUnkTv } -> Bool
True
TcTyVarDetails
_ -> Bool
False
go :: Type -> Bool
go (TyVarTy TcTyVar
tv)
| TcTyVar
lhs_tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv = Bool
False
| TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv TcLevel -> TcLevel -> Bool
forall a. Ord a => a -> a -> Bool
> TcLevel
lhs_tv_lvl = Bool
False
| Bool
lhs_tv_is_concrete, Bool -> Bool
not (TcTyVar -> Bool
isConcreteTyVar TcTyVar
tv) = Bool
False
| Type -> Bool
occ_in_ty (Type -> Bool) -> Type -> Bool
forall a b. (a -> b) -> a -> b
$! (TcTyVar -> Type
tyVarKind TcTyVar
tv) = Bool
False
| Bool
otherwise = Bool
True
go (FunTy {ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af, ft_mult :: Type -> Type
ft_mult = Type
w, ft_arg :: Type -> Type
ft_arg = Type
a, ft_res :: Type -> Type
ft_res = Type
r})
| FunTyFlag -> Bool
isInvisibleFunArg FunTyFlag
af, Bool -> Bool
not Bool
forall_ok = Bool
False
| Bool
otherwise = Type -> Bool
go Type
w Bool -> Bool -> Bool
&& Type -> Bool
go Type
a Bool -> Bool -> Bool
&& Type -> Bool
go Type
r
go (TyConApp TyCon
tc [Type]
tys)
| Bool
lhs_tv_is_concrete, Bool -> Bool
not (TyCon -> Bool
isConcreteTyCon TyCon
tc) = Bool
False
| Bool -> Bool
not (TyCon -> Bool
isTauTyCon TyCon
tc) = Bool
False
| Bool -> Bool
not Bool
fam_ok, Bool -> Bool
not (TyCon -> Bool
isFamFreeTyCon TyCon
tc) = Bool
False
| Bool
otherwise = (Type -> Bool) -> [Type] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Type -> Bool
go [Type]
tys
go (AppTy Type
t1 Type
t2) = Type -> Bool
go Type
t1 Bool -> Bool -> Bool
&& Type -> Bool
go Type
t2
go (ForAllTy (Bndr TcTyVar
tv ForAllTyFlag
_) Type
ty)
| Bool
forall_ok = Type -> Bool
go (TcTyVar -> Type
tyVarKind TcTyVar
tv) Bool -> Bool -> Bool
&& (TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
lhs_tv Bool -> Bool -> Bool
|| Type -> Bool
go Type
ty)
| Bool
otherwise = Bool
False
go (CastTy Type
ty Coercion
co) = Bool -> Bool
not (Coercion -> Bool
occ_in_co Coercion
co) Bool -> Bool -> Bool
&& Type -> Bool
go Type
ty
go (CoercionTy Coercion
co) = Bool -> Bool
not (Coercion -> Bool
occ_in_co Coercion
co)
go (LitTy {}) = Bool
True
mkOccFolders :: TcTyVar -> (TcType -> Bool, TcCoercion -> Bool)
mkOccFolders :: TcTyVar -> (Type -> Bool, Coercion -> Bool)
mkOccFolders TcTyVar
lhs_tv = (Any -> Bool
getAny (Any -> Bool) -> (Type -> Any) -> Type -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> Any
check_ty, Any -> Bool
getAny (Any -> Bool) -> (Coercion -> Any) -> Coercion -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coercion -> Any
check_co)
where
!(Type -> Any
check_ty, [Type] -> Any
_, Coercion -> Any
check_co, [Coercion] -> Any
_) = TyCoFolder VarSet Any
-> VarSet
-> (Type -> Any, [Type] -> Any, Coercion -> Any, [Coercion] -> Any)
forall a env.
Monoid a =>
TyCoFolder env a
-> env -> (Type -> a, [Type] -> a, Coercion -> a, [Coercion] -> a)
foldTyCo TyCoFolder VarSet Any
occ_folder VarSet
emptyVarSet
occ_folder :: TyCoFolder VarSet Any
occ_folder = TyCoFolder { tcf_view :: Type -> Maybe Type
tcf_view = Type -> Maybe Type
noView
, tcf_tyvar :: VarSet -> TcTyVar -> Any
tcf_tyvar = VarSet -> TcTyVar -> Any
do_tcv, tcf_covar :: VarSet -> TcTyVar -> Any
tcf_covar = VarSet -> TcTyVar -> Any
do_tcv
, tcf_hole :: VarSet -> CoercionHole -> Any
tcf_hole = VarSet -> CoercionHole -> Any
forall {p} {p}. p -> p -> Any
do_hole
, tcf_tycobinder :: VarSet -> TcTyVar -> ForAllTyFlag -> VarSet
tcf_tycobinder = VarSet -> TcTyVar -> ForAllTyFlag -> VarSet
forall {p}. VarSet -> TcTyVar -> p -> VarSet
do_bndr }
do_tcv :: VarSet -> TcTyVar -> Any
do_tcv VarSet
is TcTyVar
v = Bool -> Any
Any (Bool -> Bool
not (TcTyVar
v TcTyVar -> VarSet -> Bool
`elemVarSet` VarSet
is) Bool -> Bool -> Bool
&& TcTyVar
v TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
lhs_tv)
Any -> Any -> Any
forall a. Monoid a => a -> a -> a
`mappend` Type -> Any
check_ty (TcTyVar -> Type
varType TcTyVar
v)
do_bndr :: VarSet -> TcTyVar -> p -> VarSet
do_bndr VarSet
is TcTyVar
tcv p
_faf = VarSet -> TcTyVar -> VarSet
extendVarSet VarSet
is TcTyVar
tcv
do_hole :: p -> p -> Any
do_hole p
_is p
_hole = Bool -> Any
DM.Any Bool
True
data PuResult a b = PuFail CheckTyEqResult
| PuOK (Bag a) b
instance Functor (PuResult a) where
fmap :: forall a b. (a -> b) -> PuResult a a -> PuResult a b
fmap a -> b
_ (PuFail CheckTyEqResult
prob) = CheckTyEqResult -> PuResult a b
forall a b. CheckTyEqResult -> PuResult a b
PuFail CheckTyEqResult
prob
fmap a -> b
f (PuOK Bag a
cts a
x) = Bag a -> b -> PuResult a b
forall a b. Bag a -> b -> PuResult a b
PuOK Bag a
cts (a -> b
f a
x)
instance Applicative (PuResult a) where
pure :: forall a. a -> PuResult a a
pure a
x = Bag a -> a -> PuResult a a
forall a b. Bag a -> b -> PuResult a b
PuOK Bag a
forall a. Bag a
emptyBag a
x
PuFail CheckTyEqResult
p1 <*> :: forall a b. PuResult a (a -> b) -> PuResult a a -> PuResult a b
<*> PuFail CheckTyEqResult
p2 = CheckTyEqResult -> PuResult a b
forall a b. CheckTyEqResult -> PuResult a b
PuFail (CheckTyEqResult
p1 CheckTyEqResult -> CheckTyEqResult -> CheckTyEqResult
forall a. Semigroup a => a -> a -> a
S.<> CheckTyEqResult
p2)
PuFail CheckTyEqResult
p1 <*> PuOK {} = CheckTyEqResult -> PuResult a b
forall a b. CheckTyEqResult -> PuResult a b
PuFail CheckTyEqResult
p1
PuOK {} <*> PuFail CheckTyEqResult
p2 = CheckTyEqResult -> PuResult a b
forall a b. CheckTyEqResult -> PuResult a b
PuFail CheckTyEqResult
p2
PuOK Bag a
c1 a -> b
f <*> PuOK Bag a
c2 a
x = Bag a -> b -> PuResult a b
forall a b. Bag a -> b -> PuResult a b
PuOK (Bag a
c1 Bag a -> Bag a -> Bag a
forall a. Bag a -> Bag a -> Bag a
`unionBags` Bag a
c2) (a -> b
f a
x)
instance (Outputable a, Outputable b) => Outputable (PuResult a b) where
ppr :: PuResult a b -> SDoc
ppr (PuFail CheckTyEqResult
prob) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"PuFail" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> (CheckTyEqResult -> SDoc
forall a. Outputable a => a -> SDoc
ppr CheckTyEqResult
prob)
ppr (PuOK Bag a
cts b
x) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"PuOK" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc
braces
([SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"redn:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> b -> SDoc
forall a. Outputable a => a -> SDoc
ppr b
x
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"cts:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Bag a -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bag a
cts ])
pprPur :: PuResult a b -> SDoc
pprPur :: forall a b. PuResult a b -> SDoc
pprPur (PuFail CheckTyEqResult
prob) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"PuFail:" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> CheckTyEqResult -> SDoc
forall a. Outputable a => a -> SDoc
ppr CheckTyEqResult
prob
pprPur (PuOK {}) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"PuOK"
okCheckRefl :: TcType -> TcM (PuResult a Reduction)
okCheckRefl :: forall a. Type -> TcM (PuResult a Reduction)
okCheckRefl Type
ty = PuResult a Reduction
-> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bag a -> Reduction -> PuResult a Reduction
forall a b. Bag a -> b -> PuResult a b
PuOK Bag a
forall a. Bag a
emptyBag (Role -> Type -> Reduction
mkReflRedn Role
Nominal Type
ty))
failCheckWith :: CheckTyEqResult -> TcM (PuResult a b)
failCheckWith :: forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith CheckTyEqResult
p = PuResult a b -> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a b)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (CheckTyEqResult -> PuResult a b
forall a b. CheckTyEqResult -> PuResult a b
PuFail CheckTyEqResult
p)
mapCheck :: (x -> TcM (PuResult a Reduction))
-> [x]
-> TcM (PuResult a Reductions)
mapCheck :: forall x a.
(x -> TcM (PuResult a Reduction))
-> [x] -> TcM (PuResult a Reductions)
mapCheck x -> TcM (PuResult a Reduction)
f [x]
xs
= do { ([PuResult a Reduction]
ress :: [PuResult a Reduction]) <- (x -> TcM (PuResult a Reduction))
-> [x] -> IOEnv (Env TcGblEnv TcLclEnv) [PuResult a Reduction]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM x -> TcM (PuResult a Reduction)
f [x]
xs
; PuResult a Reductions -> TcM (PuResult a Reductions)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([Reduction] -> Reductions
unzipRedns ([Reduction] -> Reductions)
-> PuResult a [Reduction] -> PuResult a Reductions
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [PuResult a Reduction] -> PuResult a [Reduction]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA [PuResult a Reduction]
ress) }
data TyEqFlags a
= TEF { forall a. TyEqFlags a -> Bool
tef_foralls :: Bool
, forall a. TyEqFlags a -> CanEqLHS
tef_lhs :: CanEqLHS
, forall a. TyEqFlags a -> AreUnifying
tef_unifying :: AreUnifying
, forall a. TyEqFlags a -> TyEqFamApp a
tef_fam_app :: TyEqFamApp a
, forall a. TyEqFlags a -> CheckTyEqProblem
tef_occurs :: CheckTyEqProblem }
data TyEqFamApp a
= TEFA_Fail
| TEFA_Recurse
| TEFA_Break (FamAppBreaker a)
data AreUnifying
= Unifying
MetaInfo
TcLevel
LevelCheck
| NotUnifying
data LevelCheck
= LC_None
| LC_Check
| LC_Promote
instance Outputable (TyEqFlags a) where
ppr :: TyEqFlags a -> SDoc
ppr (TEF { Bool
CheckTyEqProblem
CanEqLHS
AreUnifying
TyEqFamApp a
tef_foralls :: forall a. TyEqFlags a -> Bool
tef_lhs :: forall a. TyEqFlags a -> CanEqLHS
tef_unifying :: forall a. TyEqFlags a -> AreUnifying
tef_fam_app :: forall a. TyEqFlags a -> TyEqFamApp a
tef_occurs :: forall a. TyEqFlags a -> CheckTyEqProblem
tef_foralls :: Bool
tef_lhs :: CanEqLHS
tef_unifying :: AreUnifying
tef_fam_app :: TyEqFamApp a
tef_occurs :: CheckTyEqProblem
.. }) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"TEF" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc
braces (
[SDoc] -> SDoc
forall doc. IsDoc doc => [doc] -> doc
vcat [ String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"tef_foralls =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bool
tef_foralls
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"tef_lhs =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
tef_lhs
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"tef_unifying =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> AreUnifying -> SDoc
forall a. Outputable a => a -> SDoc
ppr AreUnifying
tef_unifying
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"tef_fam_app =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> TyEqFamApp a -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyEqFamApp a
tef_fam_app
, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"tef_occurs =" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> CheckTyEqProblem -> SDoc
forall a. Outputable a => a -> SDoc
ppr CheckTyEqProblem
tef_occurs ])
instance Outputable (TyEqFamApp a) where
ppr :: TyEqFamApp a -> SDoc
ppr TyEqFamApp a
TEFA_Fail = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"TEFA_Fail"
ppr TyEqFamApp a
TEFA_Recurse = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"TEFA_Fail"
ppr (TEFA_Break {}) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"TEFA_Break"
instance Outputable AreUnifying where
ppr :: AreUnifying -> SDoc
ppr AreUnifying
NotUnifying = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"NotUnifying"
ppr (Unifying MetaInfo
mi TcLevel
lvl LevelCheck
lc) = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"Unifying" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+>
SDoc -> SDoc
forall doc. IsLine doc => doc -> doc
braces (MetaInfo -> SDoc
forall a. Outputable a => a -> SDoc
ppr MetaInfo
mi SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
forall doc. IsLine doc => doc
comma SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
lvl SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
forall doc. IsLine doc => doc
comma SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> LevelCheck -> SDoc
forall a. Outputable a => a -> SDoc
ppr LevelCheck
lc)
instance Outputable LevelCheck where
ppr :: LevelCheck -> SDoc
ppr LevelCheck
LC_None = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"LC_None"
ppr LevelCheck
LC_Check = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"LC_Check"
ppr LevelCheck
LC_Promote = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"LC_Promote"
famAppArgFlags :: TyEqFlags a -> TyEqFlags a
famAppArgFlags :: forall a. TyEqFlags a -> TyEqFlags a
famAppArgFlags flags :: TyEqFlags a
flags@(TEF { tef_unifying :: forall a. TyEqFlags a -> AreUnifying
tef_unifying = AreUnifying
unifying })
= TyEqFlags a
flags { tef_fam_app = TEFA_Recurse
, tef_unifying = zap_promotion unifying
, tef_occurs = cteSolubleOccurs }
where
zap_promotion :: AreUnifying -> AreUnifying
zap_promotion (Unifying MetaInfo
info TcLevel
lvl LevelCheck
LC_Promote) = MetaInfo -> TcLevel -> LevelCheck -> AreUnifying
Unifying MetaInfo
info TcLevel
lvl LevelCheck
LC_Check
zap_promotion AreUnifying
unifying = AreUnifying
unifying
type FamAppBreaker a = TcType -> TcM (PuResult a Reduction)
checkTyEqRhs :: forall a. TyEqFlags a -> TcType -> TcM (PuResult a Reduction)
checkTyEqRhs :: forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
ty
= case Type
ty of
LitTy {} -> Type -> TcM (PuResult a Reduction)
forall a. Type -> TcM (PuResult a Reduction)
okCheckRefl Type
ty
TyConApp TyCon
tc [Type]
tys -> TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
forall a.
TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
checkTyConApp TyEqFlags a
flags Type
ty TyCon
tc [Type]
tys
TyVarTy TcTyVar
tv -> TyEqFlags a -> TcTyVar -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> TcTyVar -> TcM (PuResult a Reduction)
checkTyVar TyEqFlags a
flags TcTyVar
tv
FunTy {ft_af :: Type -> FunTyFlag
ft_af = FunTyFlag
af, ft_mult :: Type -> Type
ft_mult = Type
w, ft_arg :: Type -> Type
ft_arg = Type
a, ft_res :: Type -> Type
ft_res = Type
r}
| FunTyFlag -> Bool
isInvisibleFunArg FunTyFlag
af
, Bool -> Bool
not (TyEqFlags a -> Bool
forall a. TyEqFlags a -> Bool
tef_foralls TyEqFlags a
flags)
-> CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith CheckTyEqResult
impredicativeProblem
| Bool
otherwise
-> do { PuResult a Reduction
w_res <- TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
w
; PuResult a Reduction
a_res <- TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
a
; PuResult a Reduction
r_res <- TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
r
; PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role
-> FunTyFlag -> Reduction -> Reduction -> Reduction -> Reduction
mkFunRedn Role
Nominal FunTyFlag
af (Reduction -> Reduction -> Reduction -> Reduction)
-> PuResult a Reduction
-> PuResult a (Reduction -> Reduction -> Reduction)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PuResult a Reduction
w_res PuResult a (Reduction -> Reduction -> Reduction)
-> PuResult a Reduction -> PuResult a (Reduction -> Reduction)
forall a b. PuResult a (a -> b) -> PuResult a a -> PuResult a b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PuResult a Reduction
a_res PuResult a (Reduction -> Reduction)
-> PuResult a Reduction -> PuResult a Reduction
forall a b. PuResult a (a -> b) -> PuResult a a -> PuResult a b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PuResult a Reduction
r_res) }
AppTy Type
fun Type
arg -> do { PuResult a Reduction
fun_res <- TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
fun
; PuResult a Reduction
arg_res <- TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
arg
; PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduction -> Reduction -> Reduction
mkAppRedn (Reduction -> Reduction -> Reduction)
-> PuResult a Reduction -> PuResult a (Reduction -> Reduction)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PuResult a Reduction
fun_res PuResult a (Reduction -> Reduction)
-> PuResult a Reduction -> PuResult a Reduction
forall a b. PuResult a (a -> b) -> PuResult a a -> PuResult a b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PuResult a Reduction
arg_res) }
CastTy Type
ty Coercion
co -> do { PuResult a Reduction
ty_res <- TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
ty
; PuResult a Coercion
co_res <- TyEqFlags a -> Coercion -> TcM (PuResult a Coercion)
forall a. TyEqFlags a -> Coercion -> TcM (PuResult a Coercion)
checkCo TyEqFlags a
flags Coercion
co
; PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Type -> Coercion -> Reduction -> Reduction
mkCastRedn1 Role
Nominal Type
ty (Coercion -> Reduction -> Reduction)
-> PuResult a Coercion -> PuResult a (Reduction -> Reduction)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PuResult a Coercion
co_res PuResult a (Reduction -> Reduction)
-> PuResult a Reduction -> PuResult a Reduction
forall a b. PuResult a (a -> b) -> PuResult a a -> PuResult a b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PuResult a Reduction
ty_res) }
CoercionTy Coercion
co -> do { PuResult a Coercion
co_res <- TyEqFlags a -> Coercion -> TcM (PuResult a Coercion)
forall a. TyEqFlags a -> Coercion -> TcM (PuResult a Coercion)
checkCo TyEqFlags a
flags Coercion
co
; PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Coercion -> Reduction
mkReflCoRedn Role
Nominal (Coercion -> Reduction)
-> PuResult a Coercion -> PuResult a Reduction
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PuResult a Coercion
co_res) }
ForAllTy {}
| TyEqFlags a -> Bool
forall a. TyEqFlags a -> Bool
tef_foralls TyEqFlags a
flags -> Type -> TcM (PuResult a Reduction)
forall a. Type -> TcM (PuResult a Reduction)
okCheckRefl Type
ty
| Bool
otherwise -> CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith CheckTyEqResult
impredicativeProblem
checkCo :: TyEqFlags a -> Coercion -> TcM (PuResult a Coercion)
checkCo :: forall a. TyEqFlags a -> Coercion -> TcM (PuResult a Coercion)
checkCo (TEF { tef_lhs :: forall a. TyEqFlags a -> CanEqLHS
tef_lhs = TyFamLHS {} }) Coercion
co
= PuResult a Coercion
-> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a Coercion)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> PuResult a Coercion
forall a. a -> PuResult a a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Coercion
co)
checkCo (TEF { tef_lhs :: forall a. TyEqFlags a -> CanEqLHS
tef_lhs = TyVarLHS TcTyVar
lhs_tv
, tef_unifying :: forall a. TyEqFlags a -> AreUnifying
tef_unifying = AreUnifying
unifying
, tef_occurs :: forall a. TyEqFlags a -> CheckTyEqProblem
tef_occurs = CheckTyEqProblem
occ_prob }) Coercion
co
| Coercion -> Bool
hasCoercionHoleCo Coercion
co
= CheckTyEqResult
-> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a Coercion)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteCoercionHole)
| Unifying MetaInfo
_ TcLevel
lhs_tv_lvl LevelCheck
LC_Promote <- AreUnifying
unifying
= do { CheckTyEqResult
reason <- CheckTyEqProblem
-> TcTyVar -> TcLevel -> VarSet -> TcM CheckTyEqResult
checkPromoteFreeVars CheckTyEqProblem
occ_prob TcTyVar
lhs_tv TcLevel
lhs_tv_lvl (Coercion -> VarSet
tyCoVarsOfCo Coercion
co)
; if CheckTyEqResult -> Bool
cterHasNoProblem CheckTyEqResult
reason
then PuResult a Coercion
-> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a Coercion)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> PuResult a Coercion
forall a. a -> PuResult a a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Coercion
co)
else CheckTyEqResult
-> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a Coercion)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith CheckTyEqResult
reason }
| TcTyVar
lhs_tv TcTyVar -> VarSet -> Bool
`elemVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
co
= CheckTyEqResult
-> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a Coercion)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
occ_prob)
| Bool
otherwise
= PuResult a Coercion
-> IOEnv (Env TcGblEnv TcLclEnv) (PuResult a Coercion)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> PuResult a Coercion
forall a. a -> PuResult a a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Coercion
co)
checkTyConApp :: TyEqFlags a
-> TcType -> TyCon -> [TcType]
-> TcM (PuResult a Reduction)
checkTyConApp :: forall a.
TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
checkTyConApp flags :: TyEqFlags a
flags@(TEF { tef_unifying :: forall a. TyEqFlags a -> AreUnifying
tef_unifying = AreUnifying
unifying, tef_foralls :: forall a. TyEqFlags a -> Bool
tef_foralls = Bool
foralls_ok })
Type
tc_app TyCon
tc [Type]
tys
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc
, let arity :: Int
arity = TyCon -> Int
tyConArity TyCon
tc
= if [Type]
tys [Type] -> Int -> Bool
forall a. [a] -> Int -> Bool
`lengthIs` Int
arity
then TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
forall a.
TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
checkFamApp TyEqFlags a
flags Type
tc_app TyCon
tc [Type]
tys
else do { let ([Type]
fun_args, [Type]
extra_args) = Int -> [Type] -> ([Type], [Type])
forall a. Int -> [a] -> ([a], [a])
splitAt (TyCon -> Int
tyConArity TyCon
tc) [Type]
tys
fun_app :: Type
fun_app = TyCon -> [Type] -> Type
mkTyConApp TyCon
tc [Type]
fun_args
; PuResult a Reduction
fun_res <- TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
forall a.
TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
checkFamApp TyEqFlags a
flags Type
fun_app TyCon
tc [Type]
fun_args
; PuResult a Reductions
extra_res <- (Type -> TcM (PuResult a Reduction))
-> [Type] -> TcM (PuResult a Reductions)
forall x a.
(x -> TcM (PuResult a Reduction))
-> [x] -> TcM (PuResult a Reductions)
mapCheck (TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags) [Type]
extra_args
; String -> SDoc -> TcM ()
traceTc String
"Over-sat" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> [Type] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Type]
tys SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr Int
arity SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ PuResult a Reduction -> SDoc
forall a b. PuResult a b -> SDoc
pprPur PuResult a Reduction
fun_res SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ PuResult a Reductions -> SDoc
forall a b. PuResult a b -> SDoc
pprPur PuResult a Reductions
extra_res)
; PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Reduction -> Reductions -> Reduction
mkAppRedns (Reduction -> Reductions -> Reduction)
-> PuResult a Reduction -> PuResult a (Reductions -> Reduction)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PuResult a Reduction
fun_res PuResult a (Reductions -> Reduction)
-> PuResult a Reductions -> PuResult a Reduction
forall a b. PuResult a (a -> b) -> PuResult a a -> PuResult a b
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> PuResult a Reductions
extra_res) }
| Just Type
ty' <- Type -> Maybe Type
rewriterView Type
tc_app
= TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags Type
ty'
| Bool -> Bool
not (TyCon -> Bool
isTauTyCon TyCon
tc Bool -> Bool -> Bool
|| Bool
foralls_ok)
= CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith CheckTyEqResult
impredicativeProblem
| Unifying MetaInfo
info TcLevel
_ LevelCheck
_ <- AreUnifying
unifying
, MetaInfo -> Bool
isConcreteInfo MetaInfo
info
, Bool -> Bool
not (TyCon -> Bool
isConcreteTyCon TyCon
tc)
= CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteConcrete)
| Bool
otherwise
= TyEqFlags a -> TyCon -> [Type] -> TcM (PuResult a Reduction)
forall a.
TyEqFlags a -> TyCon -> [Type] -> TcM (PuResult a Reduction)
recurseIntoTyConApp TyEqFlags a
flags TyCon
tc [Type]
tys
recurseIntoTyConApp :: TyEqFlags a -> TyCon -> [TcType] -> TcM (PuResult a Reduction)
recurseIntoTyConApp :: forall a.
TyEqFlags a -> TyCon -> [Type] -> TcM (PuResult a Reduction)
recurseIntoTyConApp TyEqFlags a
flags TyCon
tc [Type]
tys
= do { PuResult a Reductions
tys_res <- (Type -> TcM (PuResult a Reduction))
-> [Type] -> TcM (PuResult a Reductions)
forall x a.
(x -> TcM (PuResult a Reduction))
-> [x] -> TcM (PuResult a Reductions)
mapCheck (TyEqFlags a -> Type -> TcM (PuResult a Reduction)
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
flags) [Type]
tys
; PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> TyCon -> Reductions -> Reduction
mkTyConAppRedn Role
Nominal TyCon
tc (Reductions -> Reduction)
-> PuResult a Reductions -> PuResult a Reduction
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PuResult a Reductions
tys_res) }
checkFamApp :: TyEqFlags a
-> TcType -> TyCon -> [TcType]
-> TcM (PuResult a Reduction)
checkFamApp :: forall a.
TyEqFlags a
-> Type -> TyCon -> [Type] -> TcM (PuResult a Reduction)
checkFamApp flags :: TyEqFlags a
flags@(TEF { tef_unifying :: forall a. TyEqFlags a -> AreUnifying
tef_unifying = AreUnifying
unifying, tef_occurs :: forall a. TyEqFlags a -> CheckTyEqProblem
tef_occurs = CheckTyEqProblem
occ_prob
, tef_fam_app :: forall a. TyEqFlags a -> TyEqFamApp a
tef_fam_app = TyEqFamApp a
fam_app_flag, tef_lhs :: forall a. TyEqFlags a -> CanEqLHS
tef_lhs = CanEqLHS
lhs })
Type
fam_app TyCon
tc [Type]
tys
= case TyEqFamApp a
fam_app_flag of
TyEqFamApp a
TEFA_Fail -> CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteTypeFamily)
TyEqFamApp a
_ | TyFamLHS TyCon
lhs_tc [Type]
lhs_tys <- CanEqLHS
lhs
, TyCon -> [Type] -> TyCon -> [Type] -> Bool
tcEqTyConApps TyCon
lhs_tc [Type]
lhs_tys TyCon
tc [Type]
tys
-> case TyEqFamApp a
fam_app_flag of
TyEqFamApp a
TEFA_Recurse -> CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
occ_prob)
TEFA_Break FamAppBreaker a
breaker -> FamAppBreaker a
breaker Type
fam_app
TyEqFamApp a
_ | Unifying MetaInfo
lhs_info TcLevel
_ LevelCheck
_ <- AreUnifying
unifying
, MetaInfo -> Bool
isConcreteInfo MetaInfo
lhs_info
-> case TyEqFamApp a
fam_app_flag of
TyEqFamApp a
TEFA_Recurse -> CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteConcrete)
TEFA_Break FamAppBreaker a
breaker -> FamAppBreaker a
breaker Type
fam_app
TyEqFamApp a
TEFA_Recurse
-> do { PuResult a Reductions
tys_res <- FamAppBreaker a -> [Type] -> TcM (PuResult a Reductions)
forall x a.
(x -> TcM (PuResult a Reduction))
-> [x] -> TcM (PuResult a Reductions)
mapCheck (TyEqFlags a -> FamAppBreaker a
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
arg_flags) [Type]
tys
; String -> SDoc -> TcM ()
traceTc String
"under" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ PuResult a Reductions -> SDoc
forall a b. PuResult a b -> SDoc
pprPur PuResult a Reductions
tys_res SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ TyEqFlags a -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyEqFlags a
flags)
; PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> TyCon -> Reductions -> Reduction
mkTyConAppRedn Role
Nominal TyCon
tc (Reductions -> Reduction)
-> PuResult a Reductions -> PuResult a Reduction
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> PuResult a Reductions
tys_res) }
TEFA_Break FamAppBreaker a
breaker
-> do { PuResult a Reductions
tys_res <- FamAppBreaker a -> [Type] -> TcM (PuResult a Reductions)
forall x a.
(x -> TcM (PuResult a Reduction))
-> [x] -> TcM (PuResult a Reductions)
mapCheck (TyEqFlags a -> FamAppBreaker a
forall a. TyEqFlags a -> Type -> TcM (PuResult a Reduction)
checkTyEqRhs TyEqFlags a
arg_flags) [Type]
tys
; case PuResult a Reductions
tys_res of
PuOK Bag a
cts Reductions
redns -> PuResult a Reduction -> TcM (PuResult a Reduction)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Bag a -> Reduction -> PuResult a Reduction
forall a b. Bag a -> b -> PuResult a b
PuOK Bag a
cts (Role -> TyCon -> Reductions -> Reduction
mkTyConAppRedn Role
Nominal TyCon
tc Reductions
redns))
PuFail {} -> FamAppBreaker a
breaker Type
fam_app }
where
arg_flags :: TyEqFlags a
arg_flags = TyEqFlags a -> TyEqFlags a
forall a. TyEqFlags a -> TyEqFlags a
famAppArgFlags TyEqFlags a
flags
checkTyVar :: forall a. TyEqFlags a -> TcTyVar -> TcM (PuResult a Reduction)
checkTyVar :: forall a. TyEqFlags a -> TcTyVar -> TcM (PuResult a Reduction)
checkTyVar (TEF { tef_lhs :: forall a. TyEqFlags a -> CanEqLHS
tef_lhs = CanEqLHS
lhs, tef_unifying :: forall a. TyEqFlags a -> AreUnifying
tef_unifying = AreUnifying
unifying, tef_occurs :: forall a. TyEqFlags a -> CheckTyEqProblem
tef_occurs = CheckTyEqProblem
occ_prob }) TcTyVar
occ_tv
= case CanEqLHS
lhs of
TyFamLHS {} -> TcM (PuResult a Reduction)
success
TyVarLHS TcTyVar
lhs_tv -> AreUnifying -> TcTyVar -> TcM (PuResult a Reduction)
check_tv AreUnifying
unifying TcTyVar
lhs_tv
where
lvl_occ :: TcLevel
lvl_occ = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
occ_tv
success :: TcM (PuResult a Reduction)
success = Type -> TcM (PuResult a Reduction)
forall a. Type -> TcM (PuResult a Reduction)
okCheckRefl (TcTyVar -> Type
mkTyVarTy TcTyVar
occ_tv)
check_tv :: AreUnifying -> TcTyVar -> TcM (PuResult a Reduction)
check_tv AreUnifying
NotUnifying TcTyVar
lhs_tv
= TcTyVar -> TcM (PuResult a Reduction)
simple_occurs_check TcTyVar
lhs_tv
check_tv (Unifying MetaInfo
info TcLevel
lvl LevelCheck
prom) TcTyVar
lhs_tv
= do { Maybe Type
mb_done <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
occ_tv
; case Maybe Type
mb_done of
Just {} -> TcM (PuResult a Reduction)
success
Maybe Type
Nothing -> MetaInfo
-> TcLevel -> LevelCheck -> TcTyVar -> TcM (PuResult a Reduction)
check_unif MetaInfo
info TcLevel
lvl LevelCheck
prom TcTyVar
lhs_tv }
check_unif :: MetaInfo -> TcLevel -> LevelCheck
-> TcTyVar -> TcM (PuResult a Reduction)
check_unif :: MetaInfo
-> TcLevel -> LevelCheck -> TcTyVar -> TcM (PuResult a Reduction)
check_unif MetaInfo
lhs_tv_info TcLevel
lhs_tv_lvl LevelCheck
prom TcTyVar
lhs_tv
| MetaInfo -> Bool
isConcreteInfo MetaInfo
lhs_tv_info
, Bool -> Bool
not (TcTyVar -> Bool
isConcreteTyVar TcTyVar
occ_tv)
= if TcTyVar -> Bool
can_make_concrete TcTyVar
occ_tv
then TcTyVar -> MetaInfo -> TcLevel -> TcM (PuResult a Reduction)
promote TcTyVar
lhs_tv MetaInfo
lhs_tv_info TcLevel
lhs_tv_lvl
else CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteConcrete)
| TcLevel
lvl_occ TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lhs_tv_lvl
= case LevelCheck
prom of
LevelCheck
LC_None -> String -> SDoc -> TcM (PuResult a Reduction)
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"check_unif" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
lhs_tv SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
occ_tv)
LevelCheck
LC_Check -> CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteSkolemEscape)
LevelCheck
LC_Promote
| TcTyVar -> Bool
isSkolemTyVar TcTyVar
occ_tv -> CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteSkolemEscape)
| Bool
otherwise -> TcTyVar -> MetaInfo -> TcLevel -> TcM (PuResult a Reduction)
promote TcTyVar
lhs_tv MetaInfo
lhs_tv_info TcLevel
lhs_tv_lvl
| Bool
otherwise
= TcTyVar -> TcM (PuResult a Reduction)
simple_occurs_check TcTyVar
lhs_tv
simple_occurs_check :: TcTyVar -> TcM (PuResult a Reduction)
simple_occurs_check TcTyVar
lhs_tv
| TcTyVar
lhs_tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
occ_tv Bool -> Bool -> Bool
|| Type -> Bool
check_kind (TcTyVar -> Type
tyVarKind TcTyVar
occ_tv)
= CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
occ_prob)
| Bool
otherwise
= TcM (PuResult a Reduction)
success
where
(Type -> Bool
check_kind, Coercion -> Bool
_) = TcTyVar -> (Type -> Bool, Coercion -> Bool)
mkOccFolders TcTyVar
lhs_tv
can_make_concrete :: TcTyVar -> Bool
can_make_concrete TcTyVar
occ_tv = case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
occ_tv of
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info } -> case MetaInfo
info of
ConcreteTv {} -> Bool
True
TauTv {} -> Bool
True
MetaInfo
_ -> Bool
False
TcTyVarDetails
_ -> Bool
False
promote :: TcTyVar -> MetaInfo -> TcLevel -> TcM (PuResult a Reduction)
promote TcTyVar
lhs_tv MetaInfo
lhs_tv_info TcLevel
lhs_tv_lvl
| MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info_occ, mtv_tclvl :: TcTyVarDetails -> TcLevel
mtv_tclvl = TcLevel
lvl_occ } <- TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
occ_tv
= do { let new_info :: MetaInfo
new_info | MetaInfo -> Bool
isConcreteInfo MetaInfo
lhs_tv_info = MetaInfo
lhs_tv_info
| Bool
otherwise = MetaInfo
info_occ
new_lvl :: TcLevel
new_lvl = TcLevel
lhs_tv_lvl TcLevel -> TcLevel -> TcLevel
`minTcLevel` TcLevel
lvl_occ
; CheckTyEqResult
reason <- CheckTyEqProblem
-> TcTyVar -> TcLevel -> VarSet -> TcM CheckTyEqResult
checkPromoteFreeVars CheckTyEqProblem
occ_prob TcTyVar
lhs_tv TcLevel
lhs_tv_lvl (Type -> VarSet
tyCoVarsOfType (TcTyVar -> Type
tyVarKind TcTyVar
occ_tv))
; if CheckTyEqResult -> Bool
cterHasNoProblem CheckTyEqResult
reason
then do { Type
new_tv_ty <- MetaInfo -> TcLevel -> TcTyVar -> TcM Type
promote_meta_tyvar MetaInfo
new_info TcLevel
new_lvl TcTyVar
occ_tv
; Type -> TcM (PuResult a Reduction)
forall a. Type -> TcM (PuResult a Reduction)
okCheckRefl Type
new_tv_ty }
else CheckTyEqResult -> TcM (PuResult a Reduction)
forall a b. CheckTyEqResult -> TcM (PuResult a b)
failCheckWith CheckTyEqResult
reason }
| Bool
otherwise = String -> SDoc -> TcM (PuResult a Reduction)
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"promote" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
occ_tv)
checkPromoteFreeVars :: CheckTyEqProblem
-> TcTyVar -> TcLevel
-> TyCoVarSet -> TcM CheckTyEqResult
checkPromoteFreeVars :: CheckTyEqProblem
-> TcTyVar -> TcLevel -> VarSet -> TcM CheckTyEqResult
checkPromoteFreeVars CheckTyEqProblem
occ_prob TcTyVar
lhs_tv TcLevel
lhs_tv_lvl VarSet
vs
= do { [CheckTyEqResult]
oks <- (TcTyVar -> TcM CheckTyEqResult)
-> [TcTyVar] -> IOEnv (Env TcGblEnv TcLclEnv) [CheckTyEqResult]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM TcTyVar -> TcM CheckTyEqResult
do_one (VarSet -> [TcTyVar]
forall elt. UniqSet elt -> [elt]
nonDetEltsUniqSet VarSet
vs)
; CheckTyEqResult -> TcM CheckTyEqResult
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([CheckTyEqResult] -> CheckTyEqResult
forall a. Monoid a => [a] -> a
mconcat [CheckTyEqResult]
oks) }
where
do_one :: TyCoVar -> TcM CheckTyEqResult
do_one :: TcTyVar -> TcM CheckTyEqResult
do_one TcTyVar
v | TcTyVar -> Bool
isCoVar TcTyVar
v = CheckTyEqResult -> TcM CheckTyEqResult
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return CheckTyEqResult
cteOK
| TcTyVar
lhs_tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
v = CheckTyEqResult -> TcM CheckTyEqResult
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
occ_prob)
| Bool
no_promotion = CheckTyEqResult -> TcM CheckTyEqResult
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return CheckTyEqResult
cteOK
| Bool -> Bool
not (TcTyVar -> Bool
isMetaTyVar TcTyVar
v) = CheckTyEqResult -> TcM CheckTyEqResult
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (CheckTyEqProblem -> CheckTyEqResult
cteProblem CheckTyEqProblem
cteSkolemEscape)
| Bool
otherwise = TcTyVar -> TcM CheckTyEqResult
promote_one TcTyVar
v
where
no_promotion :: Bool
no_promotion = Bool -> Bool
not (TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
v TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lhs_tv_lvl)
promote_one :: TcTyVar -> TcM CheckTyEqResult
promote_one TcTyVar
tv = do { Type
_ <- MetaInfo -> TcLevel -> TcTyVar -> TcM Type
promote_meta_tyvar MetaInfo
TauTv TcLevel
lhs_tv_lvl TcTyVar
tv
; CheckTyEqResult -> TcM CheckTyEqResult
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return CheckTyEqResult
cteOK }
promote_meta_tyvar :: MetaInfo -> TcLevel -> TcTyVar -> TcM TcType
promote_meta_tyvar :: MetaInfo -> TcLevel -> TcTyVar -> TcM Type
promote_meta_tyvar MetaInfo
info TcLevel
dest_lvl TcTyVar
occ_tv
= do {
Maybe Type
mb_filled <- TcTyVar -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
occ_tv
; case Maybe Type
mb_filled of {
Just Type
ty -> Type -> TcM Type
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return Type
ty ;
Maybe Type
Nothing ->
do { TcTyVar
new_tv <- MetaInfo -> TcLevel -> TcTyVar -> TcM TcTyVar
cloneMetaTyVarWithInfo MetaInfo
info TcLevel
dest_lvl TcTyVar
occ_tv
; ZonkM () -> TcM ()
forall a. ZonkM a -> TcM a
liftZonkM (ZonkM () -> TcM ()) -> ZonkM () -> TcM ()
forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => TcTyVar -> Type -> ZonkM ()
TcTyVar -> Type -> ZonkM ()
writeMetaTyVar TcTyVar
occ_tv (TcTyVar -> Type
mkTyVarTy TcTyVar
new_tv)
; String -> SDoc -> TcM ()
traceTc String
"promoteTyVar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
occ_tv SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"-->" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
new_tv)
; Type -> TcM Type
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (TcTyVar -> Type
mkTyVarTy TcTyVar
new_tv) } } }
touchabilityAndShapeTest :: TcLevel -> TcTyVar -> TcType -> Bool
touchabilityAndShapeTest :: TcLevel -> TcTyVar -> Type -> Bool
touchabilityAndShapeTest TcLevel
given_eq_lvl TcTyVar
tv Type
rhs
| MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info, mtv_tclvl :: TcTyVarDetails -> TcLevel
mtv_tclvl = TcLevel
tv_lvl } <- TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv
, MetaInfo -> Type -> Bool
checkTopShape MetaInfo
info Type
rhs
= TcLevel
tv_lvl TcLevel -> TcLevel -> Bool
`deeperThanOrSame` TcLevel
given_eq_lvl
| Bool
otherwise
= Bool
False
checkTopShape :: MetaInfo -> TcType -> Bool
checkTopShape :: MetaInfo -> Type -> Bool
checkTopShape MetaInfo
info Type
xi
= case MetaInfo
info of
MetaInfo
TyVarTv ->
case Type -> Maybe TcTyVar
getTyVar_maybe Type
xi of
Maybe TcTyVar
Nothing -> Bool
False
Just TcTyVar
tv -> case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
SkolemTv {} -> Bool
True
TcTyVarDetails
RuntimeUnk -> Bool
True
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
TyVarTv } -> Bool
True
TcTyVarDetails
_ -> Bool
False
MetaInfo
CycleBreakerTv -> Bool
False
MetaInfo
_ -> Bool
True