Copyright | (C) 2015-2016 University of Twente 2017 QBayLogic B.V. |
---|---|
License | BSD2 (see the file LICENSE) |
Maintainer | Christiaan Baaij <christiaan.baaij@gmail.com> |
Safe Haskell | None |
Language | Haskell2010 |
- newtype CType = CType {}
- type CoreSOP = SOP TyVar CType
- normaliseNat :: Type -> CoreSOP
- reifySOP :: CoreSOP -> Type
- data UnifyItem v c
- type CoreUnify = UnifyItem TyVar CType
- substsSOP :: (Ord v, Ord c) => [UnifyItem v c] -> SOP v c -> SOP v c
- substsSubst :: (Ord v, Ord c) => [UnifyItem v c] -> [UnifyItem v c] -> [UnifyItem v c]
- data UnifyResult
- unifyNats :: Ct -> CoreSOP -> CoreSOP -> TcPluginM UnifyResult
- unifiers :: Ct -> CoreSOP -> CoreSOP -> [CoreUnify]
- fvSOP :: CoreSOP -> UniqSet TyVar
- isNatural :: CoreSOP -> Maybe Bool
Nat
expressions <-> SOP
terms
normaliseNat :: Type -> CoreSOP Source #
Substitution on SOP
terms
(Eq c, Eq v) => Eq (UnifyItem v c) Source # | |
(Outputable v, Outputable c) => Outputable (UnifyItem v c) Source # | |
substsSOP :: (Ord v, Ord c) => [UnifyItem v c] -> SOP v c -> SOP v c Source #
Apply a substitution to a single normalised SOP
term
substsSubst :: (Ord v, Ord c) => [UnifyItem v c] -> [UnifyItem v c] -> [UnifyItem v c] Source #
Apply a substitution to a substitution
Find unifiers
data UnifyResult Source #
Result of comparing two SOP
terms, returning a potential substitution
list under which the two terms are equal.
unifiers :: Ct -> CoreSOP -> CoreSOP -> [CoreUnify] Source #
Find unifiers for two SOP terms
Can find the following unifiers:
t ~ a + b ==> [t := a + b] a + b ~ t ==> [t := a + b] (a + c) ~ (b + c) ==> \[a := b\] (2*a) ~ (2*b) ==> [a := b] (2 + a) ~ 5 ==> [a := 3] (i * a) ~ j ==> [a := div j i], when (mod j i == 0)
However, given a wanted:
[W] t ~ a + b
this function returns []
, or otherwise we "solve" the constraint by
finding a unifier equal to the constraint.
However, given a wanted:
[W] (a + c) ~ (b + c)
we do return the unifier:
[a := b]