module Data.JSString ( JSString -- * Creation and elimination , pack , unpack , unpack' , singleton , empty -- * Basic interface , cons , snoc , append , uncons , head , last , tail , init , null , length , compareLength -- * Transformations , map , intercalate , intersperse , transpose , reverse , replace -- ** Case conversion , toCaseFold , toLower , toUpper , toTitle -- ** Justification , justifyLeft , justifyRight , center -- * Folds , foldl , foldl' , foldl1 , foldl1' , foldr , foldr1 -- ** Special folds , concat , concatMap , any , all , maximum , minimum -- * Construction -- ** Scans , scanl , scanl1 , scanr , scanr1 -- ** Accumulating maps , mapAccumL , mapAccumR -- ** Generation and unfolding , replicate , unfoldr , unfoldrN -- * Substrings -- ** Breaking strings , take , takeEnd , drop , dropEnd , takeWhile , dropWhile , dropWhileEnd , dropAround , strip , stripStart , stripEnd , splitAt , breakOn , breakOnEnd , break , span , group , group' , groupBy , inits , tails -- ** Breaking into many substrings , splitOn , splitOn' , split , chunksOf , chunksOf' -- ** Breaking into lines and words , lines , lines' , words , words' , unlines , unwords -- * Predicates , isPrefixOf , isSuffixOf , isInfixOf -- ** View patterns , stripPrefix , stripSuffix , commonPrefixes -- * Searching , filter , breakOnAll , breakOnAll' , find , partition -- * Indexing , index , findIndex , count -- * Zipping , zip , zipWith ) where import qualified Data.Text as T import Data.JSString.Internal.Type import GHC.Exts as Exts import Prelude (Maybe, Bool, String, Ordering, (.), ($),fmap, (<$>)) -- | /O(1)/ The empty 'JSString'. empty :: JSString empty = JSString (T.empty) {-# INLINE [1] empty #-} getJSString :: JSString -> T.Text getJSString (JSString txt) = txt -- ----------------------------------------------------------------------------- -- * Conversion to/from 'JSString' -- | /O(n)/ Convert a 'String' into a 'JSString'. Subject to -- fusion. pack :: String -> JSString pack = JSString . T.pack {-# INLINE [1] pack #-} -- | /O(n)/ Convert a 'JSString' into a 'String'. Subject to fusion. unpack :: JSString -> String unpack = T.unpack . getJSString {-# INLINE [1] unpack #-} unpack' :: JSString -> String unpack' = unpack {-# INLINE unpack' #-} -- | /O(1)/ Convert a character into a 'JSString'. Subject to fusion. -- Performs replacement on invalid scalar values. singleton :: Char -> JSString singleton = JSString . T.singleton {-# INLINE [1] singleton #-} -- ----------------------------------------------------------------------------- -- * Basic functions -- | /O(n)/ Adds a character to the front of a 'JSString'. This function -- is more costly than its 'List' counterpart because it requires -- copying a new array. Subject to fusion. Performs replacement on -- invalid scalar values. cons :: Char -> JSString -> JSString cons c (JSString x) = JSString $ T.cons c x {-# INLINE [1] cons #-} infixr 5 `cons` -- | /O(n)/ Adds a character to the end of a 'JSString'. This copies the -- entire array in the process, unless fused. Subject to fusion. -- Performs replacement on invalid scalar values. snoc :: JSString -> Char -> JSString snoc (JSString x) c = JSString $ T.snoc x c -- unstream (S.snoc (stream t) (safe c)) {-# INLINE [1] snoc #-} -- | /O(n)/ Appends one 'JSString' to the other by copying both of them -- into a new 'JSString'. Subject to fusion. append :: JSString -> JSString -> JSString append (JSString x) (JSString y) = JSString $ T.append x y {-# INLINE [1] append #-} -- | /O(1)/ Returns the first character of a 'JSString', which must be -- non-empty. Subject to fusion. head :: JSString -> Char head (JSString x) = T.head x {-# INLINE [1] head #-} -- | /O(1)/ Returns the first character and rest of a 'JSString', or -- 'Nothing' if empty. Subject to fusion. uncons :: JSString -> Maybe (Char, JSString) uncons (JSString x) = (fmap JSString) <$> T.uncons x {-# INLINE [1] uncons #-} -- | /O(1)/ Returns the last character of a 'JSString', which must be -- non-empty. Subject to fusion. last :: JSString -> Char last (JSString x) = T.last x {-# INLINE [1] last #-} -- | /O(1)/ Returns all characters after the head of a 'JSString', which -- must be non-empty. Subject to fusion. tail :: JSString -> JSString tail (JSString x) = JSString $ T.tail x {-# INLINE [1] tail #-} -- | /O(1)/ Returns all but the last character of a 'JSString', which must -- be non-empty. Subject to fusion. init :: JSString -> JSString init (JSString x) = JSString $ T.init x {-# INLINE [1] init #-} -- | /O(1)/ Tests whether a 'JSString' is empty or not. Subject to -- fusion. null :: JSString -> Bool null (JSString x) = T.null x {-# INLINE [1] null #-} -- | /O(n)/ Returns the number of characters in a 'JSString'. -- Subject to fusion. length :: JSString -> Int length (JSString x) = T.length x {-# INLINE [1] length #-} -- | /O(n)/ Compare the count of characters in a 'JSString' to a number. -- Subject to fusion. -- -- This function gives the same answer as comparing against the result -- of 'length', but can short circuit if the count of characters is -- greater than the number, and hence be more efficient. compareLength :: JSString -> Int -> Ordering compareLength (JSString t) n = T.compareLength t n {-# INLINE [1] compareLength #-} -- ----------------------------------------------------------------------------- -- * Transformations -- | /O(n)/ 'map' @f@ @t@ is the 'JSString' obtained by applying @f@ to -- each element of @t@. Subject to fusion. Performs replacement on -- invalid scalar values. map :: (Char -> Char) -> JSString -> JSString map f (JSString t) = JSString $ T.map f t {-# INLINE [1] map #-} -- | /O(n)/ The 'intercalate' function takes a 'JSString' and a list of -- 'JSString's and concatenates the list after interspersing the first -- argument between each element of the list. intercalate :: JSString -> [JSString] -> JSString intercalate (JSString i) xs = JSString $ T.intercalate i (getJSString <$> xs) {-# INLINE [1] intercalate #-} -- | /O(n)/ The 'intersperse' function takes a character and places it -- between the characters of a 'JSString'. Subject to fusion. Performs -- replacement on invalid scalar values. intersperse :: Char -> JSString -> JSString intersperse c (JSString x) = JSString $ T.intersperse c x {-# INLINE [1] intersperse #-} -- | /O(n)/ Reverse the characters of a string. Subject to fusion. reverse :: JSString -> JSString reverse = JSString . T.reverse . getJSString {-# INLINE [1] reverse #-} -- | /O(m+n)/ Replace every non-overlapping occurrence of @needle@ in -- @haystack@ with @replacement@. -- -- This function behaves as though it was defined as follows: -- -- @ -- replace needle replacement haystack = -- 'intercalate' replacement ('splitOn' needle haystack) -- @ -- -- As this suggests, each occurrence is replaced exactly once. So if -- @needle@ occurs in @replacement@, that occurrence will /not/ itself -- be replaced recursively: -- -- > replace "oo" "foo" "oo" == "foo" -- -- In cases where several instances of @needle@ overlap, only the -- first one will be replaced: -- -- > replace "ofo" "bar" "ofofo" == "barfo" -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. replace :: JSString -- ^ @needle@ to search for. If this string is empty, an -- error will occur. -> JSString -- ^ @replacement@ to replace @needle@ with. -> JSString -- ^ @haystack@ in which to search. -> JSString replace (JSString needle) (JSString replacement) (JSString haystack) = JSString $ T.replace needle replacement haystack {-# INLINE replace #-} -- ---------------------------------------------------------------------------- -- ** Case conversions (folds) -- $case -- -- When case converting 'JSString' values, do not use combinators like -- @map toUpper@ to case convert each character of a string -- individually, as this gives incorrect results according to the -- rules of some writing systems. The whole-string case conversion -- functions from this module, such as @toUpper@, obey the correct -- case conversion rules. As a result, these functions may map one -- input character to two or three output characters. For examples, -- see the documentation of each function. -- -- /Note/: In some languages, case conversion is a locale- and -- context-dependent operation. The case conversion functions in this -- module are /not/ locale sensitive. Programs that require locale -- sensitivity should use appropriate versions of the -- <http://hackage.haskell.org/package/text-icu-0.6.3.7/docs/Data-Text-ICU.html#g:4 case mapping functions from the text-icu package >. -- | /O(n)/ Convert a string to folded case. Subject to fusion. -- -- This function is mainly useful for performing caseless (also known -- as case insensitive) string comparisons. -- -- A string @x@ is a caseless match for a string @y@ if and only if: -- -- @toCaseFold x == toCaseFold y@ -- -- The result string may be longer than the input string, and may -- differ from applying 'toLower' to the input string. For instance, -- the Armenian small ligature \"ﬓ\" (men now, U+FB13) is case -- folded to the sequence \"մ\" (men, U+0574) followed by -- \"ն\" (now, U+0576), while the Greek \"µ\" (micro sign, -- U+00B5) is case folded to \"μ\" (small letter mu, U+03BC) -- instead of itself. toCaseFold :: JSString -> JSString toCaseFold = JSString . T.toCaseFold . getJSString {-# INLINE [0] toCaseFold #-} -- | /O(n)/ Convert a string to lower case, using simple case -- conversion. Subject to fusion. -- -- The result string may be longer than the input string. For -- instance, \"İ\" (Latin capital letter I with dot above, -- U+0130) maps to the sequence \"i\" (Latin small letter i, U+0069) -- followed by \" ̇\" (combining dot above, U+0307). toLower :: JSString -> JSString toLower = JSString . T.toLower . getJSString {-# INLINE [1] toLower #-} -- | /O(n)/ Convert a string to upper case, using simple case -- conversion. Subject to fusion. -- -- The result string may be longer than the input string. For -- instance, the German \"ß\" (eszett, U+00DF) maps to the -- two-letter sequence \"SS\". toUpper :: JSString -> JSString toUpper = JSString . T.toUpper . getJSString {-# INLINE [1] toUpper #-} -- | /O(n)/ Convert a string to title case, using simple case -- conversion. Subject to fusion. -- -- The first letter of the input is converted to title case, as is -- every subsequent letter that immediately follows a non-letter. -- Every letter that immediately follows another letter is converted -- to lower case. -- -- The result string may be longer than the input string. For example, -- the Latin small ligature fl (U+FB02) is converted to the -- sequence Latin capital letter F (U+0046) followed by Latin small -- letter l (U+006C). -- -- /Note/: this function does not take language or culture specific -- rules into account. For instance, in English, different style -- guides disagree on whether the book name \"The Hill of the Red -- Fox\" is correctly title cased—but this function will -- capitalize /every/ word. toTitle :: JSString -> JSString toTitle = JSString . T.toTitle . getJSString {-# INLINE toTitle #-} -- | /O(n)/ Left-justify a string to the given length, using the -- specified fill character on the right. Subject to fusion. -- Performs replacement on invalid scalar values. -- -- Examples: -- -- > justifyLeft 7 'x' "foo" == "fooxxxx" -- > justifyLeft 3 'x' "foobar" == "foobar" justifyLeft :: Int -> Char -> JSString -> JSString justifyLeft k c (JSString t) = JSString $ T.justifyLeft k c t {-# INLINE [1] justifyLeft #-} -- | /O(n)/ Right-justify a string to the given length, using the -- specified fill character on the left. Performs replacement on -- invalid scalar values. -- -- Examples: -- -- > justifyRight 7 'x' "bar" == "xxxxbar" -- > justifyRight 3 'x' "foobar" == "foobar" justifyRight :: Int -> Char -> JSString -> JSString justifyRight k c (JSString t) = JSString $ T.justifyRight k c t {-# INLINE justifyRight #-} -- | /O(n)/ Center a string to the given length, using the specified -- fill character on either side. Performs replacement on invalid -- scalar values. -- -- Examples: -- -- > center 8 'x' "HS" = "xxxHSxxx" center :: Int -> Char -> JSString -> JSString center k c (JSString t) = JSString $ T.center k c t {-# INLINE center #-} -- | /O(n)/ The 'transpose' function transposes the rows and columns -- of its 'JSString' argument. Note that this function uses 'pack', -- 'unpack', and the list version of transpose, and is thus not very -- efficient. transpose :: [JSString] -> [JSString] transpose ts = JSString <$> T.transpose (getJSString <$> ts) -- ----------------------------------------------------------------------------- -- * Reducing 'JSString's (folds) -- | /O(n)/ 'foldl', applied to a binary operator, a starting value -- (typically the left-identity of the operator), and a 'JSString', -- reduces the 'JSString' using the binary operator, from left to right. -- Subject to fusion. foldl :: (a -> Char -> a) -> a -> JSString -> a foldl f z (JSString t) = T.foldl f z t {-# INLINE foldl #-} -- | /O(n)/ A strict version of 'foldl'. Subject to fusion. foldl' :: (a -> Char -> a) -> a -> JSString -> a foldl' f z (JSString t) = T.foldl' f z t {-# INLINE foldl' #-} -- | /O(n)/ A variant of 'foldl' that has no starting value argument, -- and thus must be applied to a non-empty 'JSString'. Subject to fusion. foldl1 :: (Char -> Char -> Char) -> JSString -> Char foldl1 f (JSString t) = T.foldl1 f t {-# INLINE foldl1 #-} -- | /O(n)/ A strict version of 'foldl1'. Subject to fusion. foldl1' :: (Char -> Char -> Char) -> JSString -> Char foldl1' f (JSString t) = T.foldl1' f t {-# INLINE foldl1' #-} -- | /O(n)/ 'foldr', applied to a binary operator, a starting value -- (typically the right-identity of the operator), and a 'JSString', -- reduces the 'JSString' using the binary operator, from right to left. -- Subject to fusion. foldr :: (Char -> a -> a) -> a -> JSString -> a foldr f z (JSString t) = T.foldr f z t {-# INLINE foldr #-} -- | /O(n)/ A variant of 'foldr' that has no starting value argument, -- and thus must be applied to a non-empty 'JSString'. Subject to -- fusion. foldr1 :: (Char -> Char -> Char) -> JSString -> Char foldr1 f (JSString t) = T.foldr1 f t {-# INLINE foldr1 #-} -- ----------------------------------------------------------------------------- -- ** Special folds -- | /O(n)/ Concatenate a list of 'JSString's. concat :: [JSString] -> JSString concat xs = JSString $ T.concat $ getJSString <$> xs -- | /O(n)/ Map a function over a 'JSString' that results in a 'JSString', and -- concatenate the results. concatMap :: (Char -> JSString) -> JSString -> JSString concatMap f (JSString t) = JSString $ T.concatMap (getJSString . f) t {-# INLINE concatMap #-} -- | /O(n)/ 'any' @p@ @t@ determines whether any character in the -- 'JSString' @t@ satisifes the predicate @p@. Subject to fusion. any :: (Char -> Bool) -> JSString -> Bool any p (JSString t) = T.any p t {-# INLINE any #-} -- | /O(n)/ 'all' @p@ @t@ determines whether all characters in the -- 'JSString' @t@ satisify the predicate @p@. Subject to fusion. all :: (Char -> Bool) -> JSString -> Bool all p (JSString t) = T.all p t {-# INLINE all #-} -- | /O(n)/ 'maximum' returns the maximum value from a 'JSString', which -- must be non-empty. Subject to fusion. maximum :: JSString -> Char maximum (JSString t) = T.maximum t {-# INLINE maximum #-} -- | /O(n)/ 'minimum' returns the minimum value from a 'JSString', which -- must be non-empty. Subject to fusion. minimum :: JSString -> Char minimum (JSString t) = T.minimum t {-# INLINE minimum #-} -- ----------------------------------------------------------------------------- -- * Building 'JSString's -- | /O(n)/ 'scanl' is similar to 'foldl', but returns a list of -- successive reduced values from the left. Subject to fusion. -- Performs replacement on invalid scalar values. -- -- > scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] -- -- Note that -- -- > last (scanl f z xs) == foldl f z xs. scanl :: (Char -> Char -> Char) -> Char -> JSString -> JSString scanl f z (JSString t) = JSString $ T.scanl f z t {-# INLINE scanl #-} -- | /O(n)/ 'scanl1' is a variant of 'scanl' that has no starting -- value argument. Subject to fusion. Performs replacement on -- invalid scalar values. -- -- > scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...] scanl1 :: (Char -> Char -> Char) -> JSString -> JSString scanl1 f (JSString x) = JSString $ T.scanl1 f x {-# INLINE scanl1 #-} -- | /O(n)/ 'scanr' is the right-to-left dual of 'scanl'. Performs -- replacement on invalid scalar values. -- -- > scanr f v == reverse . scanl (flip f) v . reverse scanr :: (Char -> Char -> Char) -> Char -> JSString -> JSString scanr f c (JSString z) = JSString $ T.scanr f c z {-# INLINE scanr #-} -- | /O(n)/ 'scanr1' is a variant of 'scanr' that has no starting -- value argument. Subject to fusion. Performs replacement on -- invalid scalar values. scanr1 :: (Char -> Char -> Char) -> JSString -> JSString scanr1 f (JSString t) = JSString $ T.scanr1 f t {-# INLINE scanr1 #-} -- | /O(n)/ Like a combination of 'map' and 'foldl''. Applies a -- function to each element of a 'JSString', passing an accumulating -- parameter from left to right, and returns a final 'JSString'. Performs -- replacement on invalid scalar values. mapAccumL :: (a -> Char -> (a,Char)) -> a -> JSString -> (a, JSString) mapAccumL f z (JSString t) = JSString <$> T.mapAccumL f z t {-# INLINE mapAccumL #-} -- | The 'mapAccumR' function behaves like a combination of 'map' and -- a strict 'foldr'; it applies a function to each element of a -- 'JSString', passing an accumulating parameter from right to left, and -- returning a final value of this accumulator together with the new -- 'JSString'. -- Performs replacement on invalid scalar values. mapAccumR :: (a -> Char -> (a,Char)) -> a -> JSString -> (a, JSString) mapAccumR f z (JSString t) = JSString <$> T.mapAccumR f z t {-# INLINE mapAccumR #-} -- ----------------------------------------------------------------------------- -- ** Generating and unfolding 'JSString's -- | /O(n*m)/ 'replicate' @n@ @t@ is a 'JSString' consisting of the input -- @t@ repeated @n@ times. replicate :: Int -> JSString -> JSString replicate n (JSString t) = JSString $ T.replicate n t {-# INLINE [1] replicate #-} -- | /O(n)/, where @n@ is the length of the result. The 'unfoldr' -- function is analogous to the List 'L.unfoldr'. 'unfoldr' builds a -- 'JSString' from a seed value. The function takes the element and -- returns 'Nothing' if it is done producing the 'JSString', otherwise -- 'Just' @(a,b)@. In this case, @a@ is the next 'Char' in the -- string, and @b@ is the seed value for further production. Subject -- to fusion. Performs replacement on invalid scalar values. unfoldr :: (a -> Maybe (Char,a)) -> a -> JSString unfoldr f s = JSString $ T.unfoldr f s {-# INLINE unfoldr #-} -- | /O(n)/ Like 'unfoldr', 'unfoldrN' builds a 'JSString' from a seed -- value. However, the length of the result should be limited by the -- first argument to 'unfoldrN'. This function is more efficient than -- 'unfoldr' when the maximum length of the result is known and -- correct, otherwise its performance is similar to 'unfoldr'. Subject -- to fusion. Performs replacement on invalid scalar values. unfoldrN :: Int -> (a -> Maybe (Char,a)) -> a -> JSString unfoldrN n f s = JSString $ T.unfoldrN n f s {-# INLINE unfoldrN #-} -- ----------------------------------------------------------------------------- -- * Substrings -- | /O(n)/ 'take' @n@, applied to a 'JSString', returns the prefix of the -- 'JSString' of length @n@, or the 'JSString' itself if @n@ is greater than -- the length of the JSString. Subject to fusion. take :: Int -> JSString -> JSString take n (JSString t) = JSString $ T.take n t {- t@(Text arr off len) | n <= 0 = empty | n >= len = t | otherwise = text arr off (iterN n t) -} {-# INLINE [1] take #-} {- iterN :: Int -> JSString -> Int iterN n t@(Text _arr _off len) = loop 0 0 where loop !i !cnt | i >= len || cnt >= n = i | otherwise = loop (i+d) (cnt+1) where d = iter_ t i -} -- | /O(n)/ 'takeEnd' @n@ @t@ returns the suffix remaining after -- taking @n@ characters from the end of @t@. -- -- Examples: -- -- > takeEnd 3 "foobar" == "bar" takeEnd :: Int -> JSString -> JSString takeEnd n (JSString t) = JSString $ T.takeEnd n t {- iterNEnd :: Int -> JSString -> Int iterNEnd n t@(Text _arr _off len) = loop (len-1) n where loop i !m | i <= 0 = 0 | m <= 1 = i | otherwise = loop (i+d) (m-1) where d = reverseIter_ t i -} -- | /O(n)/ 'drop' @n@, applied to a 'JSString', returns the suffix of the -- 'JSString' after the first @n@ characters, or the empty 'JSString' if @n@ -- is greater than the length of the 'JSString'. Subject to fusion. drop :: Int -> JSString -> JSString drop n (JSString t) = JSString $ T.drop n t {-# INLINE [1] drop #-} -- | /O(n)/ 'dropEnd' @n@ @t@ returns the prefix remaining after -- dropping @n@ characters from the end of @t@. -- -- Examples: -- -- > dropEnd 3 "foobar" == "foo" dropEnd :: Int -> JSString -> JSString dropEnd n (JSString x) = JSString $ T.dropEnd n x -- | /O(n)/ 'takeWhile', applied to a predicate @p@ and a 'JSString', -- returns the longest prefix (possibly empty) of elements that -- satisfy @p@. Subject to fusion. takeWhile :: (Char -> Bool) -> JSString -> JSString takeWhile p (JSString x) = JSString $ T.takeWhile p x {-# INLINE [1] takeWhile #-} -- | /O(n)/ 'dropWhile' @p@ @t@ returns the suffix remaining after -- 'takeWhile' @p@ @t@. Subject to fusion. dropWhile :: (Char -> Bool) -> JSString -> JSString dropWhile p (JSString x) = JSString $ T.dropWhile p x {-# INLINE [1] dropWhile #-} -- | /O(n)/ 'dropWhileEnd' @p@ @t@ returns the prefix remaining after -- dropping characters that fail the predicate @p@ from the end of -- @t@. Subject to fusion. -- Examples: -- -- > dropWhileEnd (=='.') "foo..." == "foo" dropWhileEnd :: (Char -> Bool) -> JSString -> JSString dropWhileEnd p (JSString x) = JSString $ T.dropWhileEnd p x {-# INLINE [1] dropWhileEnd #-} -- | /O(n)/ 'dropAround' @p@ @t@ returns the substring remaining after -- dropping characters that fail the predicate @p@ from both the -- beginning and end of @t@. Subject to fusion. dropAround :: (Char -> Bool) -> JSString -> JSString dropAround p (JSString t) = JSString $ T.dropAround p t {-# INLINE [1] dropAround #-} -- | /O(n)/ Remove leading white space from a string. Equivalent to: -- -- > dropWhile isSpace stripStart :: JSString -> JSString stripStart = JSString . T.stripStart . getJSString {-# INLINE [1] stripStart #-} -- | /O(n)/ Remove trailing white space from a string. Equivalent to: -- -- > dropWhileEnd isSpace stripEnd :: JSString -> JSString stripEnd = JSString . T.stripEnd . getJSString {-# INLINE [1] stripEnd #-} -- | /O(n)/ Remove leading and trailing white space from a string. -- Equivalent to: -- -- > dropAround isSpace strip :: JSString -> JSString strip = JSString . T.strip . getJSString {-# INLINE [1] strip #-} -- | /O(n)/ 'splitAt' @n t@ returns a pair whose first element is a -- prefix of @t@ of length @n@, and whose second is the remainder of -- the string. It is equivalent to @('take' n t, 'drop' n t)@. splitAt :: Int -> JSString -> (JSString, JSString) splitAt n (JSString t) = let (x, y) = T.splitAt n t in (JSString x, JSString y) {-# INLINE splitAt #-} -- | /O(n)/ 'span', applied to a predicate @p@ and text @t@, returns -- a pair whose first element is the longest prefix (possibly empty) -- of @t@ of elements that satisfy @p@, and whose second is the -- remainder of the list. span :: (Char -> Bool) -> JSString -> (JSString, JSString) span p (JSString t) = let (x, y) = T.span p t in (JSString x, JSString y) {-# INLINE span #-} -- | /O(n)/ 'break' is like 'span', but the prefix returned is -- over elements that fail the predicate @p@. break :: (Char -> Bool) -> JSString -> (JSString, JSString) break p (JSString t) = let (x, y) = T.break p t in (JSString x, JSString y) {-# INLINE break #-} -- | /O(n)/ Group characters in a string according to a predicate. groupBy :: (Char -> Char -> Bool) -> JSString -> [JSString] groupBy p (JSString x) = JSString <$> T.groupBy p x -- | /O(n)/ Group characters in a string by equality. group :: JSString -> [JSString] group (JSString x) = JSString <$> T.group x {-# INLINE group #-} group' :: JSString -> [JSString] group' = group {-# INLINE group' #-} -- | /O(n^2)/ Return all initial segments of the given 'JSString', shortest -- first. inits :: JSString -> [JSString] inits (JSString x) = JSString <$> T.inits x -- | /O(n^2)/ Return all final segments of the given 'JSString', longest -- first. tails :: JSString -> [JSString] tails (JSString x) = JSString <$> T.tails x -- $split -- -- Splitting functions in this library do not perform character-wise -- copies to create substrings; they just construct new 'JSString's that -- are slices of the original. -- | /O(m+n)/ Break a 'JSString' into pieces separated by the first 'JSString' -- argument (which cannot be empty), consuming the delimiter. An empty -- delimiter is invalid, and will cause an error to be raised. -- -- Examples: -- -- > splitOn "\r\n" "a\r\nb\r\nd\r\ne" == ["a","b","d","e"] -- > splitOn "aaa" "aaaXaaaXaaaXaaa" == ["","X","X","X",""] -- > splitOn "x" "x" == ["",""] -- -- and -- -- > intercalate s . splitOn s == id -- > splitOn (singleton c) == split (==c) -- -- (Note: the string @s@ to split on above cannot be empty.) -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. splitOn :: JSString -- ^ String to split on. If this string is empty, an error -- will occur. -> JSString -- ^ Input text. -> [JSString] splitOn (JSString pat) (JSString src) = JSString <$> T.splitOn pat src {-# INLINE [1] splitOn #-} splitOn' :: JSString -- ^ String to split on. If this string is empty, an error -- will occur. -> JSString -- ^ Input text. -> [JSString] splitOn' = splitOn {-# NOINLINE splitOn' #-} --- {-# INLINE [1] splitOn' #-} -- | /O(n)/ Splits a 'JSString' into components delimited by separators, -- where the predicate returns True for a separator element. The -- resulting components do not contain the separators. Two adjacent -- separators result in an empty component in the output. eg. -- -- > split (=='a') "aabbaca" == ["","","bb","c",""] -- > split (=='a') "" == [""] split :: (Char -> Bool) -> JSString -> [JSString] split p (JSString x) = JSString <$> T.split p x {-# INLINE split #-} -- | /O(n)/ Splits a 'JSString' into components of length @k@. The last -- element may be shorter than the other chunks, depending on the -- length of the input. Examples: -- -- > chunksOf 3 "foobarbaz" == ["foo","bar","baz"] -- > chunksOf 4 "haskell.org" == ["hask","ell.","org"] chunksOf :: Int -> JSString -> [JSString] chunksOf n (JSString x) = JSString <$> T.chunksOf n x {-# INLINE chunksOf #-} -- | /O(n)/ Splits a 'JSString' into components of length @k@. The last -- element may be shorter than the other chunks, depending on the -- length of the input. Examples: -- -- > chunksOf 3 "foobarbaz" == ["foo","bar","baz"] -- > chunksOf 4 "haskell.org" == ["hask","ell.","org"] chunksOf' :: Int -> JSString -> [JSString] chunksOf' = chunksOf {-# INLINE chunksOf' #-} -- ---------------------------------------------------------------------------- -- * Searching ------------------------------------------------------------------------------- -- ** Searching with a predicate -- | /O(n)/ The 'find' function takes a predicate and a 'JSString', and -- returns the first element matching the predicate, or 'Nothing' if -- there is no such element. find :: (Char -> Bool) -> JSString -> Maybe Char find p (JSString t) = T.find p t {-# INLINE find #-} -- | /O(n)/ The 'partition' function takes a predicate and a 'JSString', -- and returns the pair of 'JSString's with elements which do and do not -- satisfy the predicate, respectively; i.e. -- -- > partition p t == (filter p t, filter (not . p) t) partition :: (Char -> Bool) -> JSString -> (JSString, JSString) partition p (JSString t) = let (x, y) = T.partition p t in (JSString x, JSString y) {-# INLINE partition #-} -- | /O(n)/ 'filter', applied to a predicate and a 'JSString', -- returns a 'JSString' containing those characters that satisfy the -- predicate. filter :: (Char -> Bool) -> JSString -> JSString filter p (JSString t) = JSString $ T.filter p t {-# INLINE filter #-} -- | /O(n+m)/ Find the first instance of @needle@ (which must be -- non-'null') in @haystack@. The first element of the returned tuple -- is the prefix of @haystack@ before @needle@ is matched. The second -- is the remainder of @haystack@, starting with the match. -- -- Examples: -- -- > breakOn "::" "a::b::c" ==> ("a", "::b::c") -- > breakOn "/" "foobar" ==> ("foobar", "") -- -- Laws: -- -- > append prefix match == haystack -- > where (prefix, match) = breakOn needle haystack -- -- If you need to break a string by a substring repeatedly (e.g. you -- want to break on every instance of a substring), use 'breakOnAll' -- instead, as it has lower startup overhead. -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. breakOn :: JSString -> JSString -> (JSString, JSString) breakOn (JSString pat) (JSString src) = let (x, y) = T.breakOn pat src in (JSString x, JSString y) {-# INLINE breakOn #-} -- | /O(n+m)/ Similar to 'breakOn', but searches from the end of the -- string. -- -- The first element of the returned tuple is the prefix of @haystack@ -- up to and including the last match of @needle@. The second is the -- remainder of @haystack@, following the match. -- -- > breakOnEnd "::" "a::b::c" ==> ("a::b::", "c") breakOnEnd :: JSString -> JSString -> (JSString, JSString) breakOnEnd (JSString pat) (JSString src) = let (x, y) = T.breakOnEnd pat src in (JSString x, JSString y) {-# INLINE breakOnEnd #-} -- | /O(n+m)/ Find all non-overlapping instances of @needle@ in -- @haystack@. Each element of the returned list consists of a pair: -- -- * The entire string prior to the /k/th match (i.e. the prefix) -- -- * The /k/th match, followed by the remainder of the string -- -- Examples: -- -- > breakOnAll "::" "" -- > ==> [] -- > breakOnAll "/" "a/b/c/" -- > ==> [("a", "/b/c/"), ("a/b", "/c/"), ("a/b/c", "/")] -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. -- -- The @needle@ parameter may not be empty. breakOnAll :: JSString -- ^ @needle@ to search for -> JSString -- ^ @haystack@ in which to search -> [(JSString, JSString)] breakOnAll (JSString pat) (JSString src) = (\(x, y) -> (JSString x, JSString y)) <$> T.breakOnAll pat src {-# INLINE breakOnAll #-} breakOnAll' :: JSString -- ^ @needle@ to search for -> JSString -- ^ @haystack@ in which to search -> [(JSString, JSString)] breakOnAll' = breakOnAll {-# INLINE breakOnAll' #-} ------------------------------------------------------------------------------- -- ** Indexing 'JSString's -- $index -- -- If you think of a 'JSString' value as an array of 'Char' values (which -- it is not), you run the risk of writing inefficient code. -- -- An idiom that is common in some languages is to find the numeric -- offset of a character or substring, then use that number to split -- or trim the searched string. With a 'JSString' value, this approach -- would require two /O(n)/ operations: one to perform the search, and -- one to operate from wherever the search ended. -- -- For example, suppose you have a string that you want to split on -- the substring @\"::\"@, such as @\"foo::bar::quux\"@. Instead of -- searching for the index of @\"::\"@ and taking the substrings -- before and after that index, you would instead use @breakOnAll \"::\"@. -- | /O(n)/ 'JSString' index (subscript) operator, starting from 0. index :: JSString -> Int -> Char index (JSString t) n = T.index t n {-# INLINE index #-} -- | /O(n)/ The 'findIndex' function takes a predicate and a 'JSString' -- and returns the index of the first element in the 'JSString' satisfying -- the predicate. Subject to fusion. findIndex :: (Char -> Bool) -> JSString -> Maybe Int findIndex p (JSString t) = T.findIndex p t {-# INLINE findIndex #-} -- | /O(n+m)/ The 'count' function returns the number of times the -- query string appears in the given 'JSString'. An empty query string is -- invalid, and will cause an error to be raised. -- -- In (unlikely) bad cases, this function's time complexity degrades -- towards /O(n*m)/. count :: JSString -> JSString -> Int count (JSString pat) (JSString src) = T.count pat src {-# INLINE [1] count #-} ------------------------------------------------------------------------------- -- * Zipping -- | /O(n)/ 'zip' takes two 'JSString's and returns a list of -- corresponding pairs of bytes. If one input 'JSString' is short, -- excess elements of the longer 'JSString' are discarded. This is -- equivalent to a pair of 'unpack' operations. zip :: JSString -> JSString -> [(Char,Char)] zip (JSString a) (JSString b) = T.zip a b {-# INLINE [0] zip #-} -- | /O(n)/ 'zipWith' generalises 'zip' by zipping with the function -- given as the first argument, instead of a tupling function. -- Performs replacement on invalid scalar values. zipWith :: (Char -> Char -> Char) -> JSString -> JSString -> JSString zipWith f (JSString t1) (JSString t2) = JSString $ T.zipWith f t1 t2 {-# INLINE [0] zipWith #-} -- | /O(n)/ Breaks a 'JSString' up into a list of words, delimited by 'Char's -- representing white space. words :: JSString -> [JSString] words (JSString x) = JSString <$> T.words x {-# INLINE words #-} -- fixme: strict words' that allocates the whole list in one go words' :: JSString -> [JSString] words' = words {-# INLINE words' #-} -- | /O(n)/ Breaks a 'JSString' up into a list of 'JSString's at -- newline 'Char's. The resulting strings do not contain newlines. lines :: JSString -> [JSString] lines (JSString ps) = JSString <$> T.lines ps {-# INLINE lines #-} lines' :: JSString -> [JSString] lines' = lines {-# INLINE lines' #-} {- -- | /O(n)/ Portably breaks a 'JSString' up into a list of 'JSString's at line -- boundaries. -- -- A line boundary is considered to be either a line feed, a carriage -- return immediately followed by a line feed, or a carriage return. -- This accounts for both Unix and Windows line ending conventions, -- and for the old convention used on Mac OS 9 and earlier. lines' :: Text -> [Text] lines' ps | null ps = [] | otherwise = h : case uncons t of Nothing -> [] Just (c,t') | c == '\n' -> lines t' | c == '\r' -> case uncons t' of Just ('\n',t'') -> lines t'' _ -> lines t' where (h,t) = span notEOL ps notEOL c = c /= '\n' && c /= '\r' -} -- | /O(n)/ Joins lines, after appending a terminating newline to -- each. unlines :: [JSString] -> JSString unlines xs = JSString $ T.unlines $ getJSString <$> xs {-# INLINE unlines #-} -- | /O(n)/ Joins words using single space characters. unwords :: [JSString] -> JSString unwords xs = JSString $ T.unwords $ getJSString <$> xs {-# INLINE unwords #-} -- | /O(n)/ The 'isPrefixOf' function takes two 'JSString's and returns -- 'True' iff the first is a prefix of the second. Subject to fusion. isPrefixOf :: JSString -> JSString -> Bool isPrefixOf (JSString x) (JSString y) = T.isPrefixOf x y {-# INLINE [1] isPrefixOf #-} -- | /O(n)/ The 'isSuffixOf' function takes two 'JSString's and returns -- 'True' iff the first is a suffix of the second. isSuffixOf :: JSString -> JSString -> Bool isSuffixOf (JSString x) (JSString y) = T.isSuffixOf x y {-# INLINE isSuffixOf #-} -- | The 'isInfixOf' function takes two 'JSString's and returns -- 'True' iff the first is contained, wholly and intact, anywhere -- within the second. -- -- Complexity depends on how the JavaScript engine implements -- String.prototype.find. isInfixOf :: JSString -> JSString -> Bool isInfixOf (JSString needle) (JSString haystack) = T.isInfixOf needle haystack {-# INLINE [1] isInfixOf #-} ------------------------------------------------------------------------------- -- * View patterns -- | /O(n)/ Return the suffix of the second string if its prefix -- matches the entire first string. -- -- Examples: -- -- > stripPrefix "foo" "foobar" == Just "bar" -- > stripPrefix "" "baz" == Just "baz" -- > stripPrefix "foo" "quux" == Nothing -- -- This is particularly useful with the @ViewPatterns@ extension to -- GHC, as follows: -- -- > {-# LANGUAGE ViewPatterns #-} -- > import Data.Text as T -- > -- > fnordLength :: JSString -> Int -- > fnordLength (stripPrefix "fnord" -> Just suf) = T.length suf -- > fnordLength _ = -1 stripPrefix :: JSString -> JSString -> Maybe JSString stripPrefix (JSString x) (JSString y) = JSString <$> T.stripPrefix x y {-# INLINE stripPrefix #-} -- | /O(n)/ Find the longest non-empty common prefix of two strings -- and return it, along with the suffixes of each string at which they -- no longer match. -- -- If the strings do not have a common prefix or either one is empty, -- this function returns 'Nothing'. -- -- Examples: -- -- > commonPrefixes "foobar" "fooquux" == Just ("foo","bar","quux") -- > commonPrefixes "veeble" "fetzer" == Nothing -- > commonPrefixes "" "baz" == Nothing commonPrefixes :: JSString -> JSString -> Maybe (JSString,JSString,JSString) commonPrefixes (JSString x) (JSString y) = (\(a, b, c) -> (JSString a, JSString b, JSString c)) <$> T.commonPrefixes x y {-# INLINE commonPrefixes #-} -- | /O(n)/ Return the prefix of the second string if its suffix -- matches the entire first string. -- -- Examples: -- -- > stripSuffix "bar" "foobar" == Just "foo" -- > stripSuffix "" "baz" == Just "baz" -- > stripSuffix "foo" "quux" == Nothing -- -- This is particularly useful with the @ViewPatterns@ extension to -- GHC, as follows: -- -- > {-# LANGUAGE ViewPatterns #-} -- > import Data.Text as T -- > -- > quuxLength :: Text -> Int -- > quuxLength (stripSuffix "quux" -> Just pre) = T.length pre -- > quuxLength _ = -1 stripSuffix :: JSString -> JSString -> Maybe JSString stripSuffix (JSString x) (JSString y) = JSString <$> T.stripSuffix x y {-# INLINE stripSuffix #-} -- -----------------------------------------------------------------------------