Copyright | (c) 2015-2016 Brendan Hay |
---|---|
License | Mozilla Public License, v. 2.0. |
Maintainer | Brendan Hay <brendan.g.hay@gmail.com> |
Stability | auto-generated |
Portability | non-portable (GHC extensions) |
Safe Haskell | None |
Language | Haskell2010 |
- Service Configuration
- OAuth Scopes
- Insert2ModelInfo
- AnalyzeModelDescriptionConfusionMatrixRowTotals
- Insert
- List
- InsertUtilityItem
- Insert2
- InsertTrainingInstancesItem
- InputInput
- AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem
- AnalyzeDataDescriptionFeaturesItemNumeric
- Input
- AnalyzeDataDescriptionFeaturesItemCategorical
- AnalyzeDataDescriptionOutputFeatureTextItem
- OutputOutputMultiItem
- Analyze
- AnalyzeModelDescriptionConfusionMatrix
- Output
- AnalyzeDataDescriptionOutputFeatureNumeric
- AnalyzeErrorsItem
- AnalyzeDataDescription
- AnalyzeModelDescription
- AnalyzeDataDescriptionFeaturesItemText
- AnalyzeModelDescriptionConfusionMatrixAdditional
- AnalyzeDataDescriptionFeaturesItem
- Update
- AnalyzeDataDescriptionOutputFeature
Synopsis
- predictionService :: ServiceConfig
- cloudPlatformScope :: Proxy '["https://www.googleapis.com/auth/cloud-platform"]
- storageReadOnlyScope :: Proxy '["https://www.googleapis.com/auth/devstorage.read_only"]
- storageReadWriteScope :: Proxy '["https://www.googleapis.com/auth/devstorage.read_write"]
- predictionScope :: Proxy '["https://www.googleapis.com/auth/prediction"]
- storageFullControlScope :: Proxy '["https://www.googleapis.com/auth/devstorage.full_control"]
- data Insert2ModelInfo
- insert2ModelInfo :: Insert2ModelInfo
- imiModelType :: Lens' Insert2ModelInfo (Maybe Text)
- imiClassWeightedAccuracy :: Lens' Insert2ModelInfo (Maybe Text)
- imiClassificationAccuracy :: Lens' Insert2ModelInfo (Maybe Text)
- imiMeanSquaredError :: Lens' Insert2ModelInfo (Maybe Text)
- imiNumberLabels :: Lens' Insert2ModelInfo (Maybe Int64)
- imiNumberInstances :: Lens' Insert2ModelInfo (Maybe Int64)
- data AnalyzeModelDescriptionConfusionMatrixRowTotals
- analyzeModelDescriptionConfusionMatrixRowTotals :: HashMap Text Text -> AnalyzeModelDescriptionConfusionMatrixRowTotals
- amdcmrtAddtional :: Lens' AnalyzeModelDescriptionConfusionMatrixRowTotals (HashMap Text Text)
- data Insert
- insert :: Insert
- iStorageDataLocation :: Lens' Insert (Maybe Text)
- iModelType :: Lens' Insert (Maybe Text)
- iTrainingInstances :: Lens' Insert [InsertTrainingInstancesItem]
- iUtility :: Lens' Insert [InsertUtilityItem]
- iStoragePMMLModelLocation :: Lens' Insert (Maybe Text)
- iSourceModel :: Lens' Insert (Maybe Text)
- iId :: Lens' Insert (Maybe Text)
- iStoragePMMLLocation :: Lens' Insert (Maybe Text)
- data List
- list :: List
- lNextPageToken :: Lens' List (Maybe Text)
- lKind :: Lens' List Text
- lItems :: Lens' List [Insert2]
- lSelfLink :: Lens' List (Maybe Text)
- data InsertUtilityItem
- insertUtilityItem :: HashMap Text Double -> InsertUtilityItem
- iuiAddtional :: Lens' InsertUtilityItem (HashMap Text Double)
- data Insert2
- insert2 :: Insert2
- insStorageDataLocation :: Lens' Insert2 (Maybe Text)
- insModelType :: Lens' Insert2 (Maybe Text)
- insKind :: Lens' Insert2 Text
- insCreated :: Lens' Insert2 (Maybe UTCTime)
- insTrainingComplete :: Lens' Insert2 (Maybe UTCTime)
- insSelfLink :: Lens' Insert2 (Maybe Text)
- insTrainingStatus :: Lens' Insert2 (Maybe Text)
- insStoragePMMLModelLocation :: Lens' Insert2 (Maybe Text)
- insId :: Lens' Insert2 (Maybe Text)
- insStoragePMMLLocation :: Lens' Insert2 (Maybe Text)
- insModelInfo :: Lens' Insert2 (Maybe Insert2ModelInfo)
- data InsertTrainingInstancesItem
- insertTrainingInstancesItem :: InsertTrainingInstancesItem
- itiiCSVInstance :: Lens' InsertTrainingInstancesItem [JSONValue]
- itiiOutput :: Lens' InsertTrainingInstancesItem (Maybe Text)
- data InputInput
- inputInput :: InputInput
- iiCSVInstance :: Lens' InputInput [JSONValue]
- data AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem
- analyzeDataDescriptionFeaturesItemCategoricalValuesItem :: AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem
- addficviValue :: Lens' AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem (Maybe Text)
- addficviCount :: Lens' AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem (Maybe Int64)
- data AnalyzeDataDescriptionFeaturesItemNumeric
- analyzeDataDescriptionFeaturesItemNumeric :: AnalyzeDataDescriptionFeaturesItemNumeric
- addfinMean :: Lens' AnalyzeDataDescriptionFeaturesItemNumeric (Maybe Text)
- addfinCount :: Lens' AnalyzeDataDescriptionFeaturesItemNumeric (Maybe Int64)
- addfinVariance :: Lens' AnalyzeDataDescriptionFeaturesItemNumeric (Maybe Text)
- data Input
- input :: Input
- iInput :: Lens' Input (Maybe InputInput)
- data AnalyzeDataDescriptionFeaturesItemCategorical
- analyzeDataDescriptionFeaturesItemCategorical :: AnalyzeDataDescriptionFeaturesItemCategorical
- addficValues :: Lens' AnalyzeDataDescriptionFeaturesItemCategorical [AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem]
- addficCount :: Lens' AnalyzeDataDescriptionFeaturesItemCategorical (Maybe Int64)
- data AnalyzeDataDescriptionOutputFeatureTextItem
- analyzeDataDescriptionOutputFeatureTextItem :: AnalyzeDataDescriptionOutputFeatureTextItem
- addoftiValue :: Lens' AnalyzeDataDescriptionOutputFeatureTextItem (Maybe Text)
- addoftiCount :: Lens' AnalyzeDataDescriptionOutputFeatureTextItem (Maybe Int64)
- data OutputOutputMultiItem
- outputOutputMultiItem :: OutputOutputMultiItem
- oomiScore :: Lens' OutputOutputMultiItem (Maybe Text)
- oomiLabel :: Lens' OutputOutputMultiItem (Maybe Text)
- data Analyze
- analyze :: Analyze
- aKind :: Lens' Analyze Text
- aModelDescription :: Lens' Analyze (Maybe AnalyzeModelDescription)
- aSelfLink :: Lens' Analyze (Maybe Text)
- aId :: Lens' Analyze (Maybe Text)
- aErrors :: Lens' Analyze [AnalyzeErrorsItem]
- aDataDescription :: Lens' Analyze (Maybe AnalyzeDataDescription)
- data AnalyzeModelDescriptionConfusionMatrix
- analyzeModelDescriptionConfusionMatrix :: HashMap Text AnalyzeModelDescriptionConfusionMatrixAdditional -> AnalyzeModelDescriptionConfusionMatrix
- amdcmAddtional :: Lens' AnalyzeModelDescriptionConfusionMatrix (HashMap Text AnalyzeModelDescriptionConfusionMatrixAdditional)
- data Output
- output :: Output
- oOutputValue :: Lens' Output (Maybe Text)
- oKind :: Lens' Output Text
- oOutputLabel :: Lens' Output (Maybe Text)
- oSelfLink :: Lens' Output (Maybe Text)
- oId :: Lens' Output (Maybe Text)
- oOutputMulti :: Lens' Output [OutputOutputMultiItem]
- data AnalyzeDataDescriptionOutputFeatureNumeric
- analyzeDataDescriptionOutputFeatureNumeric :: AnalyzeDataDescriptionOutputFeatureNumeric
- addofnMean :: Lens' AnalyzeDataDescriptionOutputFeatureNumeric (Maybe Text)
- addofnCount :: Lens' AnalyzeDataDescriptionOutputFeatureNumeric (Maybe Int64)
- addofnVariance :: Lens' AnalyzeDataDescriptionOutputFeatureNumeric (Maybe Text)
- data AnalyzeErrorsItem
- analyzeErrorsItem :: HashMap Text Text -> AnalyzeErrorsItem
- aeiAddtional :: Lens' AnalyzeErrorsItem (HashMap Text Text)
- data AnalyzeDataDescription
- analyzeDataDescription :: AnalyzeDataDescription
- addOutputFeature :: Lens' AnalyzeDataDescription (Maybe AnalyzeDataDescriptionOutputFeature)
- addFeatures :: Lens' AnalyzeDataDescription [AnalyzeDataDescriptionFeaturesItem]
- data AnalyzeModelDescription
- analyzeModelDescription :: AnalyzeModelDescription
- amdConfusionMatrixRowTotals :: Lens' AnalyzeModelDescription (Maybe AnalyzeModelDescriptionConfusionMatrixRowTotals)
- amdConfusionMatrix :: Lens' AnalyzeModelDescription (Maybe AnalyzeModelDescriptionConfusionMatrix)
- amdModelInfo :: Lens' AnalyzeModelDescription (Maybe Insert2)
- data AnalyzeDataDescriptionFeaturesItemText
- analyzeDataDescriptionFeaturesItemText :: AnalyzeDataDescriptionFeaturesItemText
- addfitCount :: Lens' AnalyzeDataDescriptionFeaturesItemText (Maybe Int64)
- data AnalyzeModelDescriptionConfusionMatrixAdditional
- analyzeModelDescriptionConfusionMatrixAdditional :: HashMap Text Text -> AnalyzeModelDescriptionConfusionMatrixAdditional
- amdcmaAddtional :: Lens' AnalyzeModelDescriptionConfusionMatrixAdditional (HashMap Text Text)
- data AnalyzeDataDescriptionFeaturesItem
- analyzeDataDescriptionFeaturesItem :: AnalyzeDataDescriptionFeaturesItem
- addfiText :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe AnalyzeDataDescriptionFeaturesItemText)
- addfiNumeric :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe AnalyzeDataDescriptionFeaturesItemNumeric)
- addfiIndex :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe Int64)
- addfiCategorical :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe AnalyzeDataDescriptionFeaturesItemCategorical)
- data Update
- update :: Update
- uCSVInstance :: Lens' Update [JSONValue]
- uOutput :: Lens' Update (Maybe Text)
- data AnalyzeDataDescriptionOutputFeature
- analyzeDataDescriptionOutputFeature :: AnalyzeDataDescriptionOutputFeature
- addofText :: Lens' AnalyzeDataDescriptionOutputFeature [AnalyzeDataDescriptionOutputFeatureTextItem]
- addofNumeric :: Lens' AnalyzeDataDescriptionOutputFeature (Maybe AnalyzeDataDescriptionOutputFeatureNumeric)
Service Configuration
predictionService :: ServiceConfig Source #
Default request referring to version 'v1.6' of the Prediction API. This contains the host and root path used as a starting point for constructing service requests.
OAuth Scopes
cloudPlatformScope :: Proxy '["https://www.googleapis.com/auth/cloud-platform"] Source #
View and manage your data across Google Cloud Platform services
storageReadOnlyScope :: Proxy '["https://www.googleapis.com/auth/devstorage.read_only"] Source #
View your data in Google Cloud Storage
storageReadWriteScope :: Proxy '["https://www.googleapis.com/auth/devstorage.read_write"] Source #
Manage your data in Google Cloud Storage
predictionScope :: Proxy '["https://www.googleapis.com/auth/prediction"] Source #
Manage your data in the Google Prediction API
storageFullControlScope :: Proxy '["https://www.googleapis.com/auth/devstorage.full_control"] Source #
Manage your data and permissions in Google Cloud Storage
Insert2ModelInfo
data Insert2ModelInfo Source #
Model metadata.
See: insert2ModelInfo
smart constructor.
Instances
insert2ModelInfo :: Insert2ModelInfo Source #
Creates a value of Insert2ModelInfo
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
imiModelType :: Lens' Insert2ModelInfo (Maybe Text) Source #
Type of predictive model (CLASSIFICATION or REGRESSION).
imiClassWeightedAccuracy :: Lens' Insert2ModelInfo (Maybe Text) Source #
Estimated accuracy of model taking utility weights into account (Categorical models only).
imiClassificationAccuracy :: Lens' Insert2ModelInfo (Maybe Text) Source #
A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data (Categorical models only).
imiMeanSquaredError :: Lens' Insert2ModelInfo (Maybe Text) Source #
An estimated mean squared error. The can be used to measure the quality of the predicted model (Regression models only).
imiNumberLabels :: Lens' Insert2ModelInfo (Maybe Int64) Source #
Number of class labels in the trained model (Categorical models only).
imiNumberInstances :: Lens' Insert2ModelInfo (Maybe Int64) Source #
Number of valid data instances used in the trained model.
AnalyzeModelDescriptionConfusionMatrixRowTotals
data AnalyzeModelDescriptionConfusionMatrixRowTotals Source #
A list of the confusion matrix row totals.
See: analyzeModelDescriptionConfusionMatrixRowTotals
smart constructor.
Instances
analyzeModelDescriptionConfusionMatrixRowTotals Source #
Creates a value of AnalyzeModelDescriptionConfusionMatrixRowTotals
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
amdcmrtAddtional :: Lens' AnalyzeModelDescriptionConfusionMatrixRowTotals (HashMap Text Text) Source #
Insert
Instances
Creates a value of Insert
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
iStorageDataLocation :: Lens' Insert (Maybe Text) Source #
Google storage location of the training data file.
iModelType :: Lens' Insert (Maybe Text) Source #
Type of predictive model (classification or regression).
iTrainingInstances :: Lens' Insert [InsertTrainingInstancesItem] Source #
Instances to train model on.
iUtility :: Lens' Insert [InsertUtilityItem] Source #
A class weighting function, which allows the importance weights for class labels to be specified (Categorical models only).
iStoragePMMLModelLocation :: Lens' Insert (Maybe Text) Source #
Google storage location of the pmml model file.
iStoragePMMLLocation :: Lens' Insert (Maybe Text) Source #
Google storage location of the preprocessing pmml file.
List
Instances
Eq List Source # | |
Data List Source # | |
Defined in Network.Google.Prediction.Types.Product gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> List -> c List # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c List # dataTypeOf :: List -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c List) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c List) # gmapT :: (forall b. Data b => b -> b) -> List -> List # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> List -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> List -> r # gmapQ :: (forall d. Data d => d -> u) -> List -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> List -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> List -> m List # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> List -> m List # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> List -> m List # | |
Show List Source # | |
Generic List Source # | |
ToJSON List Source # | |
Defined in Network.Google.Prediction.Types.Product | |
FromJSON List Source # | |
type Rep List Source # | |
Defined in Network.Google.Prediction.Types.Product type Rep List = D1 (MetaData "List" "Network.Google.Prediction.Types.Product" "gogol-prediction-0.4.0-3Emw2XSeRhvKOHoYDjE9x0" False) (C1 (MetaCons "List'" PrefixI True) ((S1 (MetaSel (Just "_lNextPageToken") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (Maybe Text)) :*: S1 (MetaSel (Just "_lKind") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 Text)) :*: (S1 (MetaSel (Just "_lItems") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (Maybe [Insert2])) :*: S1 (MetaSel (Just "_lSelfLink") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (Maybe Text))))) |
Creates a value of List
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
lNextPageToken :: Lens' List (Maybe Text) Source #
Pagination token to fetch the next page, if one exists.
InsertUtilityItem
data InsertUtilityItem Source #
Class label (string).
See: insertUtilityItem
smart constructor.
Instances
Creates a value of InsertUtilityItem
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
Insert2
Instances
Creates a value of Insert2
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
insStorageDataLocation :: Lens' Insert2 (Maybe Text) Source #
Google storage location of the training data file.
insModelType :: Lens' Insert2 (Maybe Text) Source #
Type of predictive model (CLASSIFICATION or REGRESSION).
insCreated :: Lens' Insert2 (Maybe UTCTime) Source #
Insert time of the model (as a RFC 3339 timestamp).
insTrainingComplete :: Lens' Insert2 (Maybe UTCTime) Source #
Training completion time (as a RFC 3339 timestamp).
insTrainingStatus :: Lens' Insert2 (Maybe Text) Source #
The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
insStoragePMMLModelLocation :: Lens' Insert2 (Maybe Text) Source #
Google storage location of the pmml model file.
insStoragePMMLLocation :: Lens' Insert2 (Maybe Text) Source #
Google storage location of the preprocessing pmml file.
insModelInfo :: Lens' Insert2 (Maybe Insert2ModelInfo) Source #
Model metadata.
InsertTrainingInstancesItem
data InsertTrainingInstancesItem Source #
Instances
insertTrainingInstancesItem :: InsertTrainingInstancesItem Source #
Creates a value of InsertTrainingInstancesItem
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
itiiCSVInstance :: Lens' InsertTrainingInstancesItem [JSONValue] Source #
The input features for this instance.
itiiOutput :: Lens' InsertTrainingInstancesItem (Maybe Text) Source #
The generic output value - could be regression or class label.
InputInput
data InputInput Source #
Input to the model for a prediction.
See: inputInput
smart constructor.
Instances
inputInput :: InputInput Source #
Creates a value of InputInput
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
iiCSVInstance :: Lens' InputInput [JSONValue] Source #
A list of input features, these can be strings or doubles.
AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem
data AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem Source #
Instances
analyzeDataDescriptionFeaturesItemCategoricalValuesItem :: AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem Source #
Creates a value of AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addficviValue :: Lens' AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem (Maybe Text) Source #
The category name.
addficviCount :: Lens' AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem (Maybe Int64) Source #
Number of times this feature had this value.
AnalyzeDataDescriptionFeaturesItemNumeric
data AnalyzeDataDescriptionFeaturesItemNumeric Source #
Description of the numeric values of this feature.
See: analyzeDataDescriptionFeaturesItemNumeric
smart constructor.
Instances
analyzeDataDescriptionFeaturesItemNumeric :: AnalyzeDataDescriptionFeaturesItemNumeric Source #
Creates a value of AnalyzeDataDescriptionFeaturesItemNumeric
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addfinMean :: Lens' AnalyzeDataDescriptionFeaturesItemNumeric (Maybe Text) Source #
Mean of the numeric values of this feature in the data set.
addfinCount :: Lens' AnalyzeDataDescriptionFeaturesItemNumeric (Maybe Int64) Source #
Number of numeric values for this feature in the data set.
addfinVariance :: Lens' AnalyzeDataDescriptionFeaturesItemNumeric (Maybe Text) Source #
Variance of the numeric values of this feature in the data set.
Input
Instances
Eq Input Source # | |
Data Input Source # | |
Defined in Network.Google.Prediction.Types.Product gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Input -> c Input # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Input # dataTypeOf :: Input -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Input) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Input) # gmapT :: (forall b. Data b => b -> b) -> Input -> Input # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Input -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Input -> r # gmapQ :: (forall d. Data d => d -> u) -> Input -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Input -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Input -> m Input # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Input -> m Input # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Input -> m Input # | |
Show Input Source # | |
Generic Input Source # | |
ToJSON Input Source # | |
Defined in Network.Google.Prediction.Types.Product | |
FromJSON Input Source # | |
type Rep Input Source # | |
Defined in Network.Google.Prediction.Types.Product type Rep Input = D1 (MetaData "Input" "Network.Google.Prediction.Types.Product" "gogol-prediction-0.4.0-3Emw2XSeRhvKOHoYDjE9x0" True) (C1 (MetaCons "Input'" PrefixI True) (S1 (MetaSel (Just "_iInput") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Maybe InputInput)))) |
AnalyzeDataDescriptionFeaturesItemCategorical
data AnalyzeDataDescriptionFeaturesItemCategorical Source #
Description of the categorical values of this feature.
See: analyzeDataDescriptionFeaturesItemCategorical
smart constructor.
Instances
analyzeDataDescriptionFeaturesItemCategorical :: AnalyzeDataDescriptionFeaturesItemCategorical Source #
Creates a value of AnalyzeDataDescriptionFeaturesItemCategorical
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addficValues :: Lens' AnalyzeDataDescriptionFeaturesItemCategorical [AnalyzeDataDescriptionFeaturesItemCategoricalValuesItem] Source #
List of all the categories for this feature in the data set.
addficCount :: Lens' AnalyzeDataDescriptionFeaturesItemCategorical (Maybe Int64) Source #
Number of categorical values for this feature in the data.
AnalyzeDataDescriptionOutputFeatureTextItem
data AnalyzeDataDescriptionOutputFeatureTextItem Source #
Instances
analyzeDataDescriptionOutputFeatureTextItem :: AnalyzeDataDescriptionOutputFeatureTextItem Source #
Creates a value of AnalyzeDataDescriptionOutputFeatureTextItem
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addoftiValue :: Lens' AnalyzeDataDescriptionOutputFeatureTextItem (Maybe Text) Source #
The output label.
addoftiCount :: Lens' AnalyzeDataDescriptionOutputFeatureTextItem (Maybe Int64) Source #
Number of times the output label occurred in the data set.
OutputOutputMultiItem
data OutputOutputMultiItem Source #
Instances
outputOutputMultiItem :: OutputOutputMultiItem Source #
Creates a value of OutputOutputMultiItem
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
Analyze
Instances
Creates a value of Analyze
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
aModelDescription :: Lens' Analyze (Maybe AnalyzeModelDescription) Source #
Description of the model.
aDataDescription :: Lens' Analyze (Maybe AnalyzeDataDescription) Source #
Description of the data the model was trained on.
AnalyzeModelDescriptionConfusionMatrix
data AnalyzeModelDescriptionConfusionMatrix Source #
An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes (Categorical models only).
See: analyzeModelDescriptionConfusionMatrix
smart constructor.
Instances
analyzeModelDescriptionConfusionMatrix Source #
:: HashMap Text AnalyzeModelDescriptionConfusionMatrixAdditional | |
-> AnalyzeModelDescriptionConfusionMatrix |
Creates a value of AnalyzeModelDescriptionConfusionMatrix
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
amdcmAddtional :: Lens' AnalyzeModelDescriptionConfusionMatrix (HashMap Text AnalyzeModelDescriptionConfusionMatrixAdditional) Source #
Confusion matrix information for the true class label.
Output
Instances
Creates a value of Output
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
oOutputValue :: Lens' Output (Maybe Text) Source #
The estimated regression value (Regression models only).
oOutputLabel :: Lens' Output (Maybe Text) Source #
The most likely class label (Categorical models only).
oOutputMulti :: Lens' Output [OutputOutputMultiItem] Source #
A list of class labels with their estimated probabilities (Categorical models only).
AnalyzeDataDescriptionOutputFeatureNumeric
data AnalyzeDataDescriptionOutputFeatureNumeric Source #
Description of the output values in the data set.
See: analyzeDataDescriptionOutputFeatureNumeric
smart constructor.
Instances
analyzeDataDescriptionOutputFeatureNumeric :: AnalyzeDataDescriptionOutputFeatureNumeric Source #
Creates a value of AnalyzeDataDescriptionOutputFeatureNumeric
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addofnMean :: Lens' AnalyzeDataDescriptionOutputFeatureNumeric (Maybe Text) Source #
Mean of the output values in the data set.
addofnCount :: Lens' AnalyzeDataDescriptionOutputFeatureNumeric (Maybe Int64) Source #
Number of numeric output values in the data set.
addofnVariance :: Lens' AnalyzeDataDescriptionOutputFeatureNumeric (Maybe Text) Source #
Variance of the output values in the data set.
AnalyzeErrorsItem
data AnalyzeErrorsItem Source #
Instances
Creates a value of AnalyzeErrorsItem
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
aeiAddtional :: Lens' AnalyzeErrorsItem (HashMap Text Text) Source #
Error level followed by a detailed error message.
AnalyzeDataDescription
data AnalyzeDataDescription Source #
Description of the data the model was trained on.
See: analyzeDataDescription
smart constructor.
Instances
analyzeDataDescription :: AnalyzeDataDescription Source #
Creates a value of AnalyzeDataDescription
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addOutputFeature :: Lens' AnalyzeDataDescription (Maybe AnalyzeDataDescriptionOutputFeature) Source #
Description of the output value or label.
addFeatures :: Lens' AnalyzeDataDescription [AnalyzeDataDescriptionFeaturesItem] Source #
Description of the input features in the data set.
AnalyzeModelDescription
data AnalyzeModelDescription Source #
Description of the model.
See: analyzeModelDescription
smart constructor.
Instances
analyzeModelDescription :: AnalyzeModelDescription Source #
Creates a value of AnalyzeModelDescription
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
amdConfusionMatrixRowTotals :: Lens' AnalyzeModelDescription (Maybe AnalyzeModelDescriptionConfusionMatrixRowTotals) Source #
A list of the confusion matrix row totals.
amdConfusionMatrix :: Lens' AnalyzeModelDescription (Maybe AnalyzeModelDescriptionConfusionMatrix) Source #
An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes (Categorical models only).
amdModelInfo :: Lens' AnalyzeModelDescription (Maybe Insert2) Source #
Basic information about the model.
AnalyzeDataDescriptionFeaturesItemText
data AnalyzeDataDescriptionFeaturesItemText Source #
Description of multiple-word text values of this feature.
See: analyzeDataDescriptionFeaturesItemText
smart constructor.
Instances
analyzeDataDescriptionFeaturesItemText :: AnalyzeDataDescriptionFeaturesItemText Source #
Creates a value of AnalyzeDataDescriptionFeaturesItemText
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addfitCount :: Lens' AnalyzeDataDescriptionFeaturesItemText (Maybe Int64) Source #
Number of multiple-word text values for this feature.
AnalyzeModelDescriptionConfusionMatrixAdditional
data AnalyzeModelDescriptionConfusionMatrixAdditional Source #
Confusion matrix information for the true class label.
See: analyzeModelDescriptionConfusionMatrixAdditional
smart constructor.
Instances
analyzeModelDescriptionConfusionMatrixAdditional Source #
Creates a value of AnalyzeModelDescriptionConfusionMatrixAdditional
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
amdcmaAddtional :: Lens' AnalyzeModelDescriptionConfusionMatrixAdditional (HashMap Text Text) Source #
Average number of times an instance with correct class label modelDescription.confusionMatrix.(key) was wrongfully classified as this label.
AnalyzeDataDescriptionFeaturesItem
data AnalyzeDataDescriptionFeaturesItem Source #
Instances
analyzeDataDescriptionFeaturesItem :: AnalyzeDataDescriptionFeaturesItem Source #
Creates a value of AnalyzeDataDescriptionFeaturesItem
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addfiText :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe AnalyzeDataDescriptionFeaturesItemText) Source #
Description of multiple-word text values of this feature.
addfiNumeric :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe AnalyzeDataDescriptionFeaturesItemNumeric) Source #
Description of the numeric values of this feature.
addfiIndex :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe Int64) Source #
The feature index.
addfiCategorical :: Lens' AnalyzeDataDescriptionFeaturesItem (Maybe AnalyzeDataDescriptionFeaturesItemCategorical) Source #
Description of the categorical values of this feature.
Update
Instances
Eq Update Source # | |
Data Update Source # | |
Defined in Network.Google.Prediction.Types.Product gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Update -> c Update # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Update # toConstr :: Update -> Constr # dataTypeOf :: Update -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Update) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Update) # gmapT :: (forall b. Data b => b -> b) -> Update -> Update # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Update -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Update -> r # gmapQ :: (forall d. Data d => d -> u) -> Update -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Update -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Update -> m Update # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Update -> m Update # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Update -> m Update # | |
Show Update Source # | |
Generic Update Source # | |
ToJSON Update Source # | |
Defined in Network.Google.Prediction.Types.Product | |
FromJSON Update Source # | |
type Rep Update Source # | |
Defined in Network.Google.Prediction.Types.Product type Rep Update = D1 (MetaData "Update" "Network.Google.Prediction.Types.Product" "gogol-prediction-0.4.0-3Emw2XSeRhvKOHoYDjE9x0" False) (C1 (MetaCons "Update'" PrefixI True) (S1 (MetaSel (Just "_uCSVInstance") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (Maybe [JSONValue])) :*: S1 (MetaSel (Just "_uOutput") NoSourceUnpackedness SourceStrict DecidedStrict) (Rec0 (Maybe Text)))) |
Creates a value of Update
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
uOutput :: Lens' Update (Maybe Text) Source #
The generic output value - could be regression or class label.
AnalyzeDataDescriptionOutputFeature
data AnalyzeDataDescriptionOutputFeature Source #
Description of the output value or label.
See: analyzeDataDescriptionOutputFeature
smart constructor.
Instances
analyzeDataDescriptionOutputFeature :: AnalyzeDataDescriptionOutputFeature Source #
Creates a value of AnalyzeDataDescriptionOutputFeature
with the minimum fields required to make a request.
Use one of the following lenses to modify other fields as desired:
addofText :: Lens' AnalyzeDataDescriptionOutputFeature [AnalyzeDataDescriptionOutputFeatureTextItem] Source #
Description of the output labels in the data set.
addofNumeric :: Lens' AnalyzeDataDescriptionOutputFeature (Maybe AnalyzeDataDescriptionOutputFeatureNumeric) Source #
Description of the output values in the data set.