{-# Language FlexibleInstances #-}
{-# Language StandaloneDeriving #-}
{-# Language StrictData #-}
module EVM.Concrete where
import Prelude hiding (Word, (^))
import EVM.Types (W256 (..), num, toWord512, fromWord512)
import EVM.Types (word, padRight, byteAt)
import EVM.Keccak (keccak)
import Control.Lens ((^?), ix)
import Data.Bits (Bits (..), FiniteBits (..))
import Data.ByteString (ByteString)
import Data.DoubleWord (signedWord, unsignedWord)
import Data.Maybe (fromMaybe)
import Data.Semigroup ((<>))
import Data.Word (Word8)
import qualified Data.ByteString as BS
wordAt :: Int -> ByteString -> W256
wordAt i bs =
word (padRight 32 (BS.drop i bs))
word256Bytes :: W256 -> ByteString
word256Bytes x = BS.pack [byteAt x (31 - i) | i <- [0..31]]
readByteOrZero :: Int -> ByteString -> Word8
readByteOrZero i bs = fromMaybe 0 (bs ^? ix i)
byteStringSliceWithDefaultZeroes :: Int -> Int -> ByteString -> ByteString
byteStringSliceWithDefaultZeroes offset size bs =
if size == 0
then ""
else
let bs' = BS.take size (BS.drop offset bs)
in bs' <> BS.replicate (size - BS.length bs') 0
data Whiff = Dull | FromKeccak ByteString
deriving Show
w256 :: W256 -> Word
w256 = C Dull
data Word = C Whiff W256
wordToByte :: Word -> Word8
wordToByte (C _ x) = num (x .&. 0xff)
exponentiate :: Word -> Word -> Word
exponentiate (C _ x) (C _ y) = w256 (x ^ y)
sdiv :: Word -> Word -> Word
sdiv _ (C _ (W256 0)) = 0
sdiv (C _ (W256 x)) (C _ (W256 y)) =
let sx = signedWord x
sy = signedWord y
in w256 . W256 . unsignedWord $ quot sx sy
smod :: Word -> Word -> Word
smod _ (C _ (W256 0)) = 0
smod (C _ (W256 x)) (C _ (W256 y)) =
let sx = signedWord x
sy = signedWord y
in w256 . W256 . unsignedWord $ rem sx sy
addmod :: Word -> Word -> Word -> Word
addmod _ _ (C _ (W256 0)) = 0
addmod (C _ x) (C _ y) (C _ z) =
w256 $
fromWord512
((toWord512 x + toWord512 y) `mod` (toWord512 z))
mulmod :: Word -> Word -> Word -> Word
mulmod _ _ (C _ (W256 0)) = 0
mulmod (C _ x) (C _ y) (C _ z) =
w256 $
fromWord512
((toWord512 x * toWord512 y) `mod` (toWord512 z))
slt :: Word -> Word -> Word
slt (C _ (W256 x)) (C _ (W256 y)) =
if signedWord x < signedWord y then w256 1 else w256 0
sgt :: Word -> Word -> Word
sgt (C _ (W256 x)) (C _ (W256 y)) =
if signedWord x > signedWord y then w256 1 else w256 0
wordValue :: Word -> W256
wordValue (C _ x) = x
sliceMemory :: (Integral a, Integral b) => a -> b -> ByteString -> ByteString
sliceMemory o s m =
byteStringSliceWithDefaultZeroes (num o) (num s) m
writeMemory :: ByteString -> Word -> Word -> Word -> ByteString -> ByteString
writeMemory bs1 (C _ n) (C _ src) (C _ dst) bs0 =
if src > num (BS.length bs1)
then
let
(a, b) = BS.splitAt (num dst) bs0
c = BS.replicate (num n) 0
b' = BS.drop (num n) b
in
a <> c <> b'
else
let
(a, b) = BS.splitAt (num dst) bs0
c = BS.take (num n) (BS.drop (num src) bs1)
b' = BS.drop (num n) b
in
a <> BS.replicate (num dst - BS.length a) 0 <> c <> b'
readMemoryWord :: Word -> ByteString -> Word
readMemoryWord (C _ i) m =
let
go !a (-1) = a
go !a !n = go (a + shiftL (num $ readByteOrZero (num i + n) m)
(8 * (31 - n))) (n - 1)
in {-# SCC readMemoryWord #-}
w256 $ go (0 :: W256) (31 :: Int)
readMemoryWord32 :: Word -> ByteString -> Word
readMemoryWord32 (C _ i) m =
let
go !a (-1) = a
go !a !n = go (a + shiftL (num $ readByteOrZero (num i + n) m)
(8 * (3 - n))) (n - 1)
in {-# SCC readMemoryWord32 #-}
w256 $ go (0 :: W256) (3 :: Int)
setMemoryWord :: Word -> Word -> ByteString -> ByteString
setMemoryWord (C _ i) (C _ x) m =
writeMemory (word256Bytes x) 32 0 (num i) m
setMemoryByte :: Word -> Word8 -> ByteString -> ByteString
setMemoryByte (C _ i) x m =
writeMemory (BS.singleton x) 1 0 (num i) m
readBlobWord :: Word -> ByteString -> Word
readBlobWord (C _ i) x =
if i > num (BS.length x)
then 0
else w256 (wordAt (num i) x)
blobSize :: ByteString -> Word
blobSize x = w256 (num (BS.length x))
keccakBlob :: ByteString -> Word
keccakBlob x = C (FromKeccak x) (keccak x)
instance Show Word where
show (C Dull x) = show x
show (C whiff x) = show whiff ++ ": " ++ show x
instance Read Word where
readsPrec n s =
case readsPrec n s of
[(x, r)] -> [(C Dull x, r)]
_ -> []
instance Bits Word where
(C _ x) .&. (C _ y) = w256 (x .&. y)
(C _ x) .|. (C _ y) = w256 (x .|. y)
(C _ x) `xor` (C _ y) = w256 (x `xor` y)
complement (C _ x) = w256 (complement x)
shift (C _ x) i = w256 (shift x i)
rotate (C _ x) i = w256 (rotate x i)
bitSize (C _ x) = bitSize x
bitSizeMaybe (C _ x) = bitSizeMaybe x
isSigned (C _ x) = isSigned x
testBit (C _ x) i = testBit x i
bit i = w256 (bit i)
popCount (C _ x) = popCount x
instance FiniteBits Word where
finiteBitSize (C _ x) = finiteBitSize x
countLeadingZeros (C _ x) = countLeadingZeros x
countTrailingZeros (C _ x) = countTrailingZeros x
instance Bounded Word where
minBound = w256 minBound
maxBound = w256 maxBound
instance Eq Word where
(C _ x) == (C _ y) = x == y
instance Enum Word where
toEnum i = w256 (toEnum i)
fromEnum (C _ x) = fromEnum x
instance Integral Word where
quotRem (C _ x) (C _ y) =
let (a, b) = quotRem x y
in (w256 a, w256 b)
toInteger (C _ x) = toInteger x
instance Num Word where
(C _ x) + (C _ y) = w256 (x + y)
(C _ x) * (C _ y) = w256 (x * y)
abs (C _ x) = w256 (abs x)
signum (C _ x) = w256 (signum x)
fromInteger x = w256 (fromInteger x)
negate (C _ x) = w256 (negate x)
instance Real Word where
toRational (C _ x) = toRational x
instance Ord Word where
compare (C _ x) (C _ y) = compare x y
(^) :: W256 -> W256 -> W256
x0 ^ y0 | y0 < 0 = errorWithoutStackTrace "Negative exponent"
| y0 == 0 = 1
| otherwise = f x0 y0
where
f x y | not (testBit y 0) = f (x * x) (y `shiftR` 1)
| y == 1 = x
| otherwise = g (x * x) ((y - 1) `shiftR` 1) x
g x y z | not (testBit y 0) = g (x * x) (y `shiftR` 1) z
| y == 1 = x * z
| otherwise = g (x * x) ((y - 1) `shiftR` 1) (x * z)