module Algebra.Heyting.Layered
( Layered (..)
, layer
) where
import Prelude
import Algebra.Lattice ( BoundedJoinSemiLattice (..)
, JoinSemiLattice (..)
, BoundedMeetSemiLattice (..)
, MeetSemiLattice (..)
, BoundedLattice
, Lattice
)
import Algebra.Heyting (HeytingAlgebra (..))
data Layered a b
= Lower a
| Upper b
deriving (Show, Eq, Ord)
instance (JoinSemiLattice a, JoinSemiLattice b) => JoinSemiLattice (Layered a b) where
Lower _ \/ u@Upper{} = u
u@Upper{} \/ Lower _ = u
Lower l \/ Lower l' = Lower $ l \/ l'
Upper u \/ Upper u' = Upper $ u \/ u'
instance (BoundedJoinSemiLattice a, JoinSemiLattice b) => BoundedJoinSemiLattice (Layered a b) where
bottom = Lower bottom
instance (MeetSemiLattice a, MeetSemiLattice b) => MeetSemiLattice (Layered a b) where
l@Lower{} /\ Upper _ = l
Upper _ /\ l@Lower{} = l
Lower l /\ Lower l' = Lower $ l /\ l'
Upper u /\ Upper u' = Upper $ u /\ u'
instance (MeetSemiLattice a, BoundedMeetSemiLattice b) => BoundedMeetSemiLattice (Layered a b) where
top = Upper top
instance ( Lattice a
, Lattice b
) => Lattice (Layered a b)
instance ( Lattice a
, Lattice b
, BoundedJoinSemiLattice a
, BoundedMeetSemiLattice b
) => BoundedLattice (Layered a b)
instance ( HeytingAlgebra a
, HeytingAlgebra b
, Eq a
) => HeytingAlgebra (Layered a b) where
Lower _ ==> Upper _ = Upper top
Upper _ ==> l@Lower{} = l
Upper u ==> Upper u' = Upper $ u ==> u'
Lower l ==> Lower l' = case l ==> l' of
ll' | ll' == top -> Upper top
| otherwise -> Lower ll'
layer :: (a -> c) -> (b -> c) -> Layered a b -> c
layer f _ (Lower a) = f a
layer _ g (Upper b) = g b