{-# LANGUAGE UndecidableInstances #-}
module Data.Geometry.Transformation where
import Control.Lens (lens,Lens',set)
import Unsafe.Coerce(unsafeCoerce)
import Data.Geometry.Point
import Data.Geometry.Properties
import Data.Geometry.Vector
import qualified Data.Geometry.Vector as V
import Data.Proxy
import qualified Data.Vector.Fixed as FV
import GHC.TypeLits
import Linear.Matrix ((!*),(!*!))
import qualified Linear.Matrix as Lin
newtype Matrix n m r = Matrix (Vector n (Vector m r))
deriving instance (Show r, Arity n, Arity m) => Show (Matrix n m r)
deriving instance (Eq r, Arity n, Arity m) => Eq (Matrix n m r)
deriving instance (Ord r, Arity n, Arity m) => Ord (Matrix n m r)
deriving instance (Arity n, Arity m) => Functor (Matrix n m)
multM :: (Arity r, Arity c, Arity c', Num a) => Matrix r c a -> Matrix c c' a -> Matrix r c' a
(Matrix a) `multM` (Matrix b) = Matrix $ a !*! b
mult :: (Arity m, Arity n, Num r) => Matrix n m r -> Vector m r -> Vector n r
(Matrix m) `mult` v = m !* v
class Invertible n r where
inverse' :: Matrix n n r -> Matrix n n r
instance Fractional r => Invertible 2 r where
inverse' (Matrix m) = Matrix . unsafeCoerce . Lin.inv22 . unsafeCoerce $ m
instance Fractional r => Invertible 3 r where
inverse' (Matrix m) = Matrix . unsafeCoerce . Lin.inv33 . unsafeCoerce $ m
instance Fractional r => Invertible 4 r where
inverse' (Matrix m) = Matrix . unsafeCoerce . Lin.inv44 . unsafeCoerce $ m
newtype Transformation d r = Transformation { _transformationMatrix :: Matrix (d + 1) (d + 1) r }
transformationMatrix :: Lens' (Transformation d r) (Matrix (d + 1) (d + 1) r)
transformationMatrix = lens _transformationMatrix (const Transformation)
deriving instance (Show r, Arity (d + 1)) => Show (Transformation d r)
deriving instance (Eq r, Arity (d + 1)) => Eq (Transformation d r)
deriving instance (Ord r, Arity (d + 1)) => Ord (Transformation d r)
deriving instance Arity (d + 1) => Functor (Transformation d)
type instance NumType (Transformation d r) = r
(|.|) :: (Num r, Arity (d + 1)) => Transformation d r -> Transformation d r -> Transformation d r
(Transformation f) |.| (Transformation g) = Transformation $ f `multM` g
inverseOf :: (Fractional r, Invertible (d + 1) r)
=> Transformation d r -> Transformation d r
inverseOf = Transformation . inverse' . _transformationMatrix
class IsTransformable g where
transformBy :: Transformation (Dimension g) (NumType g) -> g -> g
transformAllBy :: (Functor c, IsTransformable g)
=> Transformation (Dimension g) (NumType g) -> c g -> c g
transformAllBy t = fmap (transformBy t)
transformPointFunctor :: ( PointFunctor g, Fractional r, d ~ Dimension (g r)
, Arity d, Arity (d + 1)
) => Transformation d r -> g r -> g r
transformPointFunctor t = pmap (transformBy t)
instance (Fractional r, Arity d, Arity (d + 1))
=> IsTransformable (Point d r) where
transformBy t = Point . transformBy t . toVec
instance (Fractional r, Arity d, Arity (d + 1))
=> IsTransformable (Vector d r) where
transformBy (Transformation m) v = f $ m `mult` snoc v 1
where
f u = (/ V.last u) <$> V.init u
translation :: (Num r, Arity d, Arity (d + 1))
=> Vector d r -> Transformation d r
translation v = Transformation . Matrix $ V.imap transRow (snoc v 1)
scaling :: (Num r, Arity d, Arity (d + 1))
=> Vector d r -> Transformation d r
scaling v = Transformation . Matrix $ V.imap mkRow (snoc v 1)
uniformScaling :: (Num r, Arity d, Arity (d + 1)) => r -> Transformation d r
uniformScaling = scaling . pure
translateBy :: ( IsTransformable g, Num (NumType g)
, Arity (Dimension g), Arity (Dimension g + 1)
) => Vector (Dimension g) (NumType g) -> g -> g
translateBy = transformBy . translation
scaleBy :: ( IsTransformable g, Num (NumType g)
, Arity (Dimension g), Arity (Dimension g + 1)
) => Vector (Dimension g) (NumType g) -> g -> g
scaleBy = transformBy . scaling
scaleUniformlyBy :: ( IsTransformable g, Num (NumType g)
, Arity (Dimension g), Arity (Dimension g + 1)
) => NumType g -> g -> g
scaleUniformlyBy = transformBy . uniformScaling
mkRow :: forall d r. (Arity d, Num r) => Int -> r -> Vector d r
mkRow i x = set (FV.element i) x zero
transRow :: forall n r. (Arity n, Arity (n + 1), Num r)
=> Int -> r -> Vector (n + 1) r
transRow i x = set (V.element (Proxy :: Proxy n)) x $ mkRow i 1
rotateTo :: Num r => Vector 3 (Vector 3 r) -> Transformation 3 r
rotateTo (Vector3 u v w) = Transformation . Matrix $ Vector4 (snoc u 0)
(snoc v 0)
(snoc w 0)
(Vector4 0 0 0 1)