{-# LANGUAGE TemplateHaskell #-}
module Data.Geometry.Interval(
Interval
, fromRange, toRange
, _Range
, pattern OpenInterval
, pattern ClosedInterval
, pattern Interval
, HasStart(..), HasEnd(..)
, inInterval
, shiftLeft'
, asProperInterval, flipInterval
, module Data.Range
) where
import Control.DeepSeq
import Control.Lens (lens, (^.),(%~),(&), Lens')
import Data.Bifunctor
import Data.Bitraversable
import Data.Ext
import qualified Data.Foldable as F
import Data.Geometry.Properties
import Data.Range
import Data.Semigroup(Arg(..))
import qualified Data.Traversable as T
import Data.Vinyl
import Data.Vinyl.CoRec
import GHC.Generics (Generic)
import Test.QuickCheck
newtype Interval a r = GInterval { toRange :: Range (r :+ a) }
deriving (Eq,Generic,Arbitrary)
_Range :: Lens' (Interval a r) (Range (r :+ a))
_Range = lens toRange (const GInterval)
{-# INLINE _Range #-}
fromRange :: Range (r :+ a) -> Interval a r
fromRange = GInterval
deriving instance (NFData a, NFData r) => NFData (Interval a r)
instance (Show a, Show r) => Show (Interval a r) where
show ~(Interval l u) = concat [ "Interval (", show l, ") (", show u,")"]
instance Functor (Interval a) where
fmap f (GInterval r) = GInterval $ fmap (first f) r
instance F.Foldable (Interval a) where
foldMap f (GInterval r) = foldMap (f . (^.core)) r
instance T.Traversable (Interval a) where
traverse f (GInterval r) = GInterval <$> T.traverse f' r
where
f' = bitraverse f pure
instance Bifunctor Interval where
bimap f g (GInterval r) = GInterval $ fmap (bimap g f) r
inInterval :: Ord r => r -> Interval a r -> Bool
x `inInterval` r = x `inRange` (fmap (^.core) $ r^._Range )
pattern OpenInterval :: (r :+ a) -> (r :+ a) -> Interval a r
pattern OpenInterval l u = GInterval (OpenRange l u)
pattern ClosedInterval :: (r :+ a) -> (r :+ a) -> Interval a r
pattern ClosedInterval l u = GInterval (ClosedRange l u)
pattern Interval :: EndPoint (r :+ a) -> EndPoint (r :+ a) -> Interval a r
pattern Interval l u = GInterval (Range l u)
{-# COMPLETE Interval #-}
class HasStart t where
type StartCore t
type StartExtra t
start :: Lens' t (StartCore t :+ StartExtra t)
instance HasStart (Interval a r) where
type StartCore (Interval a r) = r
type StartExtra (Interval a r) = a
start = _Range.lower.unEndPoint
{-# INLINE start #-}
class HasEnd t where
type EndCore t
type EndExtra t
end :: Lens' t (EndCore t :+ EndExtra t)
instance HasEnd (Interval a r) where
type EndCore (Interval a r) = r
type EndExtra (Interval a r) = a
end = _Range.upper.unEndPoint
{-# INLINE end #-}
type instance Dimension (Interval a r) = 1
type instance NumType (Interval a r) = r
type instance IntersectionOf (Interval a r) (Interval a r) = [NoIntersection, Interval a r]
instance Ord r => (Interval a r) `IsIntersectableWith` (Interval a r) where
nonEmptyIntersection = defaultNonEmptyIntersection
(GInterval r) `intersect` (GInterval s) = match (r' `intersect` s') $
(H $ \NoIntersection -> coRec NoIntersection)
:& (H $ \(Range l u) -> coRec . GInterval $ Range (l&unEndPoint %~ g)
(u&unEndPoint %~ g) )
:& RNil
where
f x = Arg (x^.core) x
r' = fmap f r
s' = fmap f s
g (Arg _ x) = x
shiftLeft' :: Num r => r -> Interval a r -> Interval a r
shiftLeft' delta = fmap (subtract delta)
asProperInterval :: Ord r => Interval p r -> Interval p r
asProperInterval i | (i^.start.core) > (i^.end.core) = flipInterval i
| otherwise = i
flipInterval :: Interval a r -> Interval a r
flipInterval = _Range %~ \(Range s t) -> Range t s