hgeometry-0.12.0.1: Geometric Algorithms, Data structures, and Data types.
Copyright(C) Frank Staals
Licensesee the LICENSE file
MaintainerFrank Staals
Safe HaskellNone
LanguageHaskell2010

Data.Geometry.HyperPlane

Description

 
Synopsis

Documentation

data HyperPlane (d :: Nat) (r :: *) Source #

Hyperplanes embedded in a \(d\) dimensional space.

Constructors

HyperPlane 

Fields

Instances

Instances details
Arity d => Functor (HyperPlane d) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

fmap :: (a -> b) -> HyperPlane d a -> HyperPlane d b #

(<$) :: a -> HyperPlane d b -> HyperPlane d a #

Arity d => Foldable (HyperPlane d) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

fold :: Monoid m => HyperPlane d m -> m #

foldMap :: Monoid m => (a -> m) -> HyperPlane d a -> m #

foldMap' :: Monoid m => (a -> m) -> HyperPlane d a -> m #

foldr :: (a -> b -> b) -> b -> HyperPlane d a -> b #

foldr' :: (a -> b -> b) -> b -> HyperPlane d a -> b #

foldl :: (b -> a -> b) -> b -> HyperPlane d a -> b #

foldl' :: (b -> a -> b) -> b -> HyperPlane d a -> b #

foldr1 :: (a -> a -> a) -> HyperPlane d a -> a #

foldl1 :: (a -> a -> a) -> HyperPlane d a -> a #

toList :: HyperPlane d a -> [a] #

null :: HyperPlane d a -> Bool #

length :: HyperPlane d a -> Int #

elem :: Eq a => a -> HyperPlane d a -> Bool #

maximum :: Ord a => HyperPlane d a -> a #

minimum :: Ord a => HyperPlane d a -> a #

sum :: Num a => HyperPlane d a -> a #

product :: Num a => HyperPlane d a -> a #

Arity d => Traversable (HyperPlane d) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

traverse :: Applicative f => (a -> f b) -> HyperPlane d a -> f (HyperPlane d b) #

sequenceA :: Applicative f => HyperPlane d (f a) -> f (HyperPlane d a) #

mapM :: Monad m => (a -> m b) -> HyperPlane d a -> m (HyperPlane d b) #

sequence :: Monad m => HyperPlane d (m a) -> m (HyperPlane d a) #

OnSideUpDownTest (Plane r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

onSideUpDown :: forall (d :: Nat) r0. (d ~ Dimension (Plane r), r0 ~ NumType (Plane r), Ord r0, Num r0) => Point d r0 -> Plane r -> SideTestUpDown Source #

(Arity d, Eq r, Fractional r) => Eq (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

(==) :: HyperPlane d r -> HyperPlane d r -> Bool #

(/=) :: HyperPlane d r -> HyperPlane d r -> Bool #

(Arity d, Show r) => Show (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

showsPrec :: Int -> HyperPlane d r -> ShowS #

show :: HyperPlane d r -> String #

showList :: [HyperPlane d r] -> ShowS #

Generic (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Associated Types

type Rep (HyperPlane d r) :: Type -> Type #

Methods

from :: HyperPlane d r -> Rep (HyperPlane d r) x #

to :: Rep (HyperPlane d r) x -> HyperPlane d r #

(NFData r, Arity d) => NFData (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

rnf :: HyperPlane d r -> () #

(Arity d, Arity (d + 1), Fractional r) => IsTransformable (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

HasSupportingPlane (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

(Eq r, Fractional r) => IsIntersectableWith (Line 3 r) (Plane r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

intersect :: Line 3 r -> Plane r -> Intersection (Line 3 r) (Plane r) #

intersects :: Line 3 r -> Plane r -> Bool #

nonEmptyIntersection :: proxy (Line 3 r) -> proxy (Plane r) -> Intersection (Line 3 r) (Plane r) -> Bool #

(Num r, Eq r, Arity d) => IsIntersectableWith (Point d r) (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Methods

intersect :: Point d r -> HyperPlane d r -> Intersection (Point d r) (HyperPlane d r) #

intersects :: Point d r -> HyperPlane d r -> Bool #

nonEmptyIntersection :: proxy (Point d r) -> proxy (HyperPlane d r) -> Intersection (Point d r) (HyperPlane d r) -> Bool #

type Rep (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

type Rep (HyperPlane d r) = D1 ('MetaData "HyperPlane" "Data.Geometry.HyperPlane" "hgeometry-0.12.0.1-744QXwUb5uS54emseMX1Co" 'False) (C1 ('MetaCons "HyperPlane" 'PrefixI 'True) (S1 ('MetaSel ('Just "_inPlane") 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 (Point d r)) :*: S1 ('MetaSel ('Just "_normalVec") 'NoSourceUnpackedness 'SourceStrict 'DecidedStrict) (Rec0 (Vector d r))))
type NumType (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

type NumType (HyperPlane d r) = r
type Dimension (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

type Dimension (HyperPlane d r) = d
type IntersectionOf (Line 3 r) (Plane r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

type IntersectionOf (Line 3 r) (Plane r) = '[NoIntersection, Point 3 r, Line 3 r]
type IntersectionOf (Point d r) (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

normalVec :: forall d r. Lens' (HyperPlane d r) (Vector d r) Source #

inPlane :: forall d r. Lens' (HyperPlane d r) (Point d r) Source #

3 Dimensional planes

pattern Plane :: Point 3 r -> Vector 3 r -> Plane r Source #

from3Points :: Num r => Point 3 r -> Point 3 r -> Point 3 r -> HyperPlane 3 r Source #

Produces a plane. If r lies counter clockwise of q w.r.t. p then the normal vector of the resulting plane is pointing "upwards".

>>> from3Points origin (Point3 1 0 0) (Point3 0 1 0)
HyperPlane {_inPlane = Point3 0 0 0, _normalVec = Vector3 0 0 1}

Lines

_asLine :: Num r => Iso' (HyperPlane 2 r) (Line 2 r) Source #

Convert between lines and hyperplanes

Supporting Planes

class HasSupportingPlane t where Source #

Types for which we can compute a supporting hyperplane, i.e. a hyperplane that contains the thing of type t.

Instances

Instances details
HasSupportingPlane (HyperPlane d r) Source # 
Instance details

Defined in Data.Geometry.HyperPlane

Num r => HasSupportingPlane (Triangle 3 p r) Source # 
Instance details

Defined in Data.Geometry.Triangle

planeCoordinatesWith :: Fractional r => Plane r -> Vector 3 r -> Point 3 r -> Point 2 r Source #

Given * a plane, * a unit vector in the plane that will represent the y-axis (i.e. the "view up" vector), and * a point in the plane,

computes the plane coordinates of the given point, using the inPlane point as the origin, the normal vector of the plane as the unit vector in the "z-direction" and the view up vector as the y-axis.

>>> planeCoordinatesWith (Plane origin (Vector3 0 0 1)) (Vector3 0 1 0) (Point3 10 10 0)
Point2 10.0 10.0