module Algorithms.Geometry.SmallestEnclosingBall.Naive where

-- just for the types
import Control.Lens
import Data.Ext
import Algorithms.Geometry.SmallestEnclosingBall.Types
import Data.Geometry.Ball
import Data.Geometry.Point
import Data.List(minimumBy)
import Data.Function(on)
import Data.Maybe(fromMaybe)
import Algorithms.Util

--------------------------------------------------------------------------------

-- | Horrible O(n^4) implementation that simply tries all disks, checks if they
-- enclose all points, and takes the largest one. Basically, this is only useful
-- to check correctness of the other algorithm(s)
smallestEnclosingDisk          :: (Ord r, Fractional r)
                               => [Point 2 r :+ p]
                               -> DiskResult p r
smallestEnclosingDisk pts@(_:_:_) = smallestEnclosingDisk' pts $
                                      pairs pts ++ triplets pts
smallestEnclosingDisk _           = error "smallestEnclosingDisk: Too few points"

pairs     :: Fractional r => [Point 2 r :+ p] -> [DiskResult p r]
pairs pts = [DiskResult (fromDiameter (a^.core) (b^.core)) (Two a b)
            | SP a b <- uniquePairs pts]

triplets     :: (Ord r, Fractional r) => [Point 2 r :+ p] -> [DiskResult p r]
triplets pts = [DiskResult (disk' a b c) (Three a b c)
               | ST a b c <- uniqueTriplets pts]

disk'       :: (Ord r, Fractional r)
            => Point 2 r :+ p -> Point 2 r :+ p -> Point 2 r :+ p -> Disk () r
disk' a b c = fromMaybe degen $ disk (a^.core) (b^.core) (c^.core)
  where
    -- if the points are colinear, select the disk by the diametral pair
    degen = (smallestEnclosingDisk' [a,b,c] $ pairs [a,b,c])^.enclosingDisk


-- | Given a list of canidate enclosing disks, report the smallest one.
smallestEnclosingDisk'     :: (Ord r, Num r)
                           => [Point 2 r :+ p] -> [DiskResult p r] -> DiskResult p r
smallestEnclosingDisk' pts = minimumBy (compare `on` (^.enclosingDisk.squaredRadius))
                           . filter (flip enclosesAll pts)


-- | check if a disk encloses all points
enclosesAll   :: (Num r, Ord r) => DiskResult p r -> [Point 2 r :+ q] -> Bool
enclosesAll d = all (\(p :+ _) -> p `inClosedBall` (d^.enclosingDisk))