{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Geometry.SubLine where
import Control.Lens
import Data.Ext
import qualified Data.Foldable as F
import Data.Geometry.Interval
import Data.Geometry.Line.Internal
import Data.Geometry.Point
import Data.Geometry.Properties
import Data.Geometry.Vector
import qualified Data.Traversable as T
import Data.UnBounded
import Data.Vinyl
import Data.Vinyl.CoRec
data SubLine d p r = SubLine { _line :: Line d r
, _subRange :: Interval p r
}
makeLenses ''SubLine
type instance Dimension (SubLine d p r) = d
type instance NumType (SubLine d p r) = r
deriving instance (Show r, Show p, Arity d) => Show (SubLine d p r)
deriving instance (Eq r, Eq p, Arity d) => Eq (SubLine d p r)
deriving instance Arity d => Functor (SubLine d p)
deriving instance Arity d => F.Foldable (SubLine d p)
deriving instance Arity d => T.Traversable (SubLine d p)
instance Arity d => Bifunctor (SubLine d) where
bimap f g (SubLine l r) = SubLine (g <$> l) (bimap f g r)
pointAt :: (Num r, Arity d) => r -> Line d r -> Point d r
pointAt a (Line p v) = p .+^ (a *^ v)
fixEndPoints :: (Num r, Arity d) => SubLine d p r -> SubLine d (Point d r :+ p) r
fixEndPoints sl = sl&subRange %~ f
where
ptAt = flip pointAt (sl^.line)
label (c :+ e) = (c :+ (ptAt c :+ e))
f ~(Interval l u) = Interval (l&unEndPoint %~ label)
(u&unEndPoint %~ label)
toOffset :: (Eq r, Fractional r, Arity d) => Point d r -> Line d r -> r
toOffset p (Line q v) = fromJust' $ scalarMultiple (p .-. q) v
where
fromJust' (Just x) = x
fromJust' _ = error "toOffset: Nothing"
type instance IntersectionOf (SubLine 2 p r) (SubLine 2 q r) = [ NoIntersection
, Point 2 r
, SubLine 2 p r
]
onSubLine :: (Ord r, Fractional r, Arity d)
=> Point d r -> SubLine d p r -> Bool
onSubLine p (SubLine l r) = toOffset p l `inInterval` r
onSubLine2 :: (Ord r, Num r) => Point 2 r -> SubLine 2 p r -> Bool
p `onSubLine2` sl = d `inInterval` r
where
SubLine _ (Interval s e) = fixEndPoints sl
a = s^.unEndPoint.extra.core
b = e^.unEndPoint.extra.core
d = (p .-. a) `dot` (b .-. a)
r = Interval (s&unEndPoint.core .~ 0) (e&unEndPoint.core .~ squaredEuclideanDist b a)
instance (Ord r, Fractional r) =>
(SubLine 2 p r) `IsIntersectableWith` (SubLine 2 p r) where
nonEmptyIntersection = defaultNonEmptyIntersection
sl@(SubLine l r) `intersect` sm@(SubLine m _) = match (l `intersect` m) $
(H $ \NoIntersection -> coRec NoIntersection)
:& (H $ \p@(Point _) -> if onSubLine2 p sl && onSubLine2 p sm
then coRec p
else coRec NoIntersection)
:& (H $ \_ -> match (r `intersect` s'') $
(H $ \NoIntersection -> coRec NoIntersection)
:& (H $ \i -> coRec $ SubLine l i)
:& RNil
)
:& RNil
where
s' = (fixEndPoints sm)^.subRange
s'' = bimap (^.extra) id
$ s'&start.core .~ toOffset (s'^.start.extra.core) l
&end.core .~ toOffset (s'^.end.extra.core) l
fromLine :: Arity d => Line d r -> SubLine d () (UnBounded r)
fromLine l = SubLine (fmap Val l) (ClosedInterval (ext MinInfinity) (ext MaxInfinity))