{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
module Data.Geometry.Ipe.IpeOut where
import Control.Lens hiding (Simple)
import Data.Bifunctor
import Data.Ext
import Data.Geometry.Ball
import Data.Geometry.Boundary
import Data.Geometry.Box
import Data.Geometry.Ipe.Attributes
import Data.Geometry.Ipe.Color (IpeColor(..))
import Data.Geometry.Ipe.FromIpe
import Data.Geometry.Ipe.Types
import Data.Geometry.Line
import Data.Geometry.LineSegment
import Data.Geometry.Point
import Data.Geometry.PolyLine(PolyLine,fromLineSegment)
import Data.Geometry.Polygon
import Data.Geometry.Polygon.Convex
import Data.Geometry.Properties
import Data.Geometry.Transformation
import qualified Data.LSeq as LSeq
import Data.List.NonEmpty (NonEmpty(..))
import Data.Text (Text)
import Data.Maybe (fromMaybe)
import Linear.Affine ((.+^))
import Data.Vinyl.CoRec
type IpeOut g i r = g -> IpeObject' i r
(!) :: IpeObject' i r -> IpeAttributes i r -> IpeObject' i r
(!) i ats = i&extra %~ (<> ats)
iO :: ToObject i => IpeObject' i r -> IpeObject r
iO = mkIpeObject
iO'' :: ( HasDefaultIpeOut g, NumType g ~ r
, DefaultIpeOut g ~ i, ToObject i
) => g -> IpeAttributes i r
-> IpeObject r
iO'' g ats = iO $ defIO g ! ats
iO' :: HasDefaultIpeOut g => g -> IpeObject (NumType g)
iO' = iO . defIO
class ToObject (DefaultIpeOut g) => HasDefaultIpeOut g where
type DefaultIpeOut g :: * -> *
defIO :: IpeOut g (DefaultIpeOut g) (NumType g)
instance (HasDefaultIpeOut g, a ~ IpeAttributes (DefaultIpeOut g) (NumType g))
=> HasDefaultIpeOut (g :+ a) where
type DefaultIpeOut (g :+ a) = DefaultIpeOut g
defIO (g :+ ats) = defIO g ! ats
instance HasDefaultIpeOut a => HasDefaultIpeOut [a] where
type DefaultIpeOut [a] = Group
defIO = ipeGroup . map (iO . defIO)
instance HasDefaultIpeOut (Point 2 r) where
type DefaultIpeOut (Point 2 r) = IpeSymbol
defIO = ipeDiskMark
instance HasDefaultIpeOut (LineSegment 2 p r) where
type DefaultIpeOut (LineSegment 2 p r) = Path
defIO = ipeLineSegment
instance HasDefaultIpeOut (PolyLine 2 p r) where
type DefaultIpeOut (PolyLine 2 p r) = Path
defIO = ipePolyLine
instance (Fractional r, Ord r) => HasDefaultIpeOut (Line 2 r) where
type DefaultIpeOut (Line 2 r) = Path
defIO = ipeLineSegment . toSeg
where
b :: Rectangle () r
b = box (ext $ Point2 (-200) (-200)) (ext $ Point2 1200 1200)
naive (Line p v) = ClosedLineSegment (ext p) (ext $ p .+^ v)
toSeg l = fromMaybe (naive l) . asA @(LineSegment 2 () r)
$ l `intersect` b
instance HasDefaultIpeOut (Polygon t p r) where
type DefaultIpeOut (Polygon t p r) = Path
defIO = ipePolygon
instance HasDefaultIpeOut (SomePolygon p r) where
type DefaultIpeOut (SomePolygon p r) = Path
defIO = either defIO defIO
instance HasDefaultIpeOut (ConvexPolygon p r) where
type DefaultIpeOut (ConvexPolygon p r) = Path
defIO = defIO . view simplePolygon
instance Floating r => HasDefaultIpeOut (Disk p r) where
type DefaultIpeOut (Disk p r) = Path
defIO = ipeDisk
ipeMark :: Text -> IpeOut (Point 2 r) IpeSymbol r
ipeMark n p = Symbol p n :+ mempty
ipeDiskMark :: IpeOut (Point 2 r) IpeSymbol r
ipeDiskMark = ipeMark "mark/disk(sx)"
ipeLineSegment :: IpeOut (LineSegment 2 p r) Path r
ipeLineSegment s = (path . pathSegment $ s) :+ mempty
ipePolyLine :: IpeOut (PolyLine 2 p r) Path r
ipePolyLine p = (path . PolyLineSegment . first (const ()) $ p) :+ mempty
ipeDisk :: Floating r => IpeOut (Disk p r) Path r
ipeDisk d = ipeCircle (Boundary d) ! attr SFill (IpeColor "0.722 0.145 0.137")
ipeCircle :: Floating r => IpeOut (Circle p r) Path r
ipeCircle (Circle (c :+ _) r) = (path $ EllipseSegment m) :+ mempty
where
m = translation (toVec c) |.| uniformScaling (sqrt r) ^. transformationMatrix
path :: PathSegment r -> Path r
path = Path . LSeq.fromNonEmpty . (:| [])
pathSegment :: LineSegment 2 p r -> PathSegment r
pathSegment = PolyLineSegment . fromLineSegment . first (const ())
ipePolygon :: IpeOut (Polygon t p r) Path r
ipePolygon (first (const ()) -> pg) = case pg of
(SimplePolygon _) -> pg^.re _asSimplePolygon :+ mempty
(MultiPolygon _ _) -> pg^.re _asMultiPolygon :+ mempty
ipeGroup :: IpeOut [IpeObject r] Group r
ipeGroup xs = Group xs :+ mempty