module Internal.Random (
Seed,
RandDist(..),
randomVector,
gaussianSample,
uniformSample,
rand, randn
) where
import Internal.Vectorized
import Internal.Vector
import Internal.Matrix
import Internal.Numeric
import Internal.Algorithms
import System.Random(randomIO)
gaussianSample :: Seed
-> Int
-> Vector Double
-> Herm Double
-> Matrix Double
gaussianSample seed n med cov = m where
c = dim med
meds = konst' 1 n `outer` med
rs = reshape c $ randomVector seed Gaussian (c * n)
m = rs `mXm` chol cov `add` meds
uniformSample :: Seed
-> Int
-> [(Double,Double)]
-> Matrix Double
uniformSample seed n rgs = m where
(as,bs) = unzip rgs
a = fromList as
cs = zipWith subtract as bs
d = dim a
dat = toRows $ reshape n $ randomVector seed Uniform (n*d)
am = konst' 1 n `outer` a
m = fromColumns (zipWith scale cs dat) `add` am
randm :: RandDist
-> Int
-> Int
-> IO (Matrix Double)
randm d r c = do
seed <- randomIO
return (reshape c $ randomVector seed d (r*c))
rand :: Int -> Int -> IO (Matrix Double)
rand = randm Uniform
randn :: Int -> Int -> IO (Matrix Double)
randn = randm Gaussian