module Music.Theory.Xenakis.S4 where
import Data.List
import Data.Maybe
import qualified Music.Theory.List as T
import qualified Music.Theory.Permutations as T
data Label = A|B|C|D|D2|E|E2|G|G2|I|L|L2
| Q1|Q2|Q3|Q4|Q5|Q6|Q7|Q8|Q9|Q10|Q11|Q12
deriving (Label -> Label -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Label -> Label -> Bool
$c/= :: Label -> Label -> Bool
== :: Label -> Label -> Bool
$c== :: Label -> Label -> Bool
Eq,Eq Label
Label -> Label -> Bool
Label -> Label -> Ordering
Label -> Label -> Label
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Label -> Label -> Label
$cmin :: Label -> Label -> Label
max :: Label -> Label -> Label
$cmax :: Label -> Label -> Label
>= :: Label -> Label -> Bool
$c>= :: Label -> Label -> Bool
> :: Label -> Label -> Bool
$c> :: Label -> Label -> Bool
<= :: Label -> Label -> Bool
$c<= :: Label -> Label -> Bool
< :: Label -> Label -> Bool
$c< :: Label -> Label -> Bool
compare :: Label -> Label -> Ordering
$ccompare :: Label -> Label -> Ordering
Ord,Int -> Label
Label -> Int
Label -> [Label]
Label -> Label
Label -> Label -> [Label]
Label -> Label -> Label -> [Label]
forall a.
(a -> a)
-> (a -> a)
-> (Int -> a)
-> (a -> Int)
-> (a -> [a])
-> (a -> a -> [a])
-> (a -> a -> [a])
-> (a -> a -> a -> [a])
-> Enum a
enumFromThenTo :: Label -> Label -> Label -> [Label]
$cenumFromThenTo :: Label -> Label -> Label -> [Label]
enumFromTo :: Label -> Label -> [Label]
$cenumFromTo :: Label -> Label -> [Label]
enumFromThen :: Label -> Label -> [Label]
$cenumFromThen :: Label -> Label -> [Label]
enumFrom :: Label -> [Label]
$cenumFrom :: Label -> [Label]
fromEnum :: Label -> Int
$cfromEnum :: Label -> Int
toEnum :: Int -> Label
$ctoEnum :: Int -> Label
pred :: Label -> Label
$cpred :: Label -> Label
succ :: Label -> Label
$csucc :: Label -> Label
Enum,Label
forall a. a -> a -> Bounded a
maxBound :: Label
$cmaxBound :: Label
minBound :: Label
$cminBound :: Label
Bounded,Int -> Label -> ShowS
[Label] -> ShowS
Label -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Label] -> ShowS
$cshowList :: [Label] -> ShowS
show :: Label -> String
$cshow :: Label -> String
showsPrec :: Int -> Label -> ShowS
$cshowsPrec :: Int -> Label -> ShowS
Show)
type Half_Seq = [Int]
type Seq = [Int]
complement :: Half_Seq -> Half_Seq
complement :: [Int] -> [Int]
complement [Int]
x =
case forall a. Ord a => [a] -> [a]
sort [Int]
x of
[Int
1,Int
2,Int
3,Int
4] -> forall a b. (a -> b) -> [a] -> [b]
map (forall a. Num a => a -> a -> a
+ Int
4) [Int]
x
[Int
5,Int
6,Int
7,Int
8] -> forall a b. (a -> b) -> [a] -> [b]
map (forall a. Num a => a -> a -> a
+ (-Int
4)) [Int]
x
[Int]
_ -> forall a. HasCallStack => String -> a
error String
"complement"
full_seq :: Half_Seq -> Seq
full_seq :: [Int] -> [Int]
full_seq [Int]
x = [Int]
x forall a. [a] -> [a] -> [a]
++ [Int] -> [Int]
complement [Int]
x
lower :: Half_Seq -> Half_Seq
lower :: [Int] -> [Int]
lower [Int]
x =
case forall a. Ord a => [a] -> [a]
sort [Int]
x of
[Int
1,Int
2,Int
3,Int
4] -> [Int]
x
[Int
5,Int
6,Int
7,Int
8] -> [Int] -> [Int]
complement [Int]
x
[Int]
_ -> forall a. HasCallStack => String -> a
error (forall a. Show a => a -> String
show (String
"lower",[Int]
x))
l_on :: Label -> Label -> Label
l_on :: Label -> Label -> Label
l_on Label
p Label
q =
let p' :: [Int]
p' = Label -> [Int]
seq_of Label
p
q' :: [Int]
q' = Label -> [Int]
seq_of Label
q
r :: [Int]
r = forall a b. (a -> b) -> [a] -> [b]
map (\Int
i -> [Int]
q' forall a. [a] -> Int -> a
!! (Int
i forall a. Num a => a -> a -> a
- Int
1)) [Int]
p'
in [Int] -> Label
label_of [Int]
r
fib_proc :: (a -> a -> a) -> a -> a -> [a]
fib_proc :: forall a. (a -> a -> a) -> a -> a -> [a]
fib_proc a -> a -> a
f a
p a
q = let r :: a
r = a -> a -> a
f a
p a
q in a
p forall a. a -> [a] -> [a]
: forall a. (a -> a -> a) -> a -> a -> [a]
fib_proc a -> a -> a
f a
q a
r
seq_of :: Label -> Seq
seq_of :: Label -> [Int]
seq_of Label
i = forall a. a -> Maybe a -> a
fromMaybe (forall a. HasCallStack => String -> a
error String
"seq_of") (forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup Label
i [(Label, [Int])]
viii_6b)
half_seq_of :: Label -> Seq
half_seq_of :: Label -> [Int]
half_seq_of = [Int] -> [Int]
half_seq forall b c a. (b -> c) -> (a -> b) -> a -> c
. Label -> [Int]
seq_of
half_seq :: Seq -> Half_Seq
half_seq :: [Int] -> [Int]
half_seq = forall a. Int -> [a] -> [a]
take Int
4
label_of :: Seq -> Label
label_of :: [Int] -> Label
label_of [Int]
i =
let err :: a
err = forall a. HasCallStack => String -> a
error (String
"label_of: " forall a. [a] -> [a] -> [a]
++ forall a. Show a => a -> String
show [Int]
i)
in forall a. a -> Maybe a -> a
fromMaybe forall {a}. a
err (forall v k. Eq v => v -> [(k, v)] -> Maybe k
T.reverse_lookup [Int]
i [(Label, [Int])]
viii_6b)
complementary :: Half_Seq -> Half_Seq -> Bool
complementary :: [Int] -> [Int] -> Bool
complementary [Int]
p [Int]
q =
let c :: [Int]
c = forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat (forall a. Ord a => [a] -> [a]
sort [forall a. Ord a => [a] -> [a]
sort [Int]
p,forall a. Ord a => [a] -> [a]
sort [Int]
q])
in [Int]
c forall a. Eq a => a -> a -> Bool
== [Int
1..Int
8]
type Rel = (Bool,T.Permutation)
relate :: Half_Seq -> Half_Seq -> Rel
relate :: [Int] -> [Int] -> Rel
relate [Int]
p [Int]
q =
if [Int] -> [Int] -> Bool
complementary [Int]
p [Int]
q
then (Bool
True,forall t. Eq t => [t] -> [t] -> [Int]
T.permutation ([Int] -> [Int]
complement [Int]
p) [Int]
q)
else (Bool
False,forall t. Eq t => [t] -> [t] -> [Int]
T.permutation [Int]
p [Int]
q)
relate_l :: Label -> Label -> Rel
relate_l :: Label -> Label -> Rel
relate_l Label
p Label
q = [Int] -> [Int] -> Rel
relate (Label -> [Int]
half_seq_of Label
p) (Label -> [Int]
half_seq_of Label
q)
relations :: [Half_Seq] -> [Rel]
relations :: [[Int]] -> [Rel]
relations [[Int]]
p = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith [Int] -> [Int] -> Rel
relate [[Int]]
p (forall a. [a] -> [a]
tail [[Int]]
p)
relations_l :: [Label] -> [Rel]
relations_l :: [Label] -> [Rel]
relations_l [Label]
p = forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Label -> Label -> Rel
relate_l [Label]
p (forall a. [a] -> [a]
tail [Label]
p)
apply_relation :: Rel -> Half_Seq -> Half_Seq
apply_relation :: Rel -> [Int] -> [Int]
apply_relation (Bool
c,[Int]
p) [Int]
i =
let j :: [Int]
j = forall t. [Int] -> [t] -> [t]
T.apply_permutation [Int]
p [Int]
i
in if Bool
c then [Int] -> [Int]
complement [Int]
j else [Int]
j
apply_relations :: [Rel] -> Half_Seq -> [Half_Seq]
apply_relations :: [Rel] -> [Int] -> [[Int]]
apply_relations [Rel]
rs [Int]
i =
case [Rel]
rs of
[] -> [[Int]
i]
(Rel
r:[Rel]
rs') -> let i' :: [Int]
i' = Rel -> [Int] -> [Int]
apply_relation Rel
r [Int]
i
in [Int]
i forall a. a -> [a] -> [a]
: [Rel] -> [Int] -> [[Int]]
apply_relations [Rel]
rs' [Int]
i'
apply_relations_l :: [Rel] -> Label -> [Label]
apply_relations_l :: [Rel] -> Label -> [Label]
apply_relations_l [Rel]
rs = forall a b. (a -> b) -> [a] -> [b]
map ([Int] -> Label
label_of forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Int] -> [Int]
full_seq) forall b c a. (b -> c) -> (a -> b) -> a -> c
.
[Rel] -> [Int] -> [[Int]]
apply_relations [Rel]
rs forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Label -> [Int]
half_seq_of
data Face = F_Back | F_Front | F_Right | F_Left | F_Bottom | F_Top
deriving (Face -> Face -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Face -> Face -> Bool
$c/= :: Face -> Face -> Bool
== :: Face -> Face -> Bool
$c== :: Face -> Face -> Bool
Eq,Int -> Face
Face -> Int
Face -> [Face]
Face -> Face
Face -> Face -> [Face]
Face -> Face -> Face -> [Face]
forall a.
(a -> a)
-> (a -> a)
-> (Int -> a)
-> (a -> Int)
-> (a -> [a])
-> (a -> a -> [a])
-> (a -> a -> [a])
-> (a -> a -> a -> [a])
-> Enum a
enumFromThenTo :: Face -> Face -> Face -> [Face]
$cenumFromThenTo :: Face -> Face -> Face -> [Face]
enumFromTo :: Face -> Face -> [Face]
$cenumFromTo :: Face -> Face -> [Face]
enumFromThen :: Face -> Face -> [Face]
$cenumFromThen :: Face -> Face -> [Face]
enumFrom :: Face -> [Face]
$cenumFrom :: Face -> [Face]
fromEnum :: Face -> Int
$cfromEnum :: Face -> Int
toEnum :: Int -> Face
$ctoEnum :: Int -> Face
pred :: Face -> Face
$cpred :: Face -> Face
succ :: Face -> Face
$csucc :: Face -> Face
Enum,Face
forall a. a -> a -> Bounded a
maxBound :: Face
$cmaxBound :: Face
minBound :: Face
$cminBound :: Face
Bounded,Eq Face
Face -> Face -> Bool
Face -> Face -> Ordering
Face -> Face -> Face
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Face -> Face -> Face
$cmin :: Face -> Face -> Face
max :: Face -> Face -> Face
$cmax :: Face -> Face -> Face
>= :: Face -> Face -> Bool
$c>= :: Face -> Face -> Bool
> :: Face -> Face -> Bool
$c> :: Face -> Face -> Bool
<= :: Face -> Face -> Bool
$c<= :: Face -> Face -> Bool
< :: Face -> Face -> Bool
$c< :: Face -> Face -> Bool
compare :: Face -> Face -> Ordering
$ccompare :: Face -> Face -> Ordering
Ord,Int -> Face -> ShowS
[Face] -> ShowS
Face -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Face] -> ShowS
$cshowList :: [Face] -> ShowS
show :: Face -> String
$cshow :: Face -> String
showsPrec :: Int -> Face -> ShowS
$cshowsPrec :: Int -> Face -> ShowS
Show)
faces :: [([Int],Face)]
faces :: [([Int], Face)]
faces =
[([Int
1,Int
3,Int
6,Int
8],Face
F_Back)
,([Int
2,Int
4,Int
5,Int
7],Face
F_Front)
,([Int
2,Int
3,Int
5,Int
8],Face
F_Right)
,([Int
1,Int
4,Int
6,Int
7],Face
F_Left)
,([Int
3,Int
4,Int
5,Int
6],Face
F_Bottom)
,([Int
1,Int
2,Int
7,Int
8],Face
F_Top)]
viii_6_lseq :: [Label]
viii_6_lseq :: [Label]
viii_6_lseq =
[Label
L2,Label
L,Label
A,Label
Q1,Label
Q7,Label
Q3,Label
Q9
,Label
G2,Label
G,Label
C,Label
Q8,Label
Q5,Label
Q10,Label
Q2
,Label
E,Label
E2,Label
B,Label
Q4,Label
Q11,Label
Q12,Label
Q6
,Label
D,Label
D2,Label
I]
viii_7_lseq :: [Label]
viii_7_lseq :: [Label]
viii_7_lseq =
[Label
I,Label
A,Label
B,Label
C
,Label
D,Label
D2,Label
E,Label
E2
,Label
G,Label
G2,Label
L,Label
L2
,Label
Q1,Label
Q2,Label
Q3,Label
Q4
,Label
Q5,Label
Q6,Label
Q7,Label
Q8
,Label
Q9,Label
Q10,Label
Q11,Label
Q12]
viii_7 :: [[Label]]
viii_7 :: [[Label]]
viii_7 = forall a b. (a -> b) -> [a] -> [b]
map (\Label
i -> forall a b. (a -> b) -> [a] -> [b]
map (Label -> Label -> Label
`l_on` Label
i) [Label]
viii_7_lseq) [Label]
viii_7_lseq
viii_6b_lseq :: [Label]
viii_6b_lseq :: [Label]
viii_6b_lseq =
[Label
I,Label
A,Label
B,Label
C
,Label
D2,Label
D,Label
E2,Label
E
,Label
G2,Label
G,Label
L2,Label
L
,Label
Q7,Label
Q2,Label
Q3,Label
Q11
,Label
Q8,Label
Q6,Label
Q1,Label
Q5
,Label
Q9,Label
Q10,Label
Q4,Label
Q12]
viii_6b_p' :: [Half_Seq]
viii_6b_p' :: [[Int]]
viii_6b_p' =
[[Int
1,Int
2,Int
3,Int
4]
,[Int
2,Int
1,Int
4,Int
3]
,[Int
3,Int
4,Int
1,Int
2]
,[Int
4,Int
3,Int
2,Int
1]
,[Int
2,Int
3,Int
1,Int
4]
,[Int
3,Int
1,Int
2,Int
4]
,[Int
2,Int
4,Int
3,Int
1]
,[Int
4,Int
1,Int
3,Int
2]
,[Int
3,Int
2,Int
4,Int
1]
,[Int
4,Int
2,Int
1,Int
3]
,[Int
1,Int
3,Int
4,Int
2]
,[Int
1,Int
4,Int
2,Int
3]
,[Int
7,Int
8,Int
6,Int
5]
,[Int
7,Int
6,Int
5,Int
8]
,[Int
8,Int
6,Int
7,Int
5]
,[Int
6,Int
7,Int
8,Int
5]
,[Int
6,Int
8,Int
5,Int
7]
,[Int
6,Int
5,Int
7,Int
8]
,[Int
8,Int
7,Int
5,Int
6]
,[Int
7,Int
5,Int
8,Int
6]
,[Int
5,Int
8,Int
7,Int
6]
,[Int
5,Int
7,Int
6,Int
8]
,[Int
8,Int
5,Int
6,Int
7]
,[Int
5,Int
6,Int
8,Int
7]]
viii_6b' :: [(Label,Half_Seq)]
viii_6b' :: [(Label, [Int])]
viii_6b' = forall a b. [a] -> [b] -> [(a, b)]
zip [Label]
viii_6b_lseq [[Int]]
viii_6b_p'
viii_6b :: [(Label,Seq)]
viii_6b :: [(Label, [Int])]
viii_6b = forall a b. [a] -> [b] -> [(a, b)]
zip [Label]
viii_6b_lseq (forall a b. (a -> b) -> [a] -> [b]
map [Int] -> [Int]
full_seq [[Int]]
viii_6b_p')
viii_6_relations :: [Rel]
viii_6_relations :: [Rel]
viii_6_relations = [[Int]] -> [Rel]
relations (forall a b. (a -> b) -> [a] -> [b]
map Label -> [Int]
half_seq_of [Label]
viii_6_lseq)
viii_6b_relations :: [Rel]
viii_6b_relations :: [Rel]
viii_6b_relations = [[Int]] -> [Rel]
relations (forall a b. (a -> b) -> [a] -> [b]
map Label -> [Int]
half_seq_of [Label]
viii_6b_lseq)