{-# LANGUAGE CPP #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# OPTIONS_GHC -Wno-name-shadowing #-}
module Nix.Type.Infer
( Constraint(..)
, TypeError(..)
, InferError(..)
, Subst(..)
, inferTop
)
where
import Control.Applicative
import Control.Arrow
import Control.Monad.Catch
import Control.Monad.Except
#if !MIN_VERSION_base(4,13,0)
import Control.Monad.Fail
#endif
import Control.Monad.Logic
import Control.Monad.Reader
import Control.Monad.Ref
import Control.Monad.ST
import Control.Monad.State.Strict
import Data.Fix ( foldFix )
import Data.Foldable
import qualified Data.HashMap.Lazy as M
import Data.List ( delete
, nub
, intersect
, (\\)
)
import Data.Map ( Map )
import qualified Data.Map as Map
import Data.Maybe ( fromJust )
import qualified Data.Set as Set
import Data.Text ( Text )
import Nix.Atoms
import Nix.Convert
import Nix.Eval ( MonadEval(..) )
import qualified Nix.Eval as Eval
import Nix.Expr.Types
import Nix.Expr.Types.Annotated
import Nix.Fresh
import Nix.String
import Nix.Scope
import qualified Nix.Type.Assumption as As
import Nix.Type.Env
import qualified Nix.Type.Env as Env
import Nix.Type.Type
import Nix.Utils
import Nix.Value.Monad
import Nix.Var
newtype InferT s m a = InferT
{ InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
getInfer ::
ReaderT (Set.Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m)) a
}
deriving
( a -> InferT s m b -> InferT s m a
(a -> b) -> InferT s m a -> InferT s m b
(forall a b. (a -> b) -> InferT s m a -> InferT s m b)
-> (forall a b. a -> InferT s m b -> InferT s m a)
-> Functor (InferT s m)
forall a b. a -> InferT s m b -> InferT s m a
forall a b. (a -> b) -> InferT s m a -> InferT s m b
forall s (m :: * -> *) a b.
Functor m =>
a -> InferT s m b -> InferT s m a
forall s (m :: * -> *) a b.
Functor m =>
(a -> b) -> InferT s m a -> InferT s m b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> InferT s m b -> InferT s m a
$c<$ :: forall s (m :: * -> *) a b.
Functor m =>
a -> InferT s m b -> InferT s m a
fmap :: (a -> b) -> InferT s m a -> InferT s m b
$cfmap :: forall s (m :: * -> *) a b.
Functor m =>
(a -> b) -> InferT s m a -> InferT s m b
Functor
, Functor (InferT s m)
a -> InferT s m a
Functor (InferT s m) =>
(forall a. a -> InferT s m a)
-> (forall a b.
InferT s m (a -> b) -> InferT s m a -> InferT s m b)
-> (forall a b c.
(a -> b -> c) -> InferT s m a -> InferT s m b -> InferT s m c)
-> (forall a b. InferT s m a -> InferT s m b -> InferT s m b)
-> (forall a b. InferT s m a -> InferT s m b -> InferT s m a)
-> Applicative (InferT s m)
InferT s m a -> InferT s m b -> InferT s m b
InferT s m a -> InferT s m b -> InferT s m a
InferT s m (a -> b) -> InferT s m a -> InferT s m b
(a -> b -> c) -> InferT s m a -> InferT s m b -> InferT s m c
forall a. a -> InferT s m a
forall a b. InferT s m a -> InferT s m b -> InferT s m a
forall a b. InferT s m a -> InferT s m b -> InferT s m b
forall a b. InferT s m (a -> b) -> InferT s m a -> InferT s m b
forall a b c.
(a -> b -> c) -> InferT s m a -> InferT s m b -> InferT s m c
forall s (m :: * -> *). Monad m => Functor (InferT s m)
forall s (m :: * -> *) a. Monad m => a -> InferT s m a
forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> InferT s m b -> InferT s m a
forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> InferT s m b -> InferT s m b
forall s (m :: * -> *) a b.
Monad m =>
InferT s m (a -> b) -> InferT s m a -> InferT s m b
forall s (m :: * -> *) a b c.
Monad m =>
(a -> b -> c) -> InferT s m a -> InferT s m b -> InferT s m c
forall (f :: * -> *).
Functor f =>
(forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
<* :: InferT s m a -> InferT s m b -> InferT s m a
$c<* :: forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> InferT s m b -> InferT s m a
*> :: InferT s m a -> InferT s m b -> InferT s m b
$c*> :: forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> InferT s m b -> InferT s m b
liftA2 :: (a -> b -> c) -> InferT s m a -> InferT s m b -> InferT s m c
$cliftA2 :: forall s (m :: * -> *) a b c.
Monad m =>
(a -> b -> c) -> InferT s m a -> InferT s m b -> InferT s m c
<*> :: InferT s m (a -> b) -> InferT s m a -> InferT s m b
$c<*> :: forall s (m :: * -> *) a b.
Monad m =>
InferT s m (a -> b) -> InferT s m a -> InferT s m b
pure :: a -> InferT s m a
$cpure :: forall s (m :: * -> *) a. Monad m => a -> InferT s m a
$cp1Applicative :: forall s (m :: * -> *). Monad m => Functor (InferT s m)
Applicative
, Applicative (InferT s m)
InferT s m a
Applicative (InferT s m) =>
(forall a. InferT s m a)
-> (forall a. InferT s m a -> InferT s m a -> InferT s m a)
-> (forall a. InferT s m a -> InferT s m [a])
-> (forall a. InferT s m a -> InferT s m [a])
-> Alternative (InferT s m)
InferT s m a -> InferT s m a -> InferT s m a
InferT s m a -> InferT s m [a]
InferT s m a -> InferT s m [a]
forall a. InferT s m a
forall a. InferT s m a -> InferT s m [a]
forall a. InferT s m a -> InferT s m a -> InferT s m a
forall s (m :: * -> *). Monad m => Applicative (InferT s m)
forall s (m :: * -> *) a. Monad m => InferT s m a
forall s (m :: * -> *) a. Monad m => InferT s m a -> InferT s m [a]
forall s (m :: * -> *) a.
Monad m =>
InferT s m a -> InferT s m a -> InferT s m a
forall (f :: * -> *).
Applicative f =>
(forall a. f a)
-> (forall a. f a -> f a -> f a)
-> (forall a. f a -> f [a])
-> (forall a. f a -> f [a])
-> Alternative f
many :: InferT s m a -> InferT s m [a]
$cmany :: forall s (m :: * -> *) a. Monad m => InferT s m a -> InferT s m [a]
some :: InferT s m a -> InferT s m [a]
$csome :: forall s (m :: * -> *) a. Monad m => InferT s m a -> InferT s m [a]
<|> :: InferT s m a -> InferT s m a -> InferT s m a
$c<|> :: forall s (m :: * -> *) a.
Monad m =>
InferT s m a -> InferT s m a -> InferT s m a
empty :: InferT s m a
$cempty :: forall s (m :: * -> *) a. Monad m => InferT s m a
$cp1Alternative :: forall s (m :: * -> *). Monad m => Applicative (InferT s m)
Alternative
, Applicative (InferT s m)
a -> InferT s m a
Applicative (InferT s m) =>
(forall a b. InferT s m a -> (a -> InferT s m b) -> InferT s m b)
-> (forall a b. InferT s m a -> InferT s m b -> InferT s m b)
-> (forall a. a -> InferT s m a)
-> Monad (InferT s m)
InferT s m a -> (a -> InferT s m b) -> InferT s m b
InferT s m a -> InferT s m b -> InferT s m b
forall a. a -> InferT s m a
forall a b. InferT s m a -> InferT s m b -> InferT s m b
forall a b. InferT s m a -> (a -> InferT s m b) -> InferT s m b
forall s (m :: * -> *). Monad m => Applicative (InferT s m)
forall s (m :: * -> *) a. Monad m => a -> InferT s m a
forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> InferT s m b -> InferT s m b
forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> (a -> InferT s m b) -> InferT s m b
forall (m :: * -> *).
Applicative m =>
(forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> m b -> m b)
-> (forall a. a -> m a)
-> Monad m
return :: a -> InferT s m a
$creturn :: forall s (m :: * -> *) a. Monad m => a -> InferT s m a
>> :: InferT s m a -> InferT s m b -> InferT s m b
$c>> :: forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> InferT s m b -> InferT s m b
>>= :: InferT s m a -> (a -> InferT s m b) -> InferT s m b
$c>>= :: forall s (m :: * -> *) a b.
Monad m =>
InferT s m a -> (a -> InferT s m b) -> InferT s m b
$cp1Monad :: forall s (m :: * -> *). Monad m => Applicative (InferT s m)
Monad
, Monad (InferT s m)
Alternative (InferT s m)
InferT s m a
(Alternative (InferT s m), Monad (InferT s m)) =>
(forall a. InferT s m a)
-> (forall a. InferT s m a -> InferT s m a -> InferT s m a)
-> MonadPlus (InferT s m)
InferT s m a -> InferT s m a -> InferT s m a
forall a. InferT s m a
forall a. InferT s m a -> InferT s m a -> InferT s m a
forall s (m :: * -> *). Monad m => Monad (InferT s m)
forall s (m :: * -> *). Monad m => Alternative (InferT s m)
forall s (m :: * -> *) a. Monad m => InferT s m a
forall s (m :: * -> *) a.
Monad m =>
InferT s m a -> InferT s m a -> InferT s m a
forall (m :: * -> *).
(Alternative m, Monad m) =>
(forall a. m a) -> (forall a. m a -> m a -> m a) -> MonadPlus m
mplus :: InferT s m a -> InferT s m a -> InferT s m a
$cmplus :: forall s (m :: * -> *) a.
Monad m =>
InferT s m a -> InferT s m a -> InferT s m a
mzero :: InferT s m a
$cmzero :: forall s (m :: * -> *) a. Monad m => InferT s m a
$cp2MonadPlus :: forall s (m :: * -> *). Monad m => Monad (InferT s m)
$cp1MonadPlus :: forall s (m :: * -> *). Monad m => Alternative (InferT s m)
MonadPlus
, Monad (InferT s m)
Monad (InferT s m) =>
(forall a. (a -> InferT s m a) -> InferT s m a)
-> MonadFix (InferT s m)
(a -> InferT s m a) -> InferT s m a
forall a. (a -> InferT s m a) -> InferT s m a
forall s (m :: * -> *). MonadFix m => Monad (InferT s m)
forall s (m :: * -> *) a.
MonadFix m =>
(a -> InferT s m a) -> InferT s m a
forall (m :: * -> *).
Monad m =>
(forall a. (a -> m a) -> m a) -> MonadFix m
mfix :: (a -> InferT s m a) -> InferT s m a
$cmfix :: forall s (m :: * -> *) a.
MonadFix m =>
(a -> InferT s m a) -> InferT s m a
$cp1MonadFix :: forall s (m :: * -> *). MonadFix m => Monad (InferT s m)
MonadFix
, MonadReader (Set.Set TVar, Scopes (InferT s m) (Judgment s))
, Monad (InferT s m)
Monad (InferT s m) =>
(forall a. String -> InferT s m a) -> MonadFail (InferT s m)
String -> InferT s m a
forall a. String -> InferT s m a
forall s (m :: * -> *). MonadFail m => Monad (InferT s m)
forall s (m :: * -> *) a. MonadFail m => String -> InferT s m a
forall (m :: * -> *).
Monad m =>
(forall a. String -> m a) -> MonadFail m
fail :: String -> InferT s m a
$cfail :: forall s (m :: * -> *) a. MonadFail m => String -> InferT s m a
$cp1MonadFail :: forall s (m :: * -> *). MonadFail m => Monad (InferT s m)
MonadFail
, MonadState InferState
, MonadError InferError
)
instance MonadTrans (InferT s) where
lift :: m a -> InferT s m a
lift = ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a
forall s (m :: * -> *) a.
ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a
InferT (ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a)
-> (m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> m a
-> InferT s m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. StateT InferState (ExceptT InferError m) a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (StateT InferState (ExceptT InferError m) a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> (m a -> StateT InferState (ExceptT InferError m) a)
-> m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ExceptT InferError m a
-> StateT InferState (ExceptT InferError m) a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (ExceptT InferError m a
-> StateT InferState (ExceptT InferError m) a)
-> (m a -> ExceptT InferError m a)
-> m a
-> StateT InferState (ExceptT InferError m) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m a -> ExceptT InferError m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
newtype InferState = InferState { InferState -> Int
count :: Int }
initInfer :: InferState
initInfer :: InferState
initInfer = InferState :: Int -> InferState
InferState { count :: Int
count = 0 }
data Constraint
= EqConst Type Type
| ExpInstConst Type Scheme
| ImpInstConst Type (Set.Set TVar) Type
deriving (Int -> Constraint -> ShowS
[Constraint] -> ShowS
Constraint -> String
(Int -> Constraint -> ShowS)
-> (Constraint -> String)
-> ([Constraint] -> ShowS)
-> Show Constraint
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Constraint] -> ShowS
$cshowList :: [Constraint] -> ShowS
show :: Constraint -> String
$cshow :: Constraint -> String
showsPrec :: Int -> Constraint -> ShowS
$cshowsPrec :: Int -> Constraint -> ShowS
Show, Constraint -> Constraint -> Bool
(Constraint -> Constraint -> Bool)
-> (Constraint -> Constraint -> Bool) -> Eq Constraint
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Constraint -> Constraint -> Bool
$c/= :: Constraint -> Constraint -> Bool
== :: Constraint -> Constraint -> Bool
$c== :: Constraint -> Constraint -> Bool
Eq, Eq Constraint
Eq Constraint =>
(Constraint -> Constraint -> Ordering)
-> (Constraint -> Constraint -> Bool)
-> (Constraint -> Constraint -> Bool)
-> (Constraint -> Constraint -> Bool)
-> (Constraint -> Constraint -> Bool)
-> (Constraint -> Constraint -> Constraint)
-> (Constraint -> Constraint -> Constraint)
-> Ord Constraint
Constraint -> Constraint -> Bool
Constraint -> Constraint -> Ordering
Constraint -> Constraint -> Constraint
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Constraint -> Constraint -> Constraint
$cmin :: Constraint -> Constraint -> Constraint
max :: Constraint -> Constraint -> Constraint
$cmax :: Constraint -> Constraint -> Constraint
>= :: Constraint -> Constraint -> Bool
$c>= :: Constraint -> Constraint -> Bool
> :: Constraint -> Constraint -> Bool
$c> :: Constraint -> Constraint -> Bool
<= :: Constraint -> Constraint -> Bool
$c<= :: Constraint -> Constraint -> Bool
< :: Constraint -> Constraint -> Bool
$c< :: Constraint -> Constraint -> Bool
compare :: Constraint -> Constraint -> Ordering
$ccompare :: Constraint -> Constraint -> Ordering
$cp1Ord :: Eq Constraint
Ord)
newtype Subst = Subst (Map TVar Type)
deriving (Subst -> Subst -> Bool
(Subst -> Subst -> Bool) -> (Subst -> Subst -> Bool) -> Eq Subst
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Subst -> Subst -> Bool
$c/= :: Subst -> Subst -> Bool
== :: Subst -> Subst -> Bool
$c== :: Subst -> Subst -> Bool
Eq, Eq Subst
Eq Subst =>
(Subst -> Subst -> Ordering)
-> (Subst -> Subst -> Bool)
-> (Subst -> Subst -> Bool)
-> (Subst -> Subst -> Bool)
-> (Subst -> Subst -> Bool)
-> (Subst -> Subst -> Subst)
-> (Subst -> Subst -> Subst)
-> Ord Subst
Subst -> Subst -> Bool
Subst -> Subst -> Ordering
Subst -> Subst -> Subst
forall a.
Eq a =>
(a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Subst -> Subst -> Subst
$cmin :: Subst -> Subst -> Subst
max :: Subst -> Subst -> Subst
$cmax :: Subst -> Subst -> Subst
>= :: Subst -> Subst -> Bool
$c>= :: Subst -> Subst -> Bool
> :: Subst -> Subst -> Bool
$c> :: Subst -> Subst -> Bool
<= :: Subst -> Subst -> Bool
$c<= :: Subst -> Subst -> Bool
< :: Subst -> Subst -> Bool
$c< :: Subst -> Subst -> Bool
compare :: Subst -> Subst -> Ordering
$ccompare :: Subst -> Subst -> Ordering
$cp1Ord :: Eq Subst
Ord, Int -> Subst -> ShowS
[Subst] -> ShowS
Subst -> String
(Int -> Subst -> ShowS)
-> (Subst -> String) -> ([Subst] -> ShowS) -> Show Subst
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Subst] -> ShowS
$cshowList :: [Subst] -> ShowS
show :: Subst -> String
$cshow :: Subst -> String
showsPrec :: Int -> Subst -> ShowS
$cshowsPrec :: Int -> Subst -> ShowS
Show, b -> Subst -> Subst
NonEmpty Subst -> Subst
Subst -> Subst -> Subst
(Subst -> Subst -> Subst)
-> (NonEmpty Subst -> Subst)
-> (forall b. Integral b => b -> Subst -> Subst)
-> Semigroup Subst
forall b. Integral b => b -> Subst -> Subst
forall a.
(a -> a -> a)
-> (NonEmpty a -> a)
-> (forall b. Integral b => b -> a -> a)
-> Semigroup a
stimes :: b -> Subst -> Subst
$cstimes :: forall b. Integral b => b -> Subst -> Subst
sconcat :: NonEmpty Subst -> Subst
$csconcat :: NonEmpty Subst -> Subst
<> :: Subst -> Subst -> Subst
$c<> :: Subst -> Subst -> Subst
Semigroup, Semigroup Subst
Subst
Semigroup Subst =>
Subst
-> (Subst -> Subst -> Subst) -> ([Subst] -> Subst) -> Monoid Subst
[Subst] -> Subst
Subst -> Subst -> Subst
forall a.
Semigroup a =>
a -> (a -> a -> a) -> ([a] -> a) -> Monoid a
mconcat :: [Subst] -> Subst
$cmconcat :: [Subst] -> Subst
mappend :: Subst -> Subst -> Subst
$cmappend :: Subst -> Subst -> Subst
mempty :: Subst
$cmempty :: Subst
$cp1Monoid :: Semigroup Subst
Monoid)
class Substitutable a where
apply :: Subst -> a -> a
instance Substitutable TVar where
apply :: Subst -> TVar -> TVar
apply (Subst s :: Map TVar Type
s) a :: TVar
a = TVar
tv
where
t :: Type
t = TVar -> Type
TVar TVar
a
(TVar tv :: TVar
tv) = Type -> TVar -> Map TVar Type -> Type
forall k a. Ord k => a -> k -> Map k a -> a
Map.findWithDefault Type
t TVar
a Map TVar Type
s
instance Substitutable Type where
apply :: Subst -> Type -> Type
apply _ ( TCon a :: String
a ) = String -> Type
TCon String
a
apply s :: Subst
s ( TSet b :: Bool
b a :: AttrSet Type
a ) = Bool -> AttrSet Type -> Type
TSet Bool
b ((Type -> Type) -> AttrSet Type -> AttrSet Type
forall v1 v2 k. (v1 -> v2) -> HashMap k v1 -> HashMap k v2
M.map (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s) AttrSet Type
a)
apply s :: Subst
s ( TList a :: [Type]
a ) = [Type] -> Type
TList ((Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s) [Type]
a)
apply (Subst s :: Map TVar Type
s) t :: Type
t@(TVar a :: TVar
a ) = Type -> TVar -> Map TVar Type -> Type
forall k a. Ord k => a -> k -> Map k a -> a
Map.findWithDefault Type
t TVar
a Map TVar Type
s
apply s :: Subst
s ( t1 :: Type
t1 :~> t2 :: Type
t2) = Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t1 Type -> Type -> Type
:~> Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t2
apply s :: Subst
s ( TMany ts :: [Type]
ts ) = [Type] -> Type
TMany ((Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s) [Type]
ts)
instance Substitutable Scheme where
apply :: Subst -> Scheme -> Scheme
apply (Subst s :: Map TVar Type
s) (Forall as :: [TVar]
as t :: Type
t) = [TVar] -> Type -> Scheme
Forall [TVar]
as (Type -> Scheme) -> Type -> Scheme
forall a b. (a -> b) -> a -> b
$ Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s' Type
t
where s' :: Subst
s' = Map TVar Type -> Subst
Subst (Map TVar Type -> Subst) -> Map TVar Type -> Subst
forall a b. (a -> b) -> a -> b
$ (TVar -> Map TVar Type -> Map TVar Type)
-> Map TVar Type -> [TVar] -> Map TVar Type
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr TVar -> Map TVar Type -> Map TVar Type
forall k a. Ord k => k -> Map k a -> Map k a
Map.delete Map TVar Type
s [TVar]
as
instance Substitutable Constraint where
apply :: Subst -> Constraint -> Constraint
apply s :: Subst
s (EqConst t1 :: Type
t1 t2 :: Type
t2) = Type -> Type -> Constraint
EqConst (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t1) (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t2)
apply s :: Subst
s (ExpInstConst t :: Type
t sc :: Scheme
sc) = Type -> Scheme -> Constraint
ExpInstConst (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t) (Subst -> Scheme -> Scheme
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Scheme
sc)
apply s :: Subst
s (ImpInstConst t1 :: Type
t1 ms :: Set TVar
ms t2 :: Type
t2) =
Type -> Set TVar -> Type -> Constraint
ImpInstConst (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t1) (Subst -> Set TVar -> Set TVar
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Set TVar
ms) (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t2)
instance Substitutable a => Substitutable [a] where
apply :: Subst -> [a] -> [a]
apply = (a -> a) -> [a] -> [a]
forall a b. (a -> b) -> [a] -> [b]
map ((a -> a) -> [a] -> [a])
-> (Subst -> a -> a) -> Subst -> [a] -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Subst -> a -> a
forall a. Substitutable a => Subst -> a -> a
apply
instance (Ord a, Substitutable a) => Substitutable (Set.Set a) where
apply :: Subst -> Set a -> Set a
apply = (a -> a) -> Set a -> Set a
forall b a. Ord b => (a -> b) -> Set a -> Set b
Set.map ((a -> a) -> Set a -> Set a)
-> (Subst -> a -> a) -> Subst -> Set a -> Set a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Subst -> a -> a
forall a. Substitutable a => Subst -> a -> a
apply
class FreeTypeVars a where
ftv :: a -> Set.Set TVar
instance FreeTypeVars Type where
ftv :: Type -> Set TVar
ftv TCon{} = Set TVar
forall a. Set a
Set.empty
ftv (TVar a :: TVar
a ) = TVar -> Set TVar
forall a. a -> Set a
Set.singleton TVar
a
ftv (TSet _ a :: AttrSet Type
a ) = [Set TVar] -> Set TVar
forall (f :: * -> *) a. (Foldable f, Ord a) => f (Set a) -> Set a
Set.unions ((Type -> Set TVar) -> [Type] -> [Set TVar]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv (AttrSet Type -> [Type]
forall k v. HashMap k v -> [v]
M.elems AttrSet Type
a))
ftv (TList a :: [Type]
a ) = [Set TVar] -> Set TVar
forall (f :: * -> *) a. (Foldable f, Ord a) => f (Set a) -> Set a
Set.unions ((Type -> Set TVar) -> [Type] -> [Set TVar]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv [Type]
a)
ftv (t1 :: Type
t1 :~> t2 :: Type
t2) = Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t1 Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.union` Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t2
ftv (TMany ts :: [Type]
ts ) = [Set TVar] -> Set TVar
forall (f :: * -> *) a. (Foldable f, Ord a) => f (Set a) -> Set a
Set.unions ((Type -> Set TVar) -> [Type] -> [Set TVar]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv [Type]
ts)
instance FreeTypeVars TVar where
ftv :: TVar -> Set TVar
ftv = TVar -> Set TVar
forall a. a -> Set a
Set.singleton
instance FreeTypeVars Scheme where
ftv :: Scheme -> Set TVar
ftv (Forall as :: [TVar]
as t :: Type
t) = Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.difference` [TVar] -> Set TVar
forall a. Ord a => [a] -> Set a
Set.fromList [TVar]
as
instance FreeTypeVars a => FreeTypeVars [a] where
ftv :: [a] -> Set TVar
ftv = (a -> Set TVar -> Set TVar) -> Set TVar -> [a] -> Set TVar
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
Set.union (Set TVar -> Set TVar -> Set TVar)
-> (a -> Set TVar) -> a -> Set TVar -> Set TVar
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv) Set TVar
forall a. Set a
Set.empty
instance (Ord a, FreeTypeVars a) => FreeTypeVars (Set.Set a) where
ftv :: Set a -> Set TVar
ftv = (a -> Set TVar -> Set TVar) -> Set TVar -> Set a -> Set TVar
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
Set.union (Set TVar -> Set TVar -> Set TVar)
-> (a -> Set TVar) -> a -> Set TVar -> Set TVar
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv) Set TVar
forall a. Set a
Set.empty
class ActiveTypeVars a where
atv :: a -> Set.Set TVar
instance ActiveTypeVars Constraint where
atv :: Constraint -> Set TVar
atv (EqConst t1 :: Type
t1 t2 :: Type
t2) = Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t1 Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.union` Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t2
atv (ImpInstConst t1 :: Type
t1 ms :: Set TVar
ms t2 :: Type
t2) =
Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t1 Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.union` (Set TVar -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Set TVar
ms Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.intersection` Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t2)
atv (ExpInstConst t :: Type
t s :: Scheme
s) = Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.union` Scheme -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Scheme
s
instance ActiveTypeVars a => ActiveTypeVars [a] where
atv :: [a] -> Set TVar
atv = (a -> Set TVar -> Set TVar) -> Set TVar -> [a] -> Set TVar
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
Set.union (Set TVar -> Set TVar -> Set TVar)
-> (a -> Set TVar) -> a -> Set TVar -> Set TVar
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Set TVar
forall a. ActiveTypeVars a => a -> Set TVar
atv) Set TVar
forall a. Set a
Set.empty
data TypeError
= UnificationFail Type Type
| InfiniteType TVar Type
| UnboundVariables [Text]
| Ambigious [Constraint]
| UnificationMismatch [Type] [Type]
deriving (TypeError -> TypeError -> Bool
(TypeError -> TypeError -> Bool)
-> (TypeError -> TypeError -> Bool) -> Eq TypeError
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: TypeError -> TypeError -> Bool
$c/= :: TypeError -> TypeError -> Bool
== :: TypeError -> TypeError -> Bool
$c== :: TypeError -> TypeError -> Bool
Eq, Int -> TypeError -> ShowS
[TypeError] -> ShowS
TypeError -> String
(Int -> TypeError -> ShowS)
-> (TypeError -> String)
-> ([TypeError] -> ShowS)
-> Show TypeError
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [TypeError] -> ShowS
$cshowList :: [TypeError] -> ShowS
show :: TypeError -> String
$cshow :: TypeError -> String
showsPrec :: Int -> TypeError -> ShowS
$cshowsPrec :: Int -> TypeError -> ShowS
Show)
data InferError
= TypeInferenceErrors [TypeError]
| TypeInferenceAborted
| forall s. Exception s => EvaluationError s
typeError :: MonadError InferError m => TypeError -> m ()
typeError :: TypeError -> m ()
typeError err :: TypeError
err = InferError -> m ()
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (InferError -> m ()) -> InferError -> m ()
forall a b. (a -> b) -> a -> b
$ [TypeError] -> InferError
TypeInferenceErrors [TypeError
err]
deriving instance Show InferError
instance Exception InferError
instance Semigroup InferError where
x :: InferError
x <> :: InferError -> InferError -> InferError
<> _ = InferError
x
instance Monoid InferError where
mempty :: InferError
mempty = InferError
TypeInferenceAborted
mappend :: InferError -> InferError -> InferError
mappend = InferError -> InferError -> InferError
forall a. Semigroup a => a -> a -> a
(<>)
runInfer' :: MonadInfer m => InferT s m a -> m (Either InferError a)
runInfer' :: InferT s m a -> m (Either InferError a)
runInfer' =
ExceptT InferError m a -> m (Either InferError a)
forall e (m :: * -> *) a. ExceptT e m a -> m (Either e a)
runExceptT
(ExceptT InferError m a -> m (Either InferError a))
-> (InferT s m a -> ExceptT InferError m a)
-> InferT s m a
-> m (Either InferError a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (StateT InferState (ExceptT InferError m) a
-> InferState -> ExceptT InferError m a
forall (m :: * -> *) s a. Monad m => StateT s m a -> s -> m a
`evalStateT` InferState
initInfer)
(StateT InferState (ExceptT InferError m) a
-> ExceptT InferError m a)
-> (InferT s m a -> StateT InferState (ExceptT InferError m) a)
-> InferT s m a
-> ExceptT InferError m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> (Set TVar, Scopes (InferT s m) (Judgment s))
-> StateT InferState (ExceptT InferError m) a
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
`runReaderT` (Set TVar
forall a. Set a
Set.empty, Scopes (InferT s m) (Judgment s)
forall (m :: * -> *) a. Scopes m a
emptyScopes))
(ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> StateT InferState (ExceptT InferError m) a)
-> (InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> InferT s m a
-> StateT InferState (ExceptT InferError m) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall s (m :: * -> *) a.
InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
getInfer
runInfer :: (forall s . InferT s (FreshIdT Int (ST s)) a) -> Either InferError a
runInfer :: (forall s. InferT s (FreshIdT Int (ST s)) a) -> Either InferError a
runInfer m :: forall s. InferT s (FreshIdT Int (ST s)) a
m = (forall s. ST s (Either InferError a)) -> Either InferError a
forall a. (forall s. ST s a) -> a
runST ((forall s. ST s (Either InferError a)) -> Either InferError a)
-> (forall s. ST s (Either InferError a)) -> Either InferError a
forall a b. (a -> b) -> a -> b
$ do
STRef s Int
i <- Int -> ST s (Ref (ST s) Int)
forall (m :: * -> *) a. MonadRef m => a -> m (Ref m a)
newVar (1 :: Int)
Ref (ST s) Int
-> FreshIdT Int (ST s) (Either InferError a)
-> ST s (Either InferError a)
forall (m :: * -> *) i a.
Functor m =>
Var m i -> FreshIdT i m a -> m a
runFreshIdT STRef s Int
Ref (ST s) Int
i (InferT s (FreshIdT Int (ST s)) a
-> FreshIdT Int (ST s) (Either InferError a)
forall (m :: * -> *) s a.
MonadInfer m =>
InferT s m a -> m (Either InferError a)
runInfer' InferT s (FreshIdT Int (ST s)) a
forall s. InferT s (FreshIdT Int (ST s)) a
m)
inferType
:: forall s m . MonadInfer m => Env -> NExpr -> InferT s m [(Subst, Type)]
inferType :: Env -> NExpr -> InferT s m [(Subst, Type)]
inferType env :: Env
env ex :: NExpr
ex = do
Judgment as :: Assumption
as cs :: [Constraint]
cs t :: Type
t <- NExpr -> InferT s m (Judgment s)
forall (m :: * -> *) s.
MonadInfer m =>
NExpr -> InferT s m (Judgment s)
infer NExpr
ex
let unbounds :: Set Name
unbounds =
[Name] -> Set Name
forall a. Ord a => [a] -> Set a
Set.fromList (Assumption -> [Name]
As.keys Assumption
as) Set Name -> Set Name -> Set Name
forall a. Ord a => Set a -> Set a -> Set a
`Set.difference` [Name] -> Set Name
forall a. Ord a => [a] -> Set a
Set.fromList (Env -> [Name]
Env.keys Env
env)
Bool -> InferT s m () -> InferT s m ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Set Name -> Bool
forall a. Set a -> Bool
Set.null Set Name
unbounds) (InferT s m () -> InferT s m ()) -> InferT s m () -> InferT s m ()
forall a b. (a -> b) -> a -> b
$ TypeError -> InferT s m ()
forall (m :: * -> *). MonadError InferError m => TypeError -> m ()
typeError (TypeError -> InferT s m ()) -> TypeError -> InferT s m ()
forall a b. (a -> b) -> a -> b
$ [Name] -> TypeError
UnboundVariables
([Name] -> [Name]
forall a. Eq a => [a] -> [a]
nub (Set Name -> [Name]
forall a. Set a -> [a]
Set.toList Set Name
unbounds))
let cs' :: [Constraint]
cs' =
[ Type -> Scheme -> Constraint
ExpInstConst Type
t Scheme
s
| (x :: Name
x, ss :: [Scheme]
ss) <- Env -> [(Name, [Scheme])]
Env.toList Env
env
, Scheme
s <- [Scheme]
ss
, Type
t <- Name -> Assumption -> [Type]
As.lookup Name
x Assumption
as
]
InferState
inferState <- InferT s m InferState
forall s (m :: * -> *). MonadState s m => m s
get
let eres :: Either [TypeError] [(Subst, Type)]
eres = (State InferState (Either [TypeError] [(Subst, Type)])
-> InferState -> Either [TypeError] [(Subst, Type)]
forall s a. State s a -> s -> a
`evalState` InferState
inferState) (State InferState (Either [TypeError] [(Subst, Type)])
-> Either [TypeError] [(Subst, Type)])
-> State InferState (Either [TypeError] [(Subst, Type)])
-> Either [TypeError] [(Subst, Type)]
forall a b. (a -> b) -> a -> b
$ Solver (StateT InferState Identity) (Subst, Type)
-> State InferState (Either [TypeError] [(Subst, Type)])
forall (m :: * -> *) a.
Monad m =>
Solver m a -> m (Either [TypeError] [a])
runSolver (Solver (StateT InferState Identity) (Subst, Type)
-> State InferState (Either [TypeError] [(Subst, Type)]))
-> Solver (StateT InferState Identity) (Subst, Type)
-> State InferState (Either [TypeError] [(Subst, Type)])
forall a b. (a -> b) -> a -> b
$ do
Subst
subst <- [Constraint] -> Solver (StateT InferState Identity) Subst
forall (m :: * -> *).
MonadState InferState m =>
[Constraint] -> Solver m Subst
solve ([Constraint]
cs [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Constraint]
cs')
(Subst, Type) -> Solver (StateT InferState Identity) (Subst, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Subst
subst, Subst
subst Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
`apply` Type
t)
case Either [TypeError] [(Subst, Type)]
eres of
Left errs :: [TypeError]
errs -> InferError -> InferT s m [(Subst, Type)]
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (InferError -> InferT s m [(Subst, Type)])
-> InferError -> InferT s m [(Subst, Type)]
forall a b. (a -> b) -> a -> b
$ [TypeError] -> InferError
TypeInferenceErrors [TypeError]
errs
Right xs :: [(Subst, Type)]
xs -> [(Subst, Type)] -> InferT s m [(Subst, Type)]
forall (f :: * -> *) a. Applicative f => a -> f a
pure [(Subst, Type)]
xs
inferExpr :: Env -> NExpr -> Either InferError [Scheme]
inferExpr :: Env -> NExpr -> Either InferError [Scheme]
inferExpr env :: Env
env ex :: NExpr
ex = case (forall s. InferT s (FreshIdT Int (ST s)) [(Subst, Type)])
-> Either InferError [(Subst, Type)]
forall a.
(forall s. InferT s (FreshIdT Int (ST s)) a) -> Either InferError a
runInfer (Env -> NExpr -> InferT s (FreshIdT Int (ST s)) [(Subst, Type)]
forall s (m :: * -> *).
MonadInfer m =>
Env -> NExpr -> InferT s m [(Subst, Type)]
inferType Env
env NExpr
ex) of
Left err :: InferError
err -> InferError -> Either InferError [Scheme]
forall a b. a -> Either a b
Left InferError
err
Right xs :: [(Subst, Type)]
xs -> [Scheme] -> Either InferError [Scheme]
forall a b. b -> Either a b
Right ([Scheme] -> Either InferError [Scheme])
-> [Scheme] -> Either InferError [Scheme]
forall a b. (a -> b) -> a -> b
$ ((Subst, Type) -> Scheme) -> [(Subst, Type)] -> [Scheme]
forall a b. (a -> b) -> [a] -> [b]
map (\(subst :: Subst
subst, ty :: Type
ty) -> Type -> Scheme
closeOver (Subst
subst Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
`apply` Type
ty)) [(Subst, Type)]
xs
closeOver :: Type -> Scheme
closeOver :: Type -> Scheme
closeOver = Scheme -> Scheme
normalizeScheme (Scheme -> Scheme) -> (Type -> Scheme) -> Type -> Scheme
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Set TVar -> Type -> Scheme
generalize Set TVar
forall a. Set a
Set.empty
extendMSet :: Monad m => TVar -> InferT s m a -> InferT s m a
extendMSet :: TVar -> InferT s m a -> InferT s m a
extendMSet x :: TVar
x = ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a
forall s (m :: * -> *) a.
ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a
InferT (ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a)
-> (InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> InferT s m a
-> InferT s m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Set TVar, Scopes (InferT s m) (Judgment s))
-> (Set TVar, Scopes (InferT s m) (Judgment s)))
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall r (m :: * -> *) a. MonadReader r m => (r -> r) -> m a -> m a
local ((Set TVar -> Set TVar)
-> (Set TVar, Scopes (InferT s m) (Judgment s))
-> (Set TVar, Scopes (InferT s m) (Judgment s))
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (TVar -> Set TVar -> Set TVar
forall a. Ord a => a -> Set a -> Set a
Set.insert TVar
x)) (ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> (InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall s (m :: * -> *) a.
InferT s m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
getInfer
letters :: [String]
letters :: [String]
letters = [1 ..] [Int] -> (Int -> [String]) -> [String]
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (Int -> String -> [String]) -> String -> Int -> [String]
forall a b c. (a -> b -> c) -> b -> a -> c
flip Int -> String -> [String]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM ['a' .. 'z']
freshTVar :: MonadState InferState m => m TVar
freshTVar :: m TVar
freshTVar = do
InferState
s <- m InferState
forall s (m :: * -> *). MonadState s m => m s
get
InferState -> m ()
forall s (m :: * -> *). MonadState s m => s -> m ()
put InferState
s { count :: Int
count = InferState -> Int
count InferState
s Int -> Int -> Int
forall a. Num a => a -> a -> a
+ 1 }
TVar -> m TVar
forall (m :: * -> *) a. Monad m => a -> m a
return (TVar -> m TVar) -> TVar -> m TVar
forall a b. (a -> b) -> a -> b
$ String -> TVar
TV ([String]
letters [String] -> Int -> String
forall a. [a] -> Int -> a
!! InferState -> Int
count InferState
s)
fresh :: MonadState InferState m => m Type
fresh :: m Type
fresh = TVar -> Type
TVar (TVar -> Type) -> m TVar -> m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> m TVar
forall (m :: * -> *). MonadState InferState m => m TVar
freshTVar
instantiate :: MonadState InferState m => Scheme -> m Type
instantiate :: Scheme -> m Type
instantiate (Forall as :: [TVar]
as t :: Type
t) = do
[Type]
as' <- (TVar -> m Type) -> [TVar] -> m [Type]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (m Type -> TVar -> m Type
forall a b. a -> b -> a
const m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh) [TVar]
as
let s :: Subst
s = Map TVar Type -> Subst
Subst (Map TVar Type -> Subst) -> Map TVar Type -> Subst
forall a b. (a -> b) -> a -> b
$ [(TVar, Type)] -> Map TVar Type
forall k a. Ord k => [(k, a)] -> Map k a
Map.fromList ([(TVar, Type)] -> Map TVar Type)
-> [(TVar, Type)] -> Map TVar Type
forall a b. (a -> b) -> a -> b
$ [TVar] -> [Type] -> [(TVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TVar]
as [Type]
as'
Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> m Type) -> Type -> m Type
forall a b. (a -> b) -> a -> b
$ Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply Subst
s Type
t
generalize :: Set.Set TVar -> Type -> Scheme
generalize :: Set TVar -> Type -> Scheme
generalize free :: Set TVar
free t :: Type
t = [TVar] -> Type -> Scheme
Forall [TVar]
as Type
t
where as :: [TVar]
as = Set TVar -> [TVar]
forall a. Set a -> [a]
Set.toList (Set TVar -> [TVar]) -> Set TVar -> [TVar]
forall a b. (a -> b) -> a -> b
$ Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.difference` Set TVar
free
unops :: Type -> NUnaryOp -> [Constraint]
unops :: Type -> NUnaryOp -> [Constraint]
unops u1 :: Type
u1 = \case
NNot -> [Type -> Type -> Constraint
EqConst Type
u1 ([Type] -> Type
typeFun [Type
typeBool, Type
typeBool])]
NNeg ->
[ Type -> Type -> Constraint
EqConst
Type
u1
([Type] -> Type
TMany [[Type] -> Type
typeFun [Type
typeInt, Type
typeInt], [Type] -> Type
typeFun [Type
typeFloat, Type
typeFloat]])
]
binops :: Type -> NBinaryOp -> [Constraint]
binops :: Type -> NBinaryOp -> [Constraint]
binops u1 :: Type
u1 = \case
NApp -> []
NEq -> []
NNEq -> []
NGt -> [Constraint]
inequality
NGte -> [Constraint]
inequality
NLt -> [Constraint]
inequality
NLte -> [Constraint]
inequality
NAnd -> [Type -> Type -> Constraint
EqConst Type
u1 ([Type] -> Type
typeFun [Type
typeBool, Type
typeBool, Type
typeBool])]
NOr -> [Type -> Type -> Constraint
EqConst Type
u1 ([Type] -> Type
typeFun [Type
typeBool, Type
typeBool, Type
typeBool])]
NImpl -> [Type -> Type -> Constraint
EqConst Type
u1 ([Type] -> Type
typeFun [Type
typeBool, Type
typeBool, Type
typeBool])]
NConcat -> [Type -> Type -> Constraint
EqConst Type
u1 ([Type] -> Type
typeFun [Type
typeList, Type
typeList, Type
typeList])]
NUpdate ->
[ Type -> Type -> Constraint
EqConst
Type
u1
([Type] -> Type
TMany
[ [Type] -> Type
typeFun [Type
typeSet, Type
typeSet, Type
typeSet]
, [Type] -> Type
typeFun [Type
typeSet, Type
typeNull, Type
typeSet]
, [Type] -> Type
typeFun [Type
typeNull, Type
typeSet, Type
typeSet]
]
)
]
NPlus ->
[ Type -> Type -> Constraint
EqConst
Type
u1
([Type] -> Type
TMany
[ [Type] -> Type
typeFun [Type
typeInt, Type
typeInt, Type
typeInt]
, [Type] -> Type
typeFun [Type
typeFloat, Type
typeFloat, Type
typeFloat]
, [Type] -> Type
typeFun [Type
typeInt, Type
typeFloat, Type
typeFloat]
, [Type] -> Type
typeFun [Type
typeFloat, Type
typeInt, Type
typeFloat]
, [Type] -> Type
typeFun [Type
typeString, Type
typeString, Type
typeString]
, [Type] -> Type
typeFun [Type
typePath, Type
typePath, Type
typePath]
, [Type] -> Type
typeFun [Type
typeString, Type
typeString, Type
typePath]
]
)
]
NMinus -> [Constraint]
arithmetic
NMult -> [Constraint]
arithmetic
NDiv -> [Constraint]
arithmetic
where
inequality :: [Constraint]
inequality =
[ Type -> Type -> Constraint
EqConst
Type
u1
([Type] -> Type
TMany
[ [Type] -> Type
typeFun [Type
typeInt, Type
typeInt, Type
typeBool]
, [Type] -> Type
typeFun [Type
typeFloat, Type
typeFloat, Type
typeBool]
, [Type] -> Type
typeFun [Type
typeInt, Type
typeFloat, Type
typeBool]
, [Type] -> Type
typeFun [Type
typeFloat, Type
typeInt, Type
typeBool]
]
)
]
arithmetic :: [Constraint]
arithmetic =
[ Type -> Type -> Constraint
EqConst
Type
u1
([Type] -> Type
TMany
[ [Type] -> Type
typeFun [Type
typeInt, Type
typeInt, Type
typeInt]
, [Type] -> Type
typeFun [Type
typeFloat, Type
typeFloat, Type
typeFloat]
, [Type] -> Type
typeFun [Type
typeInt, Type
typeFloat, Type
typeFloat]
, [Type] -> Type
typeFun [Type
typeFloat, Type
typeInt, Type
typeFloat]
]
)
]
liftInfer :: Monad m => m a -> InferT s m a
liftInfer :: m a -> InferT s m a
liftInfer = ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a
forall s (m :: * -> *) a.
ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a
InferT (ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
-> InferT s m a)
-> (m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> m a
-> InferT s m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. StateT InferState (ExceptT InferError m) a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (StateT InferState (ExceptT InferError m) a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a)
-> (m a -> StateT InferState (ExceptT InferError m) a)
-> m a
-> ReaderT
(Set TVar, Scopes (InferT s m) (Judgment s))
(StateT InferState (ExceptT InferError m))
a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ExceptT InferError m a
-> StateT InferState (ExceptT InferError m) a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (ExceptT InferError m a
-> StateT InferState (ExceptT InferError m) a)
-> (m a -> ExceptT InferError m a)
-> m a
-> StateT InferState (ExceptT InferError m) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m a -> ExceptT InferError m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
instance MonadRef m => MonadRef (InferT s m) where
type Ref (InferT s m) = Ref m
newRef :: a -> InferT s m (Ref (InferT s m) a)
newRef x :: a
x = m (Ref m a) -> InferT s m (Ref (InferT s m) a)
forall (m :: * -> *) a s. Monad m => m a -> InferT s m a
liftInfer (m (Ref m a) -> InferT s m (Ref (InferT s m) a))
-> m (Ref m a) -> InferT s m (Ref (InferT s m) a)
forall a b. (a -> b) -> a -> b
$ a -> m (Ref m a)
forall (m :: * -> *) a. MonadRef m => a -> m (Ref m a)
newRef a
x
readRef :: Ref (InferT s m) a -> InferT s m a
readRef x :: Ref (InferT s m) a
x = m a -> InferT s m a
forall (m :: * -> *) a s. Monad m => m a -> InferT s m a
liftInfer (m a -> InferT s m a) -> m a -> InferT s m a
forall a b. (a -> b) -> a -> b
$ Ref m a -> m a
forall (m :: * -> *) a. MonadRef m => Ref m a -> m a
readRef Ref m a
Ref (InferT s m) a
x
writeRef :: Ref (InferT s m) a -> a -> InferT s m ()
writeRef x :: Ref (InferT s m) a
x y :: a
y = m () -> InferT s m ()
forall (m :: * -> *) a s. Monad m => m a -> InferT s m a
liftInfer (m () -> InferT s m ()) -> m () -> InferT s m ()
forall a b. (a -> b) -> a -> b
$ Ref m a -> a -> m ()
forall (m :: * -> *) a. MonadRef m => Ref m a -> a -> m ()
writeRef Ref m a
Ref (InferT s m) a
x a
y
instance MonadAtomicRef m => MonadAtomicRef (InferT s m) where
atomicModifyRef :: Ref (InferT s m) a -> (a -> (a, b)) -> InferT s m b
atomicModifyRef x :: Ref (InferT s m) a
x f :: a -> (a, b)
f = m b -> InferT s m b
forall (m :: * -> *) a s. Monad m => m a -> InferT s m a
liftInfer (m b -> InferT s m b) -> m b -> InferT s m b
forall a b. (a -> b) -> a -> b
$ do
b
res <- (a, b) -> b
forall a b. (a, b) -> b
snd ((a, b) -> b) -> (a -> (a, b)) -> a -> b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b)
f (a -> b) -> m a -> m b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Ref m a -> m a
forall (m :: * -> *) a. MonadRef m => Ref m a -> m a
readRef Ref m a
Ref (InferT s m) a
x
()
_ <- Ref m a -> (a -> a) -> m ()
forall (m :: * -> *) a. MonadRef m => Ref m a -> (a -> a) -> m ()
modifyRef Ref m a
Ref (InferT s m) a
x ((a, b) -> a
forall a b. (a, b) -> a
fst ((a, b) -> a) -> (a -> (a, b)) -> a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> (a, b)
f)
b -> m b
forall (m :: * -> *) a. Monad m => a -> m a
return b
res
instance Monad m => MonadThrow (InferT s m) where
throwM :: e -> InferT s m a
throwM = InferError -> InferT s m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (InferError -> InferT s m a)
-> (e -> InferError) -> e -> InferT s m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. e -> InferError
forall s. Exception s => s -> InferError
EvaluationError
instance Monad m => MonadCatch (InferT s m) where
catch :: InferT s m a -> (e -> InferT s m a) -> InferT s m a
catch m :: InferT s m a
m h :: e -> InferT s m a
h = InferT s m a -> (InferError -> InferT s m a) -> InferT s m a
forall e (m :: * -> *) a.
MonadError e m =>
m a -> (e -> m a) -> m a
catchError InferT s m a
m ((InferError -> InferT s m a) -> InferT s m a)
-> (InferError -> InferT s m a) -> InferT s m a
forall a b. (a -> b) -> a -> b
$ \case
EvaluationError e :: s
e -> InferT s m a -> (e -> InferT s m a) -> Maybe e -> InferT s m a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe
(String -> InferT s m a
forall a. HasCallStack => String -> a
error (String -> InferT s m a) -> String -> InferT s m a
forall a b. (a -> b) -> a -> b
$ "Exception was not an exception: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ s -> String
forall a. Show a => a -> String
show s
e)
e -> InferT s m a
h
(SomeException -> Maybe e
forall e. Exception e => SomeException -> Maybe e
fromException (s -> SomeException
forall e. Exception e => e -> SomeException
toException s
e))
err :: InferError
err -> String -> InferT s m a
forall a. HasCallStack => String -> a
error (String -> InferT s m a) -> String -> InferT s m a
forall a b. (a -> b) -> a -> b
$ "Unexpected error: " String -> ShowS
forall a. [a] -> [a] -> [a]
++ InferError -> String
forall a. Show a => a -> String
show InferError
err
type MonadInfer m
= (
MonadVar m, MonadFix m)
instance Monad m => MonadValue (Judgment s) (InferT s m) where
defer :: InferT s m (Judgment s) -> InferT s m (Judgment s)
defer = InferT s m (Judgment s) -> InferT s m (Judgment s)
forall a. a -> a
id
demand :: Judgment s -> (Judgment s -> InferT s m r) -> InferT s m r
demand = ((Judgment s -> InferT s m r) -> Judgment s -> InferT s m r)
-> Judgment s -> (Judgment s -> InferT s m r) -> InferT s m r
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Judgment s -> InferT s m r) -> Judgment s -> InferT s m r
forall a b. (a -> b) -> a -> b
($)
inform :: Judgment s
-> (InferT s m (Judgment s) -> InferT s m (Judgment s))
-> InferT s m (Judgment s)
inform j :: Judgment s
j f :: InferT s m (Judgment s) -> InferT s m (Judgment s)
f = InferT s m (Judgment s) -> InferT s m (Judgment s)
f (Judgment s -> InferT s m (Judgment s)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Judgment s
j)
instance MonadInfer m => MonadEval (Judgment s) (InferT s m) where
freeVariable :: Name -> InferT s m (Judgment s)
freeVariable var :: Name
var = do
Type
tv <- InferT s m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment (Name -> Type -> Assumption
As.singleton Name
var Type
tv) [] Type
tv
synHole :: Name -> InferT s m (Judgment s)
synHole var :: Name
var = do
Type
tv <- InferT s m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment (Name -> Type -> Assumption
As.singleton Name
var Type
tv) [] Type
tv
attrMissing :: NonEmpty Name -> Maybe (Judgment s) -> InferT s m (Judgment s)
attrMissing _ _ = Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty [] (Type -> Judgment s) -> InferT s m Type -> InferT s m (Judgment s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InferT s m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh
evaledSym :: Name -> Judgment s -> InferT s m (Judgment s)
evaledSym _ = Judgment s -> InferT s m (Judgment s)
forall (f :: * -> *) a. Applicative f => a -> f a
pure
evalCurPos :: InferT s m (Judgment s)
evalCurPos = Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty [] (Type -> Judgment s) -> Type -> Judgment s
forall a b. (a -> b) -> a -> b
$ Bool -> AttrSet Type -> Type
TSet Bool
False (AttrSet Type -> Type) -> AttrSet Type -> Type
forall a b. (a -> b) -> a -> b
$ [(Name, Type)] -> AttrSet Type
forall k v. (Eq k, Hashable k) => [(k, v)] -> HashMap k v
M.fromList
[("file", Type
typePath), ("line", Type
typeInt), ("col", Type
typeInt)]
evalConstant :: NAtom -> InferT s m (Judgment s)
evalConstant c :: NAtom
c = Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty [] (NAtom -> Type
go NAtom
c)
where
go :: NAtom -> Type
go = \case
NURI _ -> Type
typeString
NInt _ -> Type
typeInt
NFloat _ -> Type
typeFloat
NBool _ -> Type
typeBool
NNull -> Type
typeNull
evalString :: NString (InferT s m (Judgment s)) -> InferT s m (Judgment s)
evalString = InferT s m (Judgment s)
-> NString (InferT s m (Judgment s)) -> InferT s m (Judgment s)
forall a b. a -> b -> a
const (InferT s m (Judgment s)
-> NString (InferT s m (Judgment s)) -> InferT s m (Judgment s))
-> InferT s m (Judgment s)
-> NString (InferT s m (Judgment s))
-> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty [] Type
typeString
evalLiteralPath :: String -> InferT s m (Judgment s)
evalLiteralPath = InferT s m (Judgment s) -> String -> InferT s m (Judgment s)
forall a b. a -> b -> a
const (InferT s m (Judgment s) -> String -> InferT s m (Judgment s))
-> InferT s m (Judgment s) -> String -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty [] Type
typePath
evalEnvPath :: String -> InferT s m (Judgment s)
evalEnvPath = InferT s m (Judgment s) -> String -> InferT s m (Judgment s)
forall a b. a -> b -> a
const (InferT s m (Judgment s) -> String -> InferT s m (Judgment s))
-> InferT s m (Judgment s) -> String -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty [] Type
typePath
evalUnary :: NUnaryOp -> Judgment s -> InferT s m (Judgment s)
evalUnary op :: NUnaryOp
op (Judgment as1 :: Assumption
as1 cs1 :: [Constraint]
cs1 t1 :: Type
t1) = do
Type
tv <- InferT s m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
as1 ([Constraint]
cs1 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ Type -> NUnaryOp -> [Constraint]
unops (Type
t1 Type -> Type -> Type
:~> Type
tv) NUnaryOp
op) Type
tv
evalBinary :: NBinaryOp
-> Judgment s -> InferT s m (Judgment s) -> InferT s m (Judgment s)
evalBinary op :: NBinaryOp
op (Judgment as1 :: Assumption
as1 cs1 :: [Constraint]
cs1 t1 :: Type
t1) e2 :: InferT s m (Judgment s)
e2 = do
Judgment as2 :: Assumption
as2 cs2 :: [Constraint]
cs2 t2 :: Type
t2 <- InferT s m (Judgment s)
e2
Type
tv <- InferT s m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment (Assumption
as1 Assumption -> Assumption -> Assumption
`As.merge` Assumption
as2)
([Constraint]
cs1 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Constraint]
cs2 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ Type -> NBinaryOp -> [Constraint]
binops (Type
t1 Type -> Type -> Type
:~> Type
t2 Type -> Type -> Type
:~> Type
tv) NBinaryOp
op)
Type
tv
evalWith :: InferT s m (Judgment s)
-> InferT s m (Judgment s) -> InferT s m (Judgment s)
evalWith = InferT s m (Judgment s)
-> InferT s m (Judgment s) -> InferT s m (Judgment s)
forall v (m :: * -> *). MonadNixEval v m => m v -> m v -> m v
Eval.evalWithAttrSet
evalIf :: Judgment s
-> InferT s m (Judgment s)
-> InferT s m (Judgment s)
-> InferT s m (Judgment s)
evalIf (Judgment as1 :: Assumption
as1 cs1 :: [Constraint]
cs1 t1 :: Type
t1) t :: InferT s m (Judgment s)
t f :: InferT s m (Judgment s)
f = do
Judgment as2 :: Assumption
as2 cs2 :: [Constraint]
cs2 t2 :: Type
t2 <- InferT s m (Judgment s)
t
Judgment as3 :: Assumption
as3 cs3 :: [Constraint]
cs3 t3 :: Type
t3 <- InferT s m (Judgment s)
f
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment
(Assumption
as1 Assumption -> Assumption -> Assumption
`As.merge` Assumption
as2 Assumption -> Assumption -> Assumption
`As.merge` Assumption
as3)
([Constraint]
cs1 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Constraint]
cs2 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Constraint]
cs3 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Type -> Type -> Constraint
EqConst Type
t1 Type
typeBool, Type -> Type -> Constraint
EqConst Type
t2 Type
t3])
Type
t2
evalAssert :: Judgment s -> InferT s m (Judgment s) -> InferT s m (Judgment s)
evalAssert (Judgment as1 :: Assumption
as1 cs1 :: [Constraint]
cs1 t1 :: Type
t1) body :: InferT s m (Judgment s)
body = do
Judgment as2 :: Assumption
as2 cs2 :: [Constraint]
cs2 t2 :: Type
t2 <- InferT s m (Judgment s)
body
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return
(Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment (Assumption
as1 Assumption -> Assumption -> Assumption
`As.merge` Assumption
as2) ([Constraint]
cs1 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Constraint]
cs2 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Type -> Type -> Constraint
EqConst Type
t1 Type
typeBool]) Type
t2
evalApp :: Judgment s -> InferT s m (Judgment s) -> InferT s m (Judgment s)
evalApp (Judgment as1 :: Assumption
as1 cs1 :: [Constraint]
cs1 t1 :: Type
t1) e2 :: InferT s m (Judgment s)
e2 = do
Judgment as2 :: Assumption
as2 cs2 :: [Constraint]
cs2 t2 :: Type
t2 <- InferT s m (Judgment s)
e2
Type
tv <- InferT s m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment (Assumption
as1 Assumption -> Assumption -> Assumption
`As.merge` Assumption
as2)
([Constraint]
cs1 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Constraint]
cs2 [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [Type -> Type -> Constraint
EqConst Type
t1 (Type
t2 Type -> Type -> Type
:~> Type
tv)])
Type
tv
evalAbs :: Params (InferT s m (Judgment s))
-> (forall a.
InferT s m (Judgment s)
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s) -> InferT s m (a, Judgment s))
-> InferT s m (a, Judgment s))
-> InferT s m (Judgment s)
evalAbs (Param x :: Name
x) k :: forall a.
InferT s m (Judgment s)
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s) -> InferT s m (a, Judgment s))
-> InferT s m (a, Judgment s)
k = do
TVar
a <- InferT s m TVar
forall (m :: * -> *). MonadState InferState m => m TVar
freshTVar
let tv :: Type
tv = TVar -> Type
TVar TVar
a
((), Judgment as :: Assumption
as cs :: [Constraint]
cs t :: Type
t) <- TVar -> InferT s m ((), Judgment s) -> InferT s m ((), Judgment s)
forall (m :: * -> *) s a.
Monad m =>
TVar -> InferT s m a -> InferT s m a
extendMSet
TVar
a
(InferT s m (Judgment s)
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s) -> InferT s m ((), Judgment s))
-> InferT s m ((), Judgment s)
forall a.
InferT s m (Judgment s)
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s) -> InferT s m (a, Judgment s))
-> InferT s m (a, Judgment s)
k (Judgment s -> InferT s m (Judgment s)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment (Name -> Type -> Assumption
As.singleton Name
x Type
tv) [] Type
tv)) (\_ b :: InferT s m (Judgment s)
b -> ((), ) (Judgment s -> ((), Judgment s))
-> InferT s m (Judgment s) -> InferT s m ((), Judgment s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InferT s m (Judgment s)
b))
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment (Assumption
as Assumption -> Name -> Assumption
`As.remove` Name
x)
([Constraint]
cs [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [ Type -> Type -> Constraint
EqConst Type
t' Type
tv | Type
t' <- Name -> Assumption -> [Type]
As.lookup Name
x Assumption
as ])
(Type
tv Type -> Type -> Type
:~> Type
t)
evalAbs (ParamSet ps :: ParamSet (InferT s m (Judgment s))
ps variadic :: Bool
variadic _mname :: Maybe Name
_mname) k :: forall a.
InferT s m (Judgment s)
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s) -> InferT s m (a, Judgment s))
-> InferT s m (a, Judgment s)
k = do
[(Name, Type)]
js <- ([[(Name, Type)]] -> [(Name, Type)])
-> InferT s m [[(Name, Type)]] -> InferT s m [(Name, Type)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap [[(Name, Type)]] -> [(Name, Type)]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat (InferT s m [[(Name, Type)]] -> InferT s m [(Name, Type)])
-> InferT s m [[(Name, Type)]] -> InferT s m [(Name, Type)]
forall a b. (a -> b) -> a -> b
$ ParamSet (InferT s m (Judgment s))
-> ((Name, Maybe (InferT s m (Judgment s)))
-> InferT s m [(Name, Type)])
-> InferT s m [[(Name, Type)]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM ParamSet (InferT s m (Judgment s))
ps (((Name, Maybe (InferT s m (Judgment s)))
-> InferT s m [(Name, Type)])
-> InferT s m [[(Name, Type)]])
-> ((Name, Maybe (InferT s m (Judgment s)))
-> InferT s m [(Name, Type)])
-> InferT s m [[(Name, Type)]]
forall a b. (a -> b) -> a -> b
$ \(name :: Name
name, _) -> do
Type
tv <- InferT s m Type
forall (m :: * -> *). MonadState InferState m => m Type
fresh
[(Name, Type)] -> InferT s m [(Name, Type)]
forall (f :: * -> *) a. Applicative f => a -> f a
pure [(Name
name, Type
tv)]
let (env :: Assumption
env, tys :: AttrSet Type
tys) =
(\f :: (Assumption, AttrSet Type)
-> (Name, Type) -> (Assumption, AttrSet Type)
f -> ((Assumption, AttrSet Type)
-> (Name, Type) -> (Assumption, AttrSet Type))
-> (Assumption, AttrSet Type)
-> [(Name, Type)]
-> (Assumption, AttrSet Type)
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' (Assumption, AttrSet Type)
-> (Name, Type) -> (Assumption, AttrSet Type)
f (Assumption
As.empty, AttrSet Type
forall k v. HashMap k v
M.empty) [(Name, Type)]
js) (((Assumption, AttrSet Type)
-> (Name, Type) -> (Assumption, AttrSet Type))
-> (Assumption, AttrSet Type))
-> ((Assumption, AttrSet Type)
-> (Name, Type) -> (Assumption, AttrSet Type))
-> (Assumption, AttrSet Type)
forall a b. (a -> b) -> a -> b
$ \(as1 :: Assumption
as1, t1 :: AttrSet Type
t1) (k :: Name
k, t :: Type
t) ->
(Assumption
as1 Assumption -> Assumption -> Assumption
`As.merge` Name -> Type -> Assumption
As.singleton Name
k Type
t, Name -> Type -> AttrSet Type -> AttrSet Type
forall k v.
(Eq k, Hashable k) =>
k -> v -> HashMap k v -> HashMap k v
M.insert Name
k Type
t AttrSet Type
t1)
arg :: InferT s m (Judgment s)
arg = Judgment s -> InferT s m (Judgment s)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
env [] (Bool -> AttrSet Type -> Type
TSet Bool
True AttrSet Type
tys)
call :: InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
call = InferT s m (Judgment s)
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s)
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s))
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
forall a.
InferT s m (Judgment s)
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s) -> InferT s m (a, Judgment s))
-> InferT s m (a, Judgment s)
k InferT s m (Judgment s)
arg ((AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s)
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s))
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s))
-> (AttrSet (InferT s m (Judgment s))
-> InferT s m (Judgment s)
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s))
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
forall a b. (a -> b) -> a -> b
$ \args :: AttrSet (InferT s m (Judgment s))
args b :: InferT s m (Judgment s)
b -> (AttrSet (InferT s m (Judgment s))
args, ) (Judgment s -> (AttrSet (InferT s m (Judgment s)), Judgment s))
-> InferT s m (Judgment s)
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InferT s m (Judgment s)
b
names :: [Name]
names = ((Name, Type) -> Name) -> [(Name, Type)] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map (Name, Type) -> Name
forall a b. (a, b) -> a
fst [(Name, Type)]
js
(args :: AttrSet (InferT s m (Judgment s))
args, Judgment as :: Assumption
as cs :: [Constraint]
cs t :: Type
t) <- ((Name, Type)
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s))
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
-> [(Name, Type)]
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\(_, TVar a :: TVar
a) -> TVar
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
-> InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
forall (m :: * -> *) s a.
Monad m =>
TVar -> InferT s m a -> InferT s m a
extendMSet TVar
a) InferT s m (AttrSet (InferT s m (Judgment s)), Judgment s)
call [(Name, Type)]
js
Type
ty <- Bool -> AttrSet Type -> Type
TSet Bool
variadic (AttrSet Type -> Type)
-> InferT s m (AttrSet Type) -> InferT s m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (InferT s m (Judgment s) -> InferT s m Type)
-> AttrSet (InferT s m (Judgment s)) -> InferT s m (AttrSet Type)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Judgment s -> Type
forall s. Judgment s -> Type
inferredType (Judgment s -> Type) -> InferT s m (Judgment s) -> InferT s m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>) AttrSet (InferT s m (Judgment s))
args
Judgment s -> InferT s m (Judgment s)
forall (m :: * -> *) a. Monad m => a -> m a
return (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment
((Assumption -> Name -> Assumption)
-> Assumption -> [Name] -> Assumption
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' Assumption -> Name -> Assumption
As.remove Assumption
as [Name]
names)
([Constraint]
cs [Constraint] -> [Constraint] -> [Constraint]
forall a. [a] -> [a] -> [a]
++ [ Type -> Type -> Constraint
EqConst Type
t' (AttrSet Type
tys AttrSet Type -> Name -> Type
forall k v. (Eq k, Hashable k) => HashMap k v -> k -> v
M.! Name
x) | Name
x <- [Name]
names, Type
t' <- Name -> Assumption -> [Type]
As.lookup Name
x Assumption
as ])
(Type
ty Type -> Type -> Type
:~> Type
t)
evalError :: s -> InferT s m a
evalError = InferError -> InferT s m a
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (InferError -> InferT s m a)
-> (s -> InferError) -> s -> InferT s m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. s -> InferError
forall s. Exception s => s -> InferError
EvaluationError
data Judgment s = Judgment
{ Judgment s -> Assumption
assumptions :: As.Assumption
, Judgment s -> [Constraint]
typeConstraints :: [Constraint]
, Judgment s -> Type
inferredType :: Type
}
deriving Int -> Judgment s -> ShowS
[Judgment s] -> ShowS
Judgment s -> String
(Int -> Judgment s -> ShowS)
-> (Judgment s -> String)
-> ([Judgment s] -> ShowS)
-> Show (Judgment s)
forall s. Int -> Judgment s -> ShowS
forall s. [Judgment s] -> ShowS
forall s. Judgment s -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Judgment s] -> ShowS
$cshowList :: forall s. [Judgment s] -> ShowS
show :: Judgment s -> String
$cshow :: forall s. Judgment s -> String
showsPrec :: Int -> Judgment s -> ShowS
$cshowsPrec :: forall s. Int -> Judgment s -> ShowS
Show
instance Monad m => FromValue NixString (InferT s m) (Judgment s) where
fromValueMay :: Judgment s -> InferT s m (Maybe NixString)
fromValueMay _ = Maybe NixString -> InferT s m (Maybe NixString)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe NixString
forall a. Maybe a
Nothing
fromValue :: Judgment s -> InferT s m NixString
fromValue _ = String -> InferT s m NixString
forall a. HasCallStack => String -> a
error "Unused"
instance MonadInfer m
=> FromValue (AttrSet (Judgment s), AttrSet SourcePos)
(InferT s m) (Judgment s) where
fromValueMay :: Judgment s
-> InferT s m (Maybe (AttrSet (Judgment s), AttrSet SourcePos))
fromValueMay (Judgment _ _ (TSet _ xs :: AttrSet Type
xs)) = do
let sing :: p -> Type -> Judgment s
sing _ = Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty []
Maybe (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (Maybe (AttrSet (Judgment s), AttrSet SourcePos))
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (Maybe (AttrSet (Judgment s), AttrSet SourcePos)))
-> Maybe (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (Maybe (AttrSet (Judgment s), AttrSet SourcePos))
forall a b. (a -> b) -> a -> b
$ (AttrSet (Judgment s), AttrSet SourcePos)
-> Maybe (AttrSet (Judgment s), AttrSet SourcePos)
forall a. a -> Maybe a
Just ((Name -> Type -> Judgment s)
-> AttrSet Type -> AttrSet (Judgment s)
forall k v1 v2. (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
M.mapWithKey Name -> Type -> Judgment s
forall p s. p -> Type -> Judgment s
sing AttrSet Type
xs, AttrSet SourcePos
forall k v. HashMap k v
M.empty)
fromValueMay _ = Maybe (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (Maybe (AttrSet (Judgment s), AttrSet SourcePos))
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe (AttrSet (Judgment s), AttrSet SourcePos)
forall a. Maybe a
Nothing
fromValue :: Judgment s -> InferT s m (AttrSet (Judgment s), AttrSet SourcePos)
fromValue = Judgment s
-> InferT s m (Maybe (AttrSet (Judgment s), AttrSet SourcePos))
forall a (m :: * -> *) v. FromValue a m v => v -> m (Maybe a)
fromValueMay (Judgment s
-> InferT s m (Maybe (AttrSet (Judgment s), AttrSet SourcePos)))
-> (Maybe (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (AttrSet (Judgment s), AttrSet SourcePos))
-> Judgment s
-> InferT s m (AttrSet (Judgment s), AttrSet SourcePos)
forall (m :: * -> *) a b c.
Monad m =>
(a -> m b) -> (b -> m c) -> a -> m c
>=> \case
Just v :: (AttrSet (Judgment s), AttrSet SourcePos)
v -> (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (AttrSet (Judgment s), AttrSet SourcePos)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (AttrSet (Judgment s), AttrSet SourcePos)
v
Nothing -> (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (AttrSet (Judgment s), AttrSet SourcePos)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (AttrSet (Judgment s)
forall k v. HashMap k v
M.empty, AttrSet SourcePos
forall k v. HashMap k v
M.empty)
instance MonadInfer m
=> ToValue (AttrSet (Judgment s), AttrSet SourcePos)
(InferT s m) (Judgment s) where
toValue :: (AttrSet (Judgment s), AttrSet SourcePos)
-> InferT s m (Judgment s)
toValue (xs :: AttrSet (Judgment s)
xs, _) =
Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment
(Assumption -> [Constraint] -> Type -> Judgment s)
-> InferT s m Assumption
-> InferT s m ([Constraint] -> Type -> Judgment s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Judgment s -> Assumption -> InferT s m Assumption)
-> Assumption -> AttrSet (Judgment s) -> InferT s m Assumption
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> b -> m b) -> b -> t a -> m b
foldrM Judgment s -> Assumption -> InferT s m Assumption
forall s (m :: * -> *).
(MonadValue (Judgment s) m, Applicative m) =>
Judgment s -> Assumption -> m Assumption
go Assumption
As.empty AttrSet (Judgment s)
xs
InferT s m ([Constraint] -> Type -> Judgment s)
-> InferT s m [Constraint] -> InferT s m (Type -> Judgment s)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (HashMap Name [Constraint] -> [Constraint]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat (HashMap Name [Constraint] -> [Constraint])
-> InferT s m (HashMap Name [Constraint])
-> InferT s m [Constraint]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Judgment s -> InferT s m [Constraint])
-> AttrSet (Judgment s) -> InferT s m (HashMap Name [Constraint])
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Judgment s
-> (Judgment s -> InferT s m [Constraint])
-> InferT s m [Constraint]
forall v (m :: * -> *) r. MonadValue v m => v -> (v -> m r) -> m r
`demand` ([Constraint] -> InferT s m [Constraint]
forall (f :: * -> *) a. Applicative f => a -> f a
pure ([Constraint] -> InferT s m [Constraint])
-> (Judgment s -> [Constraint])
-> Judgment s
-> InferT s m [Constraint]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Judgment s -> [Constraint]
forall s. Judgment s -> [Constraint]
typeConstraints)) AttrSet (Judgment s)
xs)
InferT s m (Type -> Judgment s)
-> InferT s m Type -> InferT s m (Judgment s)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> (Bool -> AttrSet Type -> Type
TSet Bool
True (AttrSet Type -> Type)
-> InferT s m (AttrSet Type) -> InferT s m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Judgment s -> InferT s m Type)
-> AttrSet (Judgment s) -> InferT s m (AttrSet Type)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Judgment s -> (Judgment s -> InferT s m Type) -> InferT s m Type
forall v (m :: * -> *) r. MonadValue v m => v -> (v -> m r) -> m r
`demand` (Type -> InferT s m Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Type -> InferT s m Type)
-> (Judgment s -> Type) -> Judgment s -> InferT s m Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Judgment s -> Type
forall s. Judgment s -> Type
inferredType)) AttrSet (Judgment s)
xs)
where go :: Judgment s -> Assumption -> m Assumption
go x :: Judgment s
x rest :: Assumption
rest = Judgment s -> (Judgment s -> m Assumption) -> m Assumption
forall v (m :: * -> *) r. MonadValue v m => v -> (v -> m r) -> m r
demand Judgment s
x ((Judgment s -> m Assumption) -> m Assumption)
-> (Judgment s -> m Assumption) -> m Assumption
forall a b. (a -> b) -> a -> b
$ \x' :: Judgment s
x' -> Assumption -> m Assumption
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Assumption -> m Assumption) -> Assumption -> m Assumption
forall a b. (a -> b) -> a -> b
$ Assumption -> Assumption -> Assumption
As.merge (Judgment s -> Assumption
forall s. Judgment s -> Assumption
assumptions Judgment s
x') Assumption
rest
instance MonadInfer m => ToValue [Judgment s] (InferT s m) (Judgment s) where
toValue :: [Judgment s] -> InferT s m (Judgment s)
toValue xs :: [Judgment s]
xs =
Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment
(Assumption -> [Constraint] -> Type -> Judgment s)
-> InferT s m Assumption
-> InferT s m ([Constraint] -> Type -> Judgment s)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Judgment s -> Assumption -> InferT s m Assumption)
-> Assumption -> [Judgment s] -> InferT s m Assumption
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> b -> m b) -> b -> t a -> m b
foldrM Judgment s -> Assumption -> InferT s m Assumption
forall s (m :: * -> *).
(MonadValue (Judgment s) m, Applicative m) =>
Judgment s -> Assumption -> m Assumption
go Assumption
As.empty [Judgment s]
xs
InferT s m ([Constraint] -> Type -> Judgment s)
-> InferT s m [Constraint] -> InferT s m (Type -> Judgment s)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ([[Constraint]] -> [Constraint]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[Constraint]] -> [Constraint])
-> InferT s m [[Constraint]] -> InferT s m [Constraint]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Judgment s -> InferT s m [Constraint])
-> [Judgment s] -> InferT s m [[Constraint]]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Judgment s
-> (Judgment s -> InferT s m [Constraint])
-> InferT s m [Constraint]
forall v (m :: * -> *) r. MonadValue v m => v -> (v -> m r) -> m r
`demand` ([Constraint] -> InferT s m [Constraint]
forall (f :: * -> *) a. Applicative f => a -> f a
pure ([Constraint] -> InferT s m [Constraint])
-> (Judgment s -> [Constraint])
-> Judgment s
-> InferT s m [Constraint]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Judgment s -> [Constraint]
forall s. Judgment s -> [Constraint]
typeConstraints)) [Judgment s]
xs)
InferT s m (Type -> Judgment s)
-> InferT s m Type -> InferT s m (Judgment s)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ([Type] -> Type
TList ([Type] -> Type) -> InferT s m [Type] -> InferT s m Type
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Judgment s -> InferT s m Type)
-> [Judgment s] -> InferT s m [Type]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Judgment s -> (Judgment s -> InferT s m Type) -> InferT s m Type
forall v (m :: * -> *) r. MonadValue v m => v -> (v -> m r) -> m r
`demand` (Type -> InferT s m Type
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Type -> InferT s m Type)
-> (Judgment s -> Type) -> Judgment s -> InferT s m Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Judgment s -> Type
forall s. Judgment s -> Type
inferredType)) [Judgment s]
xs)
where go :: Judgment s -> Assumption -> m Assumption
go x :: Judgment s
x rest :: Assumption
rest = Judgment s -> (Judgment s -> m Assumption) -> m Assumption
forall v (m :: * -> *) r. MonadValue v m => v -> (v -> m r) -> m r
demand Judgment s
x ((Judgment s -> m Assumption) -> m Assumption)
-> (Judgment s -> m Assumption) -> m Assumption
forall a b. (a -> b) -> a -> b
$ \x' :: Judgment s
x' -> Assumption -> m Assumption
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Assumption -> m Assumption) -> Assumption -> m Assumption
forall a b. (a -> b) -> a -> b
$ Assumption -> Assumption -> Assumption
As.merge (Judgment s -> Assumption
forall s. Judgment s -> Assumption
assumptions Judgment s
x') Assumption
rest
instance MonadInfer m => ToValue Bool (InferT s m) (Judgment s) where
toValue :: Bool -> InferT s m (Judgment s)
toValue _ = Judgment s -> InferT s m (Judgment s)
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Judgment s -> InferT s m (Judgment s))
-> Judgment s -> InferT s m (Judgment s)
forall a b. (a -> b) -> a -> b
$ Assumption -> [Constraint] -> Type -> Judgment s
forall s. Assumption -> [Constraint] -> Type -> Judgment s
Judgment Assumption
As.empty [] Type
typeBool
infer :: MonadInfer m => NExpr -> InferT s m (Judgment s)
infer :: NExpr -> InferT s m (Judgment s)
infer = (NExprF (InferT s m (Judgment s)) -> InferT s m (Judgment s))
-> NExpr -> InferT s m (Judgment s)
forall (f :: * -> *) a. Functor f => (f a -> a) -> Fix f -> a
foldFix NExprF (InferT s m (Judgment s)) -> InferT s m (Judgment s)
forall v (m :: * -> *). MonadNixEval v m => NExprF (m v) -> m v
Eval.eval
inferTop :: Env -> [(Text, NExpr)] -> Either InferError Env
inferTop :: Env -> [(Name, NExpr)] -> Either InferError Env
inferTop env :: Env
env [] = Env -> Either InferError Env
forall a b. b -> Either a b
Right Env
env
inferTop env :: Env
env ((name :: Name
name, ex :: NExpr
ex) : xs :: [(Name, NExpr)]
xs) = case Env -> NExpr -> Either InferError [Scheme]
inferExpr Env
env NExpr
ex of
Left err :: InferError
err -> InferError -> Either InferError Env
forall a b. a -> Either a b
Left InferError
err
Right ty :: [Scheme]
ty -> Env -> [(Name, NExpr)] -> Either InferError Env
inferTop (Env -> (Name, [Scheme]) -> Env
extend Env
env (Name
name, [Scheme]
ty)) [(Name, NExpr)]
xs
normalizeScheme :: Scheme -> Scheme
normalizeScheme :: Scheme -> Scheme
normalizeScheme (Forall _ body :: Type
body) = [TVar] -> Type -> Scheme
Forall (((TVar, TVar) -> TVar) -> [(TVar, TVar)] -> [TVar]
forall a b. (a -> b) -> [a] -> [b]
map (TVar, TVar) -> TVar
forall a b. (a, b) -> b
snd [(TVar, TVar)]
ord) (Type -> Type
normtype Type
body)
where
ord :: [(TVar, TVar)]
ord = [TVar] -> [TVar] -> [(TVar, TVar)]
forall a b. [a] -> [b] -> [(a, b)]
zip ([TVar] -> [TVar]
forall a. Eq a => [a] -> [a]
nub ([TVar] -> [TVar]) -> [TVar] -> [TVar]
forall a b. (a -> b) -> a -> b
$ Type -> [TVar]
fv Type
body) ((String -> TVar) -> [String] -> [TVar]
forall a b. (a -> b) -> [a] -> [b]
map String -> TVar
TV [String]
letters)
fv :: Type -> [TVar]
fv (TVar a :: TVar
a ) = [TVar
a]
fv (a :: Type
a :~> b :: Type
b ) = Type -> [TVar]
fv Type
a [TVar] -> [TVar] -> [TVar]
forall a. [a] -> [a] -> [a]
++ Type -> [TVar]
fv Type
b
fv (TCon _ ) = []
fv (TSet _ a :: AttrSet Type
a) = (Type -> [TVar]) -> [Type] -> [TVar]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Type -> [TVar]
fv (AttrSet Type -> [Type]
forall k v. HashMap k v -> [v]
M.elems AttrSet Type
a)
fv (TList a :: [Type]
a ) = (Type -> [TVar]) -> [Type] -> [TVar]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Type -> [TVar]
fv [Type]
a
fv (TMany ts :: [Type]
ts) = (Type -> [TVar]) -> [Type] -> [TVar]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Type -> [TVar]
fv [Type]
ts
normtype :: Type -> Type
normtype (a :: Type
a :~> b :: Type
b ) = Type -> Type
normtype Type
a Type -> Type -> Type
:~> Type -> Type
normtype Type
b
normtype (TCon a :: String
a ) = String -> Type
TCon String
a
normtype (TSet b :: Bool
b a :: AttrSet Type
a) = Bool -> AttrSet Type -> Type
TSet Bool
b ((Type -> Type) -> AttrSet Type -> AttrSet Type
forall v1 v2 k. (v1 -> v2) -> HashMap k v1 -> HashMap k v2
M.map Type -> Type
normtype AttrSet Type
a)
normtype (TList a :: [Type]
a ) = [Type] -> Type
TList ((Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Type
normtype [Type]
a)
normtype (TMany ts :: [Type]
ts) = [Type] -> Type
TMany ((Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Type
normtype [Type]
ts)
normtype (TVar a :: TVar
a ) = case TVar -> [(TVar, TVar)] -> Maybe TVar
forall a b. Eq a => a -> [(a, b)] -> Maybe b
Prelude.lookup TVar
a [(TVar, TVar)]
ord of
Just x :: TVar
x -> TVar -> Type
TVar TVar
x
Nothing -> String -> Type
forall a. HasCallStack => String -> a
error "type variable not in signature"
newtype Solver m a = Solver (LogicT (StateT [TypeError] m) a)
deriving (a -> Solver m b -> Solver m a
(a -> b) -> Solver m a -> Solver m b
(forall a b. (a -> b) -> Solver m a -> Solver m b)
-> (forall a b. a -> Solver m b -> Solver m a)
-> Functor (Solver m)
forall a b. a -> Solver m b -> Solver m a
forall a b. (a -> b) -> Solver m a -> Solver m b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
forall (m :: * -> *) a b. a -> Solver m b -> Solver m a
forall (m :: * -> *) a b. (a -> b) -> Solver m a -> Solver m b
<$ :: a -> Solver m b -> Solver m a
$c<$ :: forall (m :: * -> *) a b. a -> Solver m b -> Solver m a
fmap :: (a -> b) -> Solver m a -> Solver m b
$cfmap :: forall (m :: * -> *) a b. (a -> b) -> Solver m a -> Solver m b
Functor, Functor (Solver m)
a -> Solver m a
Functor (Solver m) =>
(forall a. a -> Solver m a)
-> (forall a b. Solver m (a -> b) -> Solver m a -> Solver m b)
-> (forall a b c.
(a -> b -> c) -> Solver m a -> Solver m b -> Solver m c)
-> (forall a b. Solver m a -> Solver m b -> Solver m b)
-> (forall a b. Solver m a -> Solver m b -> Solver m a)
-> Applicative (Solver m)
Solver m a -> Solver m b -> Solver m b
Solver m a -> Solver m b -> Solver m a
Solver m (a -> b) -> Solver m a -> Solver m b
(a -> b -> c) -> Solver m a -> Solver m b -> Solver m c
forall a. a -> Solver m a
forall a b. Solver m a -> Solver m b -> Solver m a
forall a b. Solver m a -> Solver m b -> Solver m b
forall a b. Solver m (a -> b) -> Solver m a -> Solver m b
forall a b c.
(a -> b -> c) -> Solver m a -> Solver m b -> Solver m c
forall (m :: * -> *). Functor (Solver m)
forall (f :: * -> *).
Functor f =>
(forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
forall (m :: * -> *) a. a -> Solver m a
forall (m :: * -> *) a b. Solver m a -> Solver m b -> Solver m a
forall (m :: * -> *) a b. Solver m a -> Solver m b -> Solver m b
forall (m :: * -> *) a b.
Solver m (a -> b) -> Solver m a -> Solver m b
forall (m :: * -> *) a b c.
(a -> b -> c) -> Solver m a -> Solver m b -> Solver m c
<* :: Solver m a -> Solver m b -> Solver m a
$c<* :: forall (m :: * -> *) a b. Solver m a -> Solver m b -> Solver m a
*> :: Solver m a -> Solver m b -> Solver m b
$c*> :: forall (m :: * -> *) a b. Solver m a -> Solver m b -> Solver m b
liftA2 :: (a -> b -> c) -> Solver m a -> Solver m b -> Solver m c
$cliftA2 :: forall (m :: * -> *) a b c.
(a -> b -> c) -> Solver m a -> Solver m b -> Solver m c
<*> :: Solver m (a -> b) -> Solver m a -> Solver m b
$c<*> :: forall (m :: * -> *) a b.
Solver m (a -> b) -> Solver m a -> Solver m b
pure :: a -> Solver m a
$cpure :: forall (m :: * -> *) a. a -> Solver m a
$cp1Applicative :: forall (m :: * -> *). Functor (Solver m)
Applicative, Applicative (Solver m)
Solver m a
Applicative (Solver m) =>
(forall a. Solver m a)
-> (forall a. Solver m a -> Solver m a -> Solver m a)
-> (forall a. Solver m a -> Solver m [a])
-> (forall a. Solver m a -> Solver m [a])
-> Alternative (Solver m)
Solver m a -> Solver m a -> Solver m a
Solver m a -> Solver m [a]
Solver m a -> Solver m [a]
forall a. Solver m a
forall a. Solver m a -> Solver m [a]
forall a. Solver m a -> Solver m a -> Solver m a
forall (m :: * -> *). Applicative (Solver m)
forall (f :: * -> *).
Applicative f =>
(forall a. f a)
-> (forall a. f a -> f a -> f a)
-> (forall a. f a -> f [a])
-> (forall a. f a -> f [a])
-> Alternative f
forall (m :: * -> *) a. Solver m a
forall (m :: * -> *) a. Solver m a -> Solver m [a]
forall (m :: * -> *) a. Solver m a -> Solver m a -> Solver m a
many :: Solver m a -> Solver m [a]
$cmany :: forall (m :: * -> *) a. Solver m a -> Solver m [a]
some :: Solver m a -> Solver m [a]
$csome :: forall (m :: * -> *) a. Solver m a -> Solver m [a]
<|> :: Solver m a -> Solver m a -> Solver m a
$c<|> :: forall (m :: * -> *) a. Solver m a -> Solver m a -> Solver m a
empty :: Solver m a
$cempty :: forall (m :: * -> *) a. Solver m a
$cp1Alternative :: forall (m :: * -> *). Applicative (Solver m)
Alternative, Applicative (Solver m)
a -> Solver m a
Applicative (Solver m) =>
(forall a b. Solver m a -> (a -> Solver m b) -> Solver m b)
-> (forall a b. Solver m a -> Solver m b -> Solver m b)
-> (forall a. a -> Solver m a)
-> Monad (Solver m)
Solver m a -> (a -> Solver m b) -> Solver m b
Solver m a -> Solver m b -> Solver m b
forall a. a -> Solver m a
forall a b. Solver m a -> Solver m b -> Solver m b
forall a b. Solver m a -> (a -> Solver m b) -> Solver m b
forall (m :: * -> *). Applicative (Solver m)
forall (m :: * -> *).
Applicative m =>
(forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> m b -> m b)
-> (forall a. a -> m a)
-> Monad m
forall (m :: * -> *) a. a -> Solver m a
forall (m :: * -> *) a b. Solver m a -> Solver m b -> Solver m b
forall (m :: * -> *) a b.
Solver m a -> (a -> Solver m b) -> Solver m b
return :: a -> Solver m a
$creturn :: forall (m :: * -> *) a. a -> Solver m a
>> :: Solver m a -> Solver m b -> Solver m b
$c>> :: forall (m :: * -> *) a b. Solver m a -> Solver m b -> Solver m b
>>= :: Solver m a -> (a -> Solver m b) -> Solver m b
$c>>= :: forall (m :: * -> *) a b.
Solver m a -> (a -> Solver m b) -> Solver m b
$cp1Monad :: forall (m :: * -> *). Applicative (Solver m)
Monad, Monad (Solver m)
Alternative (Solver m)
Solver m a
(Alternative (Solver m), Monad (Solver m)) =>
(forall a. Solver m a)
-> (forall a. Solver m a -> Solver m a -> Solver m a)
-> MonadPlus (Solver m)
Solver m a -> Solver m a -> Solver m a
forall a. Solver m a
forall a. Solver m a -> Solver m a -> Solver m a
forall (m :: * -> *). Monad (Solver m)
forall (m :: * -> *). Alternative (Solver m)
forall (m :: * -> *).
(Alternative m, Monad m) =>
(forall a. m a) -> (forall a. m a -> m a -> m a) -> MonadPlus m
forall (m :: * -> *) a. Solver m a
forall (m :: * -> *) a. Solver m a -> Solver m a -> Solver m a
mplus :: Solver m a -> Solver m a -> Solver m a
$cmplus :: forall (m :: * -> *) a. Solver m a -> Solver m a -> Solver m a
mzero :: Solver m a
$cmzero :: forall (m :: * -> *) a. Solver m a
$cp2MonadPlus :: forall (m :: * -> *). Monad (Solver m)
$cp1MonadPlus :: forall (m :: * -> *). Alternative (Solver m)
MonadPlus,
MonadPlus (Solver m)
MonadPlus (Solver m) =>
(forall a. Solver m a -> Solver m (Maybe (a, Solver m a)))
-> (forall a. Solver m a -> Solver m a -> Solver m a)
-> (forall a b. Solver m a -> (a -> Solver m b) -> Solver m b)
-> (forall a b.
Solver m a -> (a -> Solver m b) -> Solver m b -> Solver m b)
-> (forall a. Solver m a -> Solver m a)
-> (forall a. Solver m a -> Solver m ())
-> MonadLogic (Solver m)
Solver m a -> Solver m (Maybe (a, Solver m a))
Solver m a -> Solver m a -> Solver m a
Solver m a -> (a -> Solver m b) -> Solver m b
Solver m a -> (a -> Solver m b) -> Solver m b -> Solver m b
Solver m a -> Solver m a
Solver m a -> Solver m ()
forall a. Solver m a -> Solver m a
forall a. Solver m a -> Solver m (Maybe (a, Solver m a))
forall a. Solver m a -> Solver m ()
forall a. Solver m a -> Solver m a -> Solver m a
forall a b. Solver m a -> (a -> Solver m b) -> Solver m b
forall a b.
Solver m a -> (a -> Solver m b) -> Solver m b -> Solver m b
forall (m :: * -> *). Monad m => MonadPlus (Solver m)
forall (m :: * -> *) a. Monad m => Solver m a -> Solver m a
forall (m :: * -> *) a.
Monad m =>
Solver m a -> Solver m (Maybe (a, Solver m a))
forall (m :: * -> *) a. Monad m => Solver m a -> Solver m ()
forall (m :: * -> *) a.
Monad m =>
Solver m a -> Solver m a -> Solver m a
forall (m :: * -> *) a b.
Monad m =>
Solver m a -> (a -> Solver m b) -> Solver m b
forall (m :: * -> *) a b.
Monad m =>
Solver m a -> (a -> Solver m b) -> Solver m b -> Solver m b
forall (m :: * -> *).
MonadPlus m =>
(forall a. m a -> m (Maybe (a, m a)))
-> (forall a. m a -> m a -> m a)
-> (forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> (a -> m b) -> m b -> m b)
-> (forall a. m a -> m a)
-> (forall a. m a -> m ())
-> MonadLogic m
lnot :: Solver m a -> Solver m ()
$clnot :: forall (m :: * -> *) a. Monad m => Solver m a -> Solver m ()
once :: Solver m a -> Solver m a
$conce :: forall (m :: * -> *) a. Monad m => Solver m a -> Solver m a
ifte :: Solver m a -> (a -> Solver m b) -> Solver m b -> Solver m b
$cifte :: forall (m :: * -> *) a b.
Monad m =>
Solver m a -> (a -> Solver m b) -> Solver m b -> Solver m b
>>- :: Solver m a -> (a -> Solver m b) -> Solver m b
$c>>- :: forall (m :: * -> *) a b.
Monad m =>
Solver m a -> (a -> Solver m b) -> Solver m b
interleave :: Solver m a -> Solver m a -> Solver m a
$cinterleave :: forall (m :: * -> *) a.
Monad m =>
Solver m a -> Solver m a -> Solver m a
msplit :: Solver m a -> Solver m (Maybe (a, Solver m a))
$cmsplit :: forall (m :: * -> *) a.
Monad m =>
Solver m a -> Solver m (Maybe (a, Solver m a))
$cp1MonadLogic :: forall (m :: * -> *). Monad m => MonadPlus (Solver m)
MonadLogic, MonadState [TypeError])
instance MonadTrans Solver where
lift :: m a -> Solver m a
lift = LogicT (StateT [TypeError] m) a -> Solver m a
forall (m :: * -> *) a.
LogicT (StateT [TypeError] m) a -> Solver m a
Solver (LogicT (StateT [TypeError] m) a -> Solver m a)
-> (m a -> LogicT (StateT [TypeError] m) a) -> m a -> Solver m a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. StateT [TypeError] m a -> LogicT (StateT [TypeError] m) a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (StateT [TypeError] m a -> LogicT (StateT [TypeError] m) a)
-> (m a -> StateT [TypeError] m a)
-> m a
-> LogicT (StateT [TypeError] m) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m a -> StateT [TypeError] m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift
instance Monad m => MonadError TypeError (Solver m) where
throwError :: TypeError -> Solver m a
throwError err :: TypeError
err = LogicT (StateT [TypeError] m) a -> Solver m a
forall (m :: * -> *) a.
LogicT (StateT [TypeError] m) a -> Solver m a
Solver (LogicT (StateT [TypeError] m) a -> Solver m a)
-> LogicT (StateT [TypeError] m) a -> Solver m a
forall a b. (a -> b) -> a -> b
$ StateT [TypeError] m () -> LogicT (StateT [TypeError] m) ()
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (([TypeError] -> [TypeError]) -> StateT [TypeError] m ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify (TypeError
err TypeError -> [TypeError] -> [TypeError]
forall a. a -> [a] -> [a]
:)) LogicT (StateT [TypeError] m) ()
-> LogicT (StateT [TypeError] m) a
-> LogicT (StateT [TypeError] m) a
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> LogicT (StateT [TypeError] m) a
forall (m :: * -> *) a. MonadPlus m => m a
mzero
catchError :: Solver m a -> (TypeError -> Solver m a) -> Solver m a
catchError _ _ = String -> Solver m a
forall a. HasCallStack => String -> a
error "This is never used"
runSolver :: Monad m => Solver m a -> m (Either [TypeError] [a])
runSolver :: Solver m a -> m (Either [TypeError] [a])
runSolver (Solver s :: LogicT (StateT [TypeError] m) a
s) = do
([a], [TypeError])
res <- StateT [TypeError] m [a] -> [TypeError] -> m ([a], [TypeError])
forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
runStateT (LogicT (StateT [TypeError] m) a -> StateT [TypeError] m [a]
forall (m :: * -> *) a. Monad m => LogicT m a -> m [a]
observeAllT LogicT (StateT [TypeError] m) a
s) []
Either [TypeError] [a] -> m (Either [TypeError] [a])
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Either [TypeError] [a] -> m (Either [TypeError] [a]))
-> Either [TypeError] [a] -> m (Either [TypeError] [a])
forall a b. (a -> b) -> a -> b
$ case ([a], [TypeError])
res of
(x :: a
x : xs :: [a]
xs, _ ) -> [a] -> Either [TypeError] [a]
forall a b. b -> Either a b
Right (a
x a -> [a] -> [a]
forall a. a -> [a] -> [a]
: [a]
xs)
(_ , es :: [TypeError]
es) -> [TypeError] -> Either [TypeError] [a]
forall a b. a -> Either a b
Left ([TypeError] -> [TypeError]
forall a. Eq a => [a] -> [a]
nub [TypeError]
es)
emptySubst :: Subst
emptySubst :: Subst
emptySubst = Subst
forall a. Monoid a => a
mempty
compose :: Subst -> Subst -> Subst
Subst s1 :: Map TVar Type
s1 compose :: Subst -> Subst -> Subst
`compose` Subst s2 :: Map TVar Type
s2 =
Map TVar Type -> Subst
Subst (Map TVar Type -> Subst) -> Map TVar Type -> Subst
forall a b. (a -> b) -> a -> b
$ (Type -> Type) -> Map TVar Type -> Map TVar Type
forall a b k. (a -> b) -> Map k a -> Map k b
Map.map (Subst -> Type -> Type
forall a. Substitutable a => Subst -> a -> a
apply (Map TVar Type -> Subst
Subst Map TVar Type
s1)) Map TVar Type
s2 Map TVar Type -> Map TVar Type -> Map TVar Type
forall k a. Ord k => Map k a -> Map k a -> Map k a
`Map.union` Map TVar Type
s1
unifyMany :: Monad m => [Type] -> [Type] -> Solver m Subst
unifyMany :: [Type] -> [Type] -> Solver m Subst
unifyMany [] [] = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
unifyMany (t1 :: Type
t1 : ts1 :: [Type]
ts1) (t2 :: Type
t2 : ts2 :: [Type]
ts2) = do
Subst
su1 <- Type -> Type -> Solver m Subst
forall (m :: * -> *). Monad m => Type -> Type -> Solver m Subst
unifies Type
t1 Type
t2
Subst
su2 <- [Type] -> [Type] -> Solver m Subst
forall (m :: * -> *). Monad m => [Type] -> [Type] -> Solver m Subst
unifyMany (Subst -> [Type] -> [Type]
forall a. Substitutable a => Subst -> a -> a
apply Subst
su1 [Type]
ts1) (Subst -> [Type] -> [Type]
forall a. Substitutable a => Subst -> a -> a
apply Subst
su1 [Type]
ts2)
Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return (Subst
su2 Subst -> Subst -> Subst
`compose` Subst
su1)
unifyMany t1 :: [Type]
t1 t2 :: [Type]
t2 = TypeError -> Solver m Subst
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TypeError -> Solver m Subst) -> TypeError -> Solver m Subst
forall a b. (a -> b) -> a -> b
$ [Type] -> [Type] -> TypeError
UnificationMismatch [Type]
t1 [Type]
t2
allSameType :: [Type] -> Bool
allSameType :: [Type] -> Bool
allSameType [] = Bool
True
allSameType [_ ] = Bool
True
allSameType (x :: Type
x : y :: Type
y : ys :: [Type]
ys) = Type
x Type -> Type -> Bool
forall a. Eq a => a -> a -> Bool
== Type
y Bool -> Bool -> Bool
&& [Type] -> Bool
allSameType (Type
y Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
: [Type]
ys)
unifies :: Monad m => Type -> Type -> Solver m Subst
unifies :: Type -> Type -> Solver m Subst
unifies t1 :: Type
t1 t2 :: Type
t2 | Type
t1 Type -> Type -> Bool
forall a. Eq a => a -> a -> Bool
== Type
t2 = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
unifies (TVar v :: TVar
v) t :: Type
t = TVar
v TVar -> Type -> Solver m Subst
forall (m :: * -> *). Monad m => TVar -> Type -> Solver m Subst
`bind` Type
t
unifies t :: Type
t (TVar v :: TVar
v) = TVar
v TVar -> Type -> Solver m Subst
forall (m :: * -> *). Monad m => TVar -> Type -> Solver m Subst
`bind` Type
t
unifies (TList xs :: [Type]
xs) (TList ys :: [Type]
ys)
| [Type] -> Bool
allSameType [Type]
xs Bool -> Bool -> Bool
&& [Type] -> Bool
allSameType [Type]
ys = case ([Type]
xs, [Type]
ys) of
(x :: Type
x : _, y :: Type
y : _) -> Type -> Type -> Solver m Subst
forall (m :: * -> *). Monad m => Type -> Type -> Solver m Subst
unifies Type
x Type
y
_ -> Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
| [Type] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Type]
xs Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== [Type] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Type]
ys = [Type] -> [Type] -> Solver m Subst
forall (m :: * -> *). Monad m => [Type] -> [Type] -> Solver m Subst
unifyMany [Type]
xs [Type]
ys
unifies t1 :: Type
t1@(TList _ ) t2 :: Type
t2@(TList _ ) = TypeError -> Solver m Subst
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TypeError -> Solver m Subst) -> TypeError -> Solver m Subst
forall a b. (a -> b) -> a -> b
$ Type -> Type -> TypeError
UnificationFail Type
t1 Type
t2
unifies ( TSet True _) ( TSet True _) = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
unifies (TSet False b :: AttrSet Type
b) (TSet True s :: AttrSet Type
s)
| AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
b [Name] -> [Name] -> [Name]
forall a. Eq a => [a] -> [a] -> [a]
`intersect` AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
s [Name] -> [Name] -> Bool
forall a. Eq a => a -> a -> Bool
== AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
s = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
unifies (TSet True s :: AttrSet Type
s) (TSet False b :: AttrSet Type
b)
| AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
b [Name] -> [Name] -> [Name]
forall a. Eq a => [a] -> [a] -> [a]
`intersect` AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
s [Name] -> [Name] -> Bool
forall a. Eq a => a -> a -> Bool
== AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
b = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
unifies (TSet False s :: AttrSet Type
s) (TSet False b :: AttrSet Type
b) | [Name] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null (AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
b [Name] -> [Name] -> [Name]
forall a. Eq a => [a] -> [a] -> [a]
\\ AttrSet Type -> [Name]
forall k v. HashMap k v -> [k]
M.keys AttrSet Type
s) =
Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
unifies (t1 :: Type
t1 :~> t2 :: Type
t2) (t3 :: Type
t3 :~> t4 :: Type
t4) = [Type] -> [Type] -> Solver m Subst
forall (m :: * -> *). Monad m => [Type] -> [Type] -> Solver m Subst
unifyMany [Type
t1, Type
t2] [Type
t3, Type
t4]
unifies (TMany t1s :: [Type]
t1s) t2 :: Type
t2 = [Type] -> Solver m Type
forall a (m :: * -> *). [a] -> Solver m a
considering [Type]
t1s Solver m Type -> (Type -> Solver m Subst) -> Solver m Subst
forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b
>>- Type -> Type -> Solver m Subst
forall (m :: * -> *). Monad m => Type -> Type -> Solver m Subst
unifies (Type -> Type -> Solver m Subst) -> Type -> Type -> Solver m Subst
forall (f :: * -> *) a b. Functor f => f (a -> b) -> a -> f b
?? Type
t2
unifies t1 :: Type
t1 (TMany t2s :: [Type]
t2s) = [Type] -> Solver m Type
forall a (m :: * -> *). [a] -> Solver m a
considering [Type]
t2s Solver m Type -> (Type -> Solver m Subst) -> Solver m Subst
forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b
>>- Type -> Type -> Solver m Subst
forall (m :: * -> *). Monad m => Type -> Type -> Solver m Subst
unifies Type
t1
unifies t1 :: Type
t1 t2 :: Type
t2 = TypeError -> Solver m Subst
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TypeError -> Solver m Subst) -> TypeError -> Solver m Subst
forall a b. (a -> b) -> a -> b
$ Type -> Type -> TypeError
UnificationFail Type
t1 Type
t2
bind :: Monad m => TVar -> Type -> Solver m Subst
bind :: TVar -> Type -> Solver m Subst
bind a :: TVar
a t :: Type
t | Type
t Type -> Type -> Bool
forall a. Eq a => a -> a -> Bool
== TVar -> Type
TVar TVar
a = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
| TVar -> Type -> Bool
forall a. FreeTypeVars a => TVar -> a -> Bool
occursCheck TVar
a Type
t = TypeError -> Solver m Subst
forall e (m :: * -> *) a. MonadError e m => e -> m a
throwError (TypeError -> Solver m Subst) -> TypeError -> Solver m Subst
forall a b. (a -> b) -> a -> b
$ TVar -> Type -> TypeError
InfiniteType TVar
a Type
t
| Bool
otherwise = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return (Map TVar Type -> Subst
Subst (Map TVar Type -> Subst) -> Map TVar Type -> Subst
forall a b. (a -> b) -> a -> b
$ TVar -> Type -> Map TVar Type
forall k a. k -> a -> Map k a
Map.singleton TVar
a Type
t)
occursCheck :: FreeTypeVars a => TVar -> a -> Bool
occursCheck :: TVar -> a -> Bool
occursCheck a :: TVar
a t :: a
t = TVar
a TVar -> Set TVar -> Bool
forall a. Ord a => a -> Set a -> Bool
`Set.member` a -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv a
t
nextSolvable :: [Constraint] -> (Constraint, [Constraint])
nextSolvable :: [Constraint] -> (Constraint, [Constraint])
nextSolvable xs :: [Constraint]
xs = Maybe (Constraint, [Constraint]) -> (Constraint, [Constraint])
forall a. HasCallStack => Maybe a -> a
fromJust (((Constraint, [Constraint]) -> Bool)
-> [(Constraint, [Constraint])] -> Maybe (Constraint, [Constraint])
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
find (Constraint, [Constraint]) -> Bool
forall a. ActiveTypeVars a => (Constraint, a) -> Bool
solvable ([Constraint] -> [(Constraint, [Constraint])]
forall a. Eq a => [a] -> [(a, [a])]
chooseOne [Constraint]
xs))
where
chooseOne :: [a] -> [(a, [a])]
chooseOne xs :: [a]
xs = [ (a
x, [a]
ys) | a
x <- [a]
xs, let ys :: [a]
ys = a -> [a] -> [a]
forall a. Eq a => a -> [a] -> [a]
delete a
x [a]
xs ]
solvable :: (Constraint, a) -> Bool
solvable (EqConst{} , _) = Bool
True
solvable (ExpInstConst{}, _) = Bool
True
solvable (ImpInstConst _t1 :: Type
_t1 ms :: Set TVar
ms t2 :: Type
t2, cs :: a
cs) =
Set TVar -> Bool
forall a. Set a -> Bool
Set.null ((Type -> Set TVar
forall a. FreeTypeVars a => a -> Set TVar
ftv Type
t2 Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.difference` Set TVar
ms) Set TVar -> Set TVar -> Set TVar
forall a. Ord a => Set a -> Set a -> Set a
`Set.intersection` a -> Set TVar
forall a. ActiveTypeVars a => a -> Set TVar
atv a
cs)
considering :: [a] -> Solver m a
considering :: [a] -> Solver m a
considering xs :: [a]
xs = LogicT (StateT [TypeError] m) a -> Solver m a
forall (m :: * -> *) a.
LogicT (StateT [TypeError] m) a -> Solver m a
Solver (LogicT (StateT [TypeError] m) a -> Solver m a)
-> LogicT (StateT [TypeError] m) a -> Solver m a
forall a b. (a -> b) -> a -> b
$ (forall r.
(a -> StateT [TypeError] m r -> StateT [TypeError] m r)
-> StateT [TypeError] m r -> StateT [TypeError] m r)
-> LogicT (StateT [TypeError] m) a
forall (m :: * -> *) a.
(forall r. (a -> m r -> m r) -> m r -> m r) -> LogicT m a
LogicT ((forall r.
(a -> StateT [TypeError] m r -> StateT [TypeError] m r)
-> StateT [TypeError] m r -> StateT [TypeError] m r)
-> LogicT (StateT [TypeError] m) a)
-> (forall r.
(a -> StateT [TypeError] m r -> StateT [TypeError] m r)
-> StateT [TypeError] m r -> StateT [TypeError] m r)
-> LogicT (StateT [TypeError] m) a
forall a b. (a -> b) -> a -> b
$ \c :: a -> StateT [TypeError] m r -> StateT [TypeError] m r
c n :: StateT [TypeError] m r
n -> (a -> StateT [TypeError] m r -> StateT [TypeError] m r)
-> StateT [TypeError] m r -> [a] -> StateT [TypeError] m r
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr a -> StateT [TypeError] m r -> StateT [TypeError] m r
c StateT [TypeError] m r
n [a]
xs
solve :: MonadState InferState m => [Constraint] -> Solver m Subst
solve :: [Constraint] -> Solver m Subst
solve [] = Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return Subst
emptySubst
solve cs :: [Constraint]
cs = (Constraint, [Constraint]) -> Solver m Subst
forall (m :: * -> *).
MonadState InferState m =>
(Constraint, [Constraint]) -> Solver m Subst
solve' ([Constraint] -> (Constraint, [Constraint])
nextSolvable [Constraint]
cs)
where
solve' :: (Constraint, [Constraint]) -> Solver m Subst
solve' (EqConst t1 :: Type
t1 t2 :: Type
t2, cs :: [Constraint]
cs) = Type -> Type -> Solver m Subst
forall (m :: * -> *). Monad m => Type -> Type -> Solver m Subst
unifies Type
t1 Type
t2
Solver m Subst -> (Subst -> Solver m Subst) -> Solver m Subst
forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b
>>- \su1 :: Subst
su1 -> [Constraint] -> Solver m Subst
forall (m :: * -> *).
MonadState InferState m =>
[Constraint] -> Solver m Subst
solve (Subst -> [Constraint] -> [Constraint]
forall a. Substitutable a => Subst -> a -> a
apply Subst
su1 [Constraint]
cs) Solver m Subst -> (Subst -> Solver m Subst) -> Solver m Subst
forall (m :: * -> *) a b. MonadLogic m => m a -> (a -> m b) -> m b
>>- \su2 :: Subst
su2 -> Subst -> Solver m Subst
forall (m :: * -> *) a. Monad m => a -> m a
return (Subst
su2 Subst -> Subst -> Subst
`compose` Subst
su1)
solve' (ImpInstConst t1 :: Type
t1 ms :: Set TVar
ms t2 :: Type
t2, cs :: [Constraint]
cs) =
[Constraint] -> Solver m Subst
forall (m :: * -> *).
MonadState InferState m =>
[Constraint] -> Solver m Subst
solve (Type -> Scheme -> Constraint
ExpInstConst Type
t1 (Set TVar -> Type -> Scheme
generalize Set TVar
ms Type
t2) Constraint -> [Constraint] -> [Constraint]
forall a. a -> [a] -> [a]
: [Constraint]
cs)
solve' (ExpInstConst t :: Type
t s :: Scheme
s, cs :: [Constraint]
cs) = do
Type
s' <- m Type -> Solver m Type
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (m Type -> Solver m Type) -> m Type -> Solver m Type
forall a b. (a -> b) -> a -> b
$ Scheme -> m Type
forall (m :: * -> *). MonadState InferState m => Scheme -> m Type
instantiate Scheme
s
[Constraint] -> Solver m Subst
forall (m :: * -> *).
MonadState InferState m =>
[Constraint] -> Solver m Subst
solve (Type -> Type -> Constraint
EqConst Type
t Type
s' Constraint -> [Constraint] -> [Constraint]
forall a. a -> [a] -> [a]
: [Constraint]
cs)
instance Monad m => Scoped (Judgment s) (InferT s m) where
currentScopes :: InferT s m (Scopes (InferT s m) (Judgment s))
currentScopes = InferT s m (Scopes (InferT s m) (Judgment s))
forall (m :: * -> *) a e.
(MonadReader e m, Has e (Scopes m a)) =>
m (Scopes m a)
currentScopesReader
clearScopes :: InferT s m r -> InferT s m r
clearScopes = forall e r.
(MonadReader e (InferT s m),
Has e (Scopes (InferT s m) (Judgment s))) =>
InferT s m r -> InferT s m r
forall (m :: * -> *) a e r.
(MonadReader e m, Has e (Scopes m a)) =>
m r -> m r
clearScopesReader @(InferT s m) @(Judgment s)
pushScopes :: Scopes (InferT s m) (Judgment s) -> InferT s m r -> InferT s m r
pushScopes = Scopes (InferT s m) (Judgment s) -> InferT s m r -> InferT s m r
forall e (m :: * -> *) a r.
(MonadReader e m, Has e (Scopes m a)) =>
Scopes m a -> m r -> m r
pushScopesReader
lookupVar :: Name -> InferT s m (Maybe (Judgment s))
lookupVar = Name -> InferT s m (Maybe (Judgment s))
forall (m :: * -> *) a e.
(MonadReader e m, Has e (Scopes m a)) =>
Name -> m (Maybe a)
lookupVarReader